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ABSTRACT 1 

 2 

  The influenza virus PB1 protein functions as a catalytic subunit of the viral 3 

RNA-dependent RNA polymerase and contains the highly conserved motifs of 4 

RNA-dependent RNA polymerases together with putative nucleotide-binding sites.  5 

PB1 also binds to viral genomic RNAs and its replicative intermediates through 6 

the promoter regions.  The detail function and interplay between functional 7 

domains are not clarified although a part of structures and functions of PB1 have 8 

been clarified.  In this study, we analyzed the function of PB1 subunit in the sense 9 

of nucleotide recognition using ribavirin, which is a nucleoside analog and inhibits 10 

viral RNA synthesis of many RNA viruses including influenza virus.  We 11 

screened ribavirin-resistant PB1 mutants from randomly mutated PB1 cDNA 12 

library using a mini-replicon assay, and we identified a single mutation at the 13 

amino acid position 27 of PB1 as an important residue for the nucleotide 14 

recognition. 15 

 16 

 17 
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1. Introduction 1 

 2 

   Influenza A virus belongs to the family of Orthomyxoviridae.  Its genome 3 

consists of eight-segmented and single-stranded RNAs of negative polarity 4 

(vRNA).  Each segment is encapsidated by nucleoprotein (NP) and associated with 5 

viral RNA polymerases to form viral ribonucleoprotein (vRNP) complexes.  The 6 

vRNP complex is a basic unit for both transcription and replication [1].  The viral 7 

mRNA transcription is initiated using capped oligonucleotide as a primer.  The 8 

elongation of mRNA chain proceeds until the viral polymerase reaches oligo U 9 

sequence present near the 5’-terminus of vRNA, and then the poly A tail is added 10 

by the viral RNA polymerase.  In the viral genome replication, full-length cRNA 11 

(complementary RNA to vRNA) is generated from vRNA in a primer-independent 12 

manner, and progeny vRNAs are amplified from cRNA by the viral RNA 13 

polymerase.  The viral RNA polymerase consists of PB1, PB2, and PA.  PB1 14 

functions as a catalytic subunit and the assembly core of the viral RNA 15 

polymerase [2,3,4,5,6,7].  PA is genetically found to be involved in the replication 16 

process and the polymerase assembly [8] and have the endonuclease activity 17 

[9,10,11,12].  PB2 is responsible for the recognition and binding of the cap 18 

structure [1,13,14,15,16]. 19 

The 14 amino acids residues from the N-terminus of PB1 interact with PA 20 

[4,5,6,7,17,18,19,20], while the C-terminal region of PB1 between amino acid 21 

(a.a.) positions 678-757 interacts with PB2 [4,5,6,21,22].  PB1 contains the motifs 22 
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highly conserved among RNA-dependent RNA polymerases [2].  There are two 1 

putative nucleotide-binding sites between a.a. positions 179-297 and 458-519 2 

[23,24].  Moreover, the N-terminal (a.a. positions 1-83) and C-terminal (a.a. 3 

positions 494-757) regions of PB1 are suggested to interact with the vRNA 4 

promoter [25].  In addition, the a.a. positions 249-254 of PB1 is important for the 5 

vRNA binding, and Phe251 (when the number indicates the amino acid position) 6 

and Phe254 are essential for this binding [26].  It is also reported that the regions 7 

between a.a. positions 1-139 and 267-493 bind to the cRNA promoter [27].   8 

Ribavirin (1-β-D-ribofusanosyl-1,2,4-triazole-3-carboxamide, also known as 9 

Virazole) is a synthetic purine nucleoside analogue first synthesized by Sidwell 10 

and colleagues in 1972 [28].  It is phosphorylated by cellular adenosine kinases 11 

into ribavirin monophosphate, diphosphate, and triphosphate (RMP, RDP, and 12 

RTP, respectively) [29,30].  Ribavirin inhibits various RNA-dependent RNA 13 

polymerases such as those from influenza virus [31], vesicular stomatitis virus 14 

[32], La Crosse virus [33], Hantaan virus [35], Foot and mouth disease virus [36], 15 

