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ON THE NUMBER OF POLYNOMIAL MAPS INTO Zn 

By 

Florian LUCA and Igor E. SHPARLINSKI 

Abstract. In this paper, we study maximal, minimal, normal and 
average order of the function 

n 

f(n) = II njgcd(n,k!) 
k=O 

which is the cardinality of the set of polynomial maps from Z into 

Zn· 

1 Introduction 

For a positive integer n we let 

n n 

f(n) = ilgCd(n,k!)" 

It is known since the work of A. J. Kempner [9] that f(n) gives the cardinality of 
the set of polynomial maps from Z into Zn. In a completely explicit form it is 
also given by M. Bhargava [1]. 

Here, we study some questions about the maximal, minimal, normal and 
average order of this function. 

In fact, the question on the large order is trivial as clearly the inequality 

holds for all positive integers n with equality if and only if n is prime. Thus, we 
concentrate on the remaining questions. 

We remark that in what follows no attempt has been made to get sharp 
bounds on the error terms. Throughout the paper, the implied constants in 
symbols '0', '«' and '»', may occasionally, where obvious, depend on the integer 
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parameter v, and are absolute otherwise (we recall that U = O(V), U« V and 
V» U are both equivalent to the inequality 1 UI ::;; c V with some constant 

c> 0). 
We use the letters p and q, with subscripts or without, to denote prime 

numbers, and k, m and n to denote nonnegative integers. 
If n is positive, we use P(n), co(n) and i(n) for the largest prime factor of n, 

the number of distinct prime divisors of n and the total number of divisors of n, 
respectively (we also put P(1) = 1). 

2 Minimal Order 

THEOREM 1. The inequality 

holds as n ........, co. 

PROOF. We let kn be such that kn ! ::;; nand (kn + I)! > n. Since the inequality 
gcd(n, k!) ::;; rnin{n, k!} holds for all k = 0, ... , it follows that gcd(n, k!) ::;; k! for 
k ::;; kn and gcd(n, k!) ::;; n for all k ;?: kn + 1. Note that all equalities are achieved 
when n itself is a factorial. Thus, 

kn ( kn) f(n) ;?: g;! = exp (kn + 1) log n - ~ log(k!) . (1) 

From the Stirling formula, we derive log k! = k log k + O(k). Thus, 

kn kn 1 L log(k!) = L k log k + O(k;,) = 2: k;, log kn + O(k;'). 
k=O k=O 

Furthermore, since kn ! ::;; n < (kn + I)!, we get that 

kn log kit + O(kn ) = log n, 

which shows that 

log n 
kit = (1 +0(1))1 1 . og ogn 

Hence, 



Number of polynomial maps 441 

(kn + 1) log n - t log(k!) = kn log n - ~k: log kn + O( (IO:~: nY) 

(log n)2 (1 (1)) 
= 2 log log n + 0 , 

which together with the estimate (1) completes the proof of the lower bound. 
We also remark that if n = m! then kn = m and the inequality (1) becomes an 

equality. 0 

3 Normal Order 

It is clear that f(n) ;::: f(d) holds for all divisors d of n. In particular, 

f(n) ;::: f(P(n)) = P(n)p(n). (2) 

We now show that for almost all n this bound is tight. 

THEOREM 2. For all but O(x(loglog xl flog x) positive integers n:::;; x, we 
have 

log f(n) = (1 + 0 ((IO~~;gxX)2) ) P(n) log P(n). 

PROOF. We assume that x is a large positive real number and define 

4 3 (log x log log log x) 
w = (log x), y = exp((loglog x)), z = exp 3 log log x . (3) 

We now put 

tC't(x) = {n:::;; x: P(n) :::;; z}. 

By known results on the distribution of smooth numbers (see, for example, 

Section 111.5.4 in (11)), we have that 

#tC't(x) = x exp( -u log u), 

where 

log x 3 log log x 
u=--= . 

log z log log log x 

Hence, 
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X 
#81 (x) = x exp( -(3 + 0(1)) log log x) « 2. 

(log x) 

We let 82(x) be the set of all positive integers n ~ x such that aln for some 
squarefull a> w. Recall that a number a is called squarefull if p21a whenever p 
is a prime factor of a. It is known that if we write 

1""(x) = {a ~ x : a squarefull}, 

then 

#1""(x) = coxl/2 + O(xl/3), where Co = (~~~~) ~ 2.1732 (4) 

(see Theorem 14.1 in [6]). Fix a squarefull a > w. The number of positive integers 

n ~ x which are multiples of a is ~ x/a. Thus, using the estimate (4) and partial 

summation, we immediately get that 

"x x x @"2(X) ~ L.J -« ----rj2 « 2 . 
a>w a w (log x) 

ae'P'"(x) 

We now let 

@"3(X) = {n ~ x: w(n) > 10 log log x}. 

-r(n) ;;::: 2w(n) > (log x) 10 log 2 > (log x)3. 