West Nile virus [37], Andes virus [39], and Hepatitis C virus [40].  In contrast, 16 

ribavirin does not inhibit cellular RNA polymerase I, RNA polymerase II, and 17 

poly (A) polymerase [41].  Ribavirin inhibits the inosine monophosphate 18 

dehydrogenase, so that the de novo synthesis of purine nucleosides is interrupted 19 

[42].  Further, it is proposed that ribavirin inhibits the RNA capping and RNA 20 

polymerization by virus-encoded enzymes [42].  It is also known that since 21 

ribavirin forms hydrogen bonds with cytidine and uridine, the incorporation of 22 
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ribavirin into viral genomic RNA induces G to A transition leading to the lethal 1 

mutations [29]. 2 

In this study, to elucidate functional residues required for the PB1 activity, 3 

we tried to isolate PB1 mutants which are resistant to ribavirin.  We found that the 4 

amino acid position 27 of PB1 is important for nucleotide recognition. 5 

6 
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2. Materials and methods 1 

 2 

2.1. Biological materials   3 

 4 

Monolayer cultures of 293T and MDCK cells were maintained at 37oC in 5 

Dulbecco’s Modified Eagle Medium (DMEM) and minimal essential medium 6 

(MEM) (Nissui), respectively, supplemented with 10% fetal bovine serum 7 

(Bovogen).  Influenza virus strain A/WSN/33 was prepared as previously 8 

described [8].  Ribavirin (Sigma) was dissolved in water to make stock of 100 µM.  9 

 10 

2.2. PB1 random mutagenesis   11 

 12 

For construction of a mammalian expression vector for PB1 containing 13 

random mutations, we used a PCR-based cloning strategy in the presence of 14 

MnCl2.  cDNA corresponding to the full-length PB1 was amplifed with specific 15 

primers 5’-CCCCAAGCTTGCCGCCACCATGGATGTCAATCCGACCTT-3’ 16 

and 5’-CATGCGGCCGCCTATTTTTGCCGTCTGAGCTCTT-3’.  The PCR 17 

product was then cloned into the Hind III and Not I sites of pEGFP-N1 and 18 

replaced EGFP gene with mutated PB1 cDNA.  The mutation rate of the plasmid 19 

library was confirmed by sequencing randomly selected 20 clones using specific 20 

primer 5’-GGAAGGCTCATAGACTTCCTTA-3’, which is corresponding to the 21 

nucleotide position from 560 to 1050 of segment 2.  The plasmid library was then 22 



 7

used to analyze the influenza virus RNA polymerase activity in a mini-replicon 1 

assay system. 2 

 3 

2.3. Mini-replicon assay system 4 

 5 

293T cells  were transfected with plasmids for the expression of viral 6 

proteins, PB1 (wild-type or mutants), PB2, PA, and NP, and a plasmid for the 7 

expression of artificial influenza virus genome containing either EGFP gene (for 8 

screening) or the firely luciferase gene (for luciferase assay) of negative polarity, 9 

which is synthesized in cells by the human DNA-dependent RNA polymerase I 10 

[43].  The mRNAs encoding either EGFP or luciferase genes are transcibed in a 11 

viral RNA polymerase-dependent manner.  For the screening, ribavirin was added 12 

(0 or 75 µM) after 3 hours post transfection (hpt), and the fluorescence of EGFP 13 

was observed at 15 hpt.  For the luciferase assay, ribavirin was added in the 14 

medium at various concentrations after 3 hpt, incubated at 37°C for 15 h, and then 15 

the luciferase activity was determined using commercially available reagents 16 

(Promega) according to the manufacturer’s protocol.  The relative luminescence 17 

intensity was measured with a luminometer for 20 sec.  A plasmid for the 18 

expression of Renilla luciferase driven by the simian virus 40 (SV40) promoter 19 

was used as an internal control for the dual-luciferase assay.  As a negative control, 20 

293T cells were transfected with the same plasmids, except for the PB1 expression 21 

plasmid.  22 
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3. Results 1 

 2 

3.1. Screening of ribavirin-resistant PB1 mutants   3 

 4 

To determine the 50% inhibitory concentration (IC50) of ribavirin, we carried 5 

out plaque assays with WSN-infected MDCK cells in the presence of various 6 

concentrations of ribavirin (Fig. 1A).  Based on the results, we determined that 7 

IC50 and IC90 of ribavirin on influenza virus were 20 µM and 75 µM, respectively.   8 

To make mutated cDNA library of PB1, random mutagenesis was carried out 9 

by PCR in the presence of 0.1 mM of Mn2+ and 1.5 mM of Mg2+ as described in 10 

Materials and methods.  To know the mutation frequency of this library, we 11 

transformed the library into E.coli DH5α high competent cells and obtained 3 x 12 

104 colonies.  To evaluate the mutation frequency, plasmids were isolated from 20 13 

independent colonies and sequenced between the nucleotide positions 560 and 14 

1055 of PB1 gene.  The results of sequencing showed that approximately 4.7 15 

mutations were introduced in 2,274 nucleotides of PB1 gene on average 16 

(approximately 1-2 a.a./PB1 protein).  Based on this in hand, we started screening 17 

of ribavirin-resistant PB1 from the mutated cDNA library as shown in Fig. 1B.  At 18 

first, this library was divided into 10 groups (Group 1 to 10), and mini-replicon 19 

assays were performed in the presence of ribavirin at IC90 (Fig. 1C), and thereby 20 

EGFP-positive cells were hardly found in wild-type PB1 transfected cells.  In 21 

contrast, in the case of cDNA library-transfected cells, approximately 10 to 30% 22 
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of EGFP-positive cells were found.  Among them, 34% of one of groups, Group 4-1 

transfected cells were resistant to ribavirin on average.  Thus, Group 4 was further 2 

divided into additional 10 groups and subjected to the mini-replicon assays.  After 3 

enrichment by 5 time-repetitions of this cycle, we could isolate a single clone 4 

showing the resistance to ribavirin.  Even in the presence of IC90 of ribavirin, 69% 5 

of the isolated clone-transfected cells were EGFP positive (Fig. 2A).  By 6 

sequencing of the isolated clone, we found one nucleotide substitution from G to 7 

A at nucleotide position of 103 (where the 5’ terminal nucleotide of cRNA is 8 

referred to as nucleotide position 1).  This nucleotide change leads to an amino 9 

acid change from Asp to Asn at amino acid position 27 (Fig. 2B).   10 

 11 

3.2. Characterization of D27N mutant   12 

 13 

To quantitatively measure the influenza virus RNA polymerase activity, the 14 

mini-replicon assays with the artificial genome containing luciferase gene was 15 

carried out in the presence of 12.5, 25, and 50 µM of ribavirin, respectively.  The 16 

luciferase activity of D27N mutant remained even in the presence of ribavirin 17 

compared with that of wild type.  IC50 of D27N to ribavirin was about 18 µM, 18 

while that of wild-type was around 10 µM (Fig. 2C).  Furthermore, the expression 19 

level of D27N was confirmed by western blot analysis.  The expression level of 20 

D27N was unchanged compared with that of wild-type even in the absence or 21 

presence of 50 M ribavirin (Fig. 2D).   22 
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To further characterize this mutant, we used methotrexate (MTX).  MTX is 1 

an inhibitor for purine biosynthesis, resulting in decrease of intracellular purine 2 

concentration.  The mini-replicon assays were performed in the presence of 3 

various concentrations of MTX.  The viral polymerase activity of D27N was 4 

significantly more than that of wild-type even in the presence of MTX (Fig. 3).5 
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4. Discussion 1 

 2 

PB1 functions as a catalytic subunit of viral RNA polymerase [2,3,4,5,6,7] 3 

and contains the highly conserved motifs of RNA-dependent RNA polymerases 4 

[2].  Putative nucleotide-binding sites have been expected adjacent to the 5 

conserved motifs of RNA-dependent RNA polymerases [23,24].  PB1 also binds 6 

to the vRNA and cRNA promoters [25,27].  In this study, to elucidate the 7 

functional domain of PB1 involved in nucleotide recognition, we isolated 8 

ribavirin-resistant mutants.  Ribavirin inhibits the de novo synthesis of purine 9 

nucleosides and thus blocks viral RNA synthesis.  In addition, it has been 10 

proposed that ribavirin also inhibits directly the viral RNA synthesis.  We found 11 

that the viral polymerase activity of D27N was higher than that of wild type in the 12 

presence of ribavirin (Fig. 2C).  Further, the viral polymerase activity of D27N 13 

was also resistant to MTX treatment compared with that of wild type (Fig. 3).  14 