Therefore, 

1" x #@"3(X) ~ 3 L.J -r(n) « 2 
(log x) n:5x (log x) 

(see Theorem 2 of Chapter 1.3.1 in [11]). 

We now define Q(n) =P(n/P(n)) and let 

@"4(X) = {n ~ x: min{Q(n),z} < P(n) < Q(n) log x}. 

For each fixed Q(n) = q and P(n) = p the number of such n ~ x is at most 

lx/pqJ ~ x/pq. We also remark for n E @"4(X) we have Q(n) > z/log x > ...;z pro­
vided that x is large enough. Thus, by the Mertens formula (see, for example, [10] 

for a very sharp error term), we derive 
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= x L ~ (IOgIOg(q log x) -loglog q + o (d-)) 
zl/2<q q g q 

= x L ~ (IOg(l + loglog X) + 0(_1 )) 
zl/2<q q log q log q 

I 1 '" 1 x log log x x(1oglog x)2 
«x og og x ~ -q -lo-g-q« 10g(zl/2) «-----'--:'lo'-g--'x=--'--'­

zl/2<q 

Thus, for the set cS'(x) = U:=I 0i(x), we have 

IP() x(loglog X)2 # (9 x «--'----'----'-
log x 

443 

(5) 

Now let JV(x) be the set of all positive integers 17 ~ x which are not in cS'(x). 
Fix 17 E JV(x) and denote dk = gcd(n,k!), k = 0, 1, .... It is clear that dkldk+l for 
all k;:::: 0. 

We have 

Thus, 

II dk ~ y!Y < yy2. 
k:o;y 

log f(n) = 17 log 17 - L log dk + 0(y2 log y). 
y<k:O;n 

(6) 

Let ko = lyJ + 1. If p(n) is the largest powerful divisor of 17, then p(n) I dko ' 

Indeed, let P be any prime factor of p(n). Then P < w, and the exponent at which 
P appears in p(n) is at most (log w)/(log 2), because 17 ¢ cS'2(X). Indeed, this fol­
lows since the exponent at which p appears in ko! is at least 

provided that x is large enough. In particular, m = 17/ dko is squarefree. Let 
ko < PI < '" < Ps = P(n) be all the prime factors of m. Since P(n) > Q(n) ;:::: 
z/log z > y, we have P(n)Q(n) I m. It is then clear that 
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{
dko' if ko :::;; k :::;; PI - I, 

dk = dkoPl'" Pi, if Pi:::;; k:::;; Pi+1 - 1, i = 1, ... ,s - 1, 
n, if k ~ Ps. 

Hence, 

2:::: log dk = (n - P(n)) log n 
y<ks.n 

s-I 

+ 2:::: Pi log Pi+l + (PI - ko) log dko 
i=2 

= n log n - P(n) log P(n) + O(w(n)Q(n) log n)). 

In particular, from (6), we infer that 

log f(n) = P(n) log P(n) + O(w(n)Q(n) log n + y2 log y). (7) 

log x 
w(n) «loglog x, log P(n) ~ log z» I I ' P(n) ~ Q(n) log x 

og ogx 

for x large enough, which implies that 

w(n)Q(n) log n« P(n) log P(n) ((IO~~;gxX)2). 

Also 

y2 log y« z log z((1o~~;gxX)2) «P(n) log P(n) eIO~~;gxX)2). 

We now derive from estimate (7) that 

logf(n) = (1 + 0elO~~;g:)2) )p(n) logP(n) 

for n E .Af(x), which together with (5) finishes the proof. o 
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4 Average Order 

We start by obtaining an asymptotic formula for the sum 

O"v(x) = I:(P(n) log P(n)r· 
n;5;.x 

Similar sums have been studied by J.-M. De Koninck, A. Ivic, C. Pomerance and 
other researchers [2, 3, 5, 7, 8). In particular, an easy modification of the proof of 
Theorem 3 in (7) gives an asymptotic formula for O"v(x). 

Let ((s) denote the Riemann-zeta function. 

LEMMA 3. Let v > O. We then have the following asymptotic formula: 

( ) _ (((V + 1) o (lOg log x)) v+l(l )v-l O"v x-I + 1 x og x . V+ ogx 

PROOF. Let r = l(log x)2 J. The contribution to O"v(x) coming from n ~ x 
with P(n) ::;; xlr is obviously at most xlH(log x)-v. We now have 

I: (p(n)lOgp(n))V=(l+O(lOflOgX))(lOgXr I: P(nr 
n;5;.x og X n;5;.X 

P{n»x/r P{n»x/r 

= (1 + o(lOflOgX))(lOgxfI:P(n)v. og X n;5;.x 

For the last sum, the asymptotic formula 

I:P(nf = (((V + 1) + 0(_1 )) xv+l 
n;5;.x V + 1 log x log x 

is given in the proof of Theorem 3 in (7), and the result now follows. 0 

It is easy to see that the method of proof of Theorem 3 in (7) can be used to 
derive an asymptotic expansion for O"v(x). 

For a positive constant v we define 

Fv(x) = I:(log f(n)r· 
n;5;.x 

THEOREM 4. Let v > O. Then we have the following estimate: 

Fv(x) = (((V + 1) + 0((10~lOgX)2))xV+l(10gXr-l. 
v+ 1 og x 
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PROOF. By Lemma 3, it is enough to prove that 

Fv(x) = (1 + o((l07~;gxxf) ) (Jv(x). 

We consider the same sets @''j(x), @"2(X), @"3(X), @"4(X) and %(x) as in the 
proof of Theorem 2. Since n log n ~ log fen) ~ Pen) log P(n), the contribution to 

both Fv(x) and (Jv(x) from n E U~I @";(x) is at most 

5 

I: (P(n) log P(n))" ~ (x log x)" I: #c8i(x) «xv+1 (log X),,-2. 
I1EU:I.s;(X) ;=1 

We now consider the function Sen) = min{k : n I k!}, which is usually referred 
to as the Smarandache function, although it has appeared explicitly long before, 
for example, in the paper of A. J. Kempner [9] which dates back to 1921. Clearly, 

fen) ~ nS(n). 

We put ff(x) = {n : Sen) > Pen)}. K. Ford (see [4]), has shown that 

#ff(x) ~xexp(-(J2+o(l))Jlogxloglogx)« x 2' 
(log x) 

Since for n E @"4(X) we have Q(n) > z/log x > zl/2, (and therefore we also 
have Pen) ~ n/Q(n) ~ x/z l/2), the contribution to Fv(x) and to (Jv(x) coming 
from n E @"4(X) is at most 

I: (log f(n))" « #ff(x)(n log n)" + I: (P(n) log n)" 
n E$'4(X) 11 E $'3(x)\ff(x) 

«xv+l(log x)"z-v/2 + x(xz- I / 2 log x)"« xv+l(log x)"-2. 

Finally, by Theorem 2, we obtain 

Fv(x) = I: (log fen)) 1'+ O(xv+1 (log x) 1'-2) 
I1E';v(X) 

= (1 + o((l07~ogxx)2)) I: (P(n) logP (n))V + O(xv+l(logx)v-2) 
g IlE';v(X) 

= (1 + 0 ((l°7~;gx X)2) ) (Jv(x) + O(xv+1 (log X)"-2) 

= (1 + 0 Cl07~;gxX)2) ) (Jv(x), 

which concludes the proof. o 
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5 Distribution of Values 

THEOREM 5. The function f(n) is bijective. 

PROOF. For a prime p, we use ordp s to denote the p-adic order of the 
integer s. We also denote by kp(s) the largest k such that ordp k! ~ ordp s. 

If m # n, then there is a prime p such that ordp m # ordp n. Assume that 

ordp m < ordp n. 

Then it is clear that kp(m) ::; kp(n). Therefore 

kp{m) kp{m) 

ordp f(m) = L: (ordp m - ordp k!) < L: (ordp n - ordp k!) 
k=! k=! 

kp{n) 

::; L:(ordp n - ordp k!) = ordp f(m), 
k=l 

which concludes the proof. o 

Let 't'"(x) = {f(n) ::; x} be set of values of f(n) in the interval [I, x]. 

THEOREM 6. The following bound holds: 

( Jlog x) "'/"( ) (2 log x log log log X) 
exp I I « # r x «exp I I . og og x og og x 

PROOF. Let us put 

3 log x log x 
y = 2 log log x and z = log log x· 

Clearly the prime divisors of nand f(n) coincide, in particular P(f(n)) = P(n). 
Now from (2) we conclude that P(f(n)) ::; y, provided that x is large enough. 
Using the bound 

IOg\{'(x,y)=Z(I+O(-I-I_+ 1 11 )), 
og y og og x 

where 

Z = l10g x log(1 +-1 y ) +-1 Y log(l + log x) 
og y ogx og y y 
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(see Theorem 2 of Chapter III.5.1 in [11]) on the number 'I'(x, y) of integers 
m ~ x with P(m) ~ y, and remarking that 

Z = (1 + 0(1)) 3 log x log log log x, 
2 log log x 

we obtain the upper bound. 
On the other hand, note that if n is squarefree then f(n) ~ nP(n) (because nlk! 

for all k ~ P(n)). Furthermore, since in this case 

nl II P = exp((1 + 0(1))P(n)), 
ps;,P(n) 

we also have that log n ~ (1 + 0(1))P(n). Hence, log f(n) ~ (1 + 0(1))P(n)2 as 
n ---; ex) through squarefree values. Thus, if we let x be large and 

9 
W = 10 Vlog x, 

then f(n) ~ x for all squarefree positive integers n with P(n) < w, provided that 
x is large enough. Certainly, the number of such values of n is 

2"(11') = exp ((1 + 0(1)) 9 log 2 l~)' 
5 og og x 

and the result now follows from Theorem 5 together with the inequality 

(9 log 2)/5> 1. 0 
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