These strongly suggest that D27N mutant can polymerize the nascent RNA chains 15 

with the low concentrations of nucleotide.  Therefore, it is expected that Asp27 is 16 

involved in the nucleotide recognition. 17 

The Asp27 of PB1 is conserved over 99.9% of 7,259 sequences of PB1 18 

deposited in the NCBI Influenza Sequence Database.  It has been reported that 19 

Asp27 is located upstream of the nucleotide binding site of PB1 but not in the 20 

catalytic active site.  Similarly, the ribavirin-resistant mutant of poliovirus has a 21 

mutation in a domain out of the catalytic active site of the viral polymerase [44].  22 



 12

D27N is present within putative vRNA and cRNA promoter binding sites [25,27].  1 

It is shown by mutants in the promoters of vRNA and cRNA that the RNA 2 

synthesis activity, cleavage of the cap structure, and the polyadenylation by viral 3 

polymerase are regulated through the promoter structure [45,46,47].  Further, the 4 

viral polymerase is stabilized by the interaction with its viral promoter [48].  5 

Based on previous reports and our findings, the interaction between Asp27 of PB1 6 

with vRNA and/or cRNA promoters may lead to the regulation of viral 7 

polymerase activity through the nucleotide recognition activity of PB1.  This 8 

finding could useful for further studies about the mechanism of nucleotide 9 

recognition of the influenza viral RNA polymerase. 10 

11 
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Figure legends 1 

 2 

Fig. 1. Screening of ribavirin-resistant PB1 mutant.  (A) Plaque assays were 3 

carried out with MDCK cells-infected WSN at MOI of 0.25 x 10-4 in the presence 4 

of ribavirin (0, 10, 33, 100, and 300 µM).  The results are averages from three 5 

independent experiments with standard deviations.  (B) Assay system for 6 

screening by mini-replicon assay.  293T cells were transfected with plasmids for 7 

the expression of viral proteins, PB1 (wild-type or mutant), PB2, PA, and NP, and 8 

a plasmid for the expression of artificial influenza virus genome containing EGFP 9 

gene of negative polarity.  (C) At 3 hpt, ribavirin was added (0 or 75 µM), and the 10 

fluorescence of EGFP was observed at 15 hpt.   11 

  12 

Fig. 2. Ribavirin-resistance of D27N mutant by mini-replicon assay system.  (A) 13 

Mini-replicon assay using EGFP gene as a reporter gene.  At 3 hpt, ribavirin was 14 

added (0 or 75 µM), and the fluorescence of EGFP was observed at 15 hpt.  (B) 15 

Sequence of ribavirin-resistant PB1 mutant.  (C) Mini-replicon assay using 16 

luciferase gene as a reporter gene was carried out.  At 3 hpt, different 17 

concentrations (0, 12.5, 25, 50, and 100 µM) of ribavirin were added, and the 18 

luciferase activity was measured at 15 hpt.  The vertical axis represents the 19 

percentage of the luciferase activity from ribavirin-treated cells relative to that 20 

from ribavirin-untreated cells.  The results are averages from three independent 21 

experiments with standard deviations.  (D) Effect of D27N mutation on assembly 22 



 20

of PB1 subunit.  Mini-replicon assay using luciferase gene as a reporter gene was 1 

carried out.  At 3 hpt, ribavirin was added (0 or 50 µM).  At 15 hpt, cells were 2 

lysed, and the lysates were subjected to western blot analysis using anti-PB1 3 

antibody and antibody against β-tubulin.   4 

 5 

Fig. 3. Methotrexate-resistance of D27N mutant by mini-replicon assay system.  6 

The mini-replicon assay using luciferase gene as a reporter gene was carried out.  7 

At 12 hpt, different concentrations (0, 0.3, 1, 3, 10, and 30 µM) of methotrexate 8 

were added, and luciferase activity was measured at 22 hpt.  The vertical axis 9 

represents the percentage of the luciferase activity from methotrexate-treated cells 10 

relative to that from methotrexate-untreated cells.  The results are averages from 11 

three independent experiments with standard deviations. 12 

 13 
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