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Redundancy-Optimal FF Codes for a General Source and Its
Relationships to the Rate-Optimal FF Codes∗

Mitsuharu ARIMURA†a), Hiroki KOGA††b), Senior Members, and Ken-ichi IWATA†††c), Member

SUMMARY In this paper we consider fixed-to-fixed length (FF) coding
of a general source X with vanishing error probability and define two kinds
of optimalities with respect to the coding rate and the redundancy, where
the redundancy is defined as the difference between the coding rate and
the symbolwise ideal codeword length. We first show that the infimum
achievable redundancy coincides with the asymptotic width W(X) of the
entropy spectrum. Next, we consider the two sets CH(X) and CW (X) and
investigate relationships between them, where CH(X) and CW (X) denote
the sets of all the optimal FF codes with respect to the coding rate and the
redundancy, respectively. We give two necessary and sufficient conditions
corresponding to CH(X) ⊆ CW (X) and CW (X) ⊆ CH(X), respectively. We
can also show the existence of an FF code that is optimal with respect to
both the redundancy and the coding rate.
key words: fixed-to-fixed length source coding, information-spectrum
methods, general sources, coding rate, redundancy

1. Introduction

Information-spectrum methods, which are described in de-
tail in [4], originate from a seminal paper by Han and Verdú
[5]. Information-spectrum methods provide a methodology
to analyze performance of coding of general sources, where
the class of general sources includes vast classes of sources
such as stationary memoryless sources, stationary ergodic
sources, stationary sources and nonstationary and/or noner-
godic sources. Given a general source X, it is fundamental
to characterize the infimum achievable coding rate of fixed-
to-fixed length (FF) codes subject to a criterion on the error
probability. If we require that the error probability asymp-
totically vanishes, the infimum achievable coding rate coin-
cides with the spectral sup-entropy rate H(X) of the source
[5].

In this paper we consider redundancy of FF coding of a
general source X. The redundancy introduced in this paper
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can be regarded as one of variations of the worst-case redun-
dancy of fixed-to-variable length lossless data compression
codes [8], [10]–[12] and can be used as another measure of
performance of FF codes. We define the redundancy of FF
codes as the difference between the symbolwise ideal code-
word length and the coding rate. It is shown that the infi-
mum achievable redundancy coincides with the asymptotic
width W(X) of the entropy spectrum of X. The asymptotic
width W(X) was first defined by one of the authors in [6],
[7] in the context of homophonic coding. The obtained re-
sult indicates that W(X) has another operational meaning in
a simpler problem of the redundancy of FF codes.

Next, we define the class CW(X) of all the optimal FF
codes with respect to the redundancy and investigate rela-
tionships between CW(X) and another class CH(X) of the
optimal codes with respect to the coding rate. We obtain
two necessary and sufficient conditions corresponding to
CH(X) ⊆ CW(X) and CW(X) ⊆ CH(X), respectively. More
precisely, we show that CH(X) ⊆ CW(X) if and only if
W(X) = H(X) − H(X) while CW (X) ⊆ CH(X) if and only
if W(X) = H(X) − H∗(X), where H(X) is the spectral inf-
entropy rate [4] and H∗(X) is a quantity defined in [2], [9].
These results immediately imply thatCH(X) = CW (X) if and
only if H(X) = H∗(X), which means that the left endpoint
of the entropy spectrum converges to a constant. In addi-
tion, we show that the intersection of CH(X) and CW(X) is
always nonempty. That is, there exists an FF code which is
asymptotically optimal with respect to both the coding rate
and the redundancy.

This paper is organized as follows. Section 2 is de-
voted to definitions of information-theoretic quantities that
are used throughout this paper. In Sect. 3, we define the in-
fimum achievable redundancy Rred(X) of an FF code and
show that Rred(X) coincides with W(X). The two classes
of the optimal codes are defined in Sect. 4. Relationships
between the two classes are analyzed in detail.

2. Preliminaries

Let N be the set of all the positive integers. For each n ∈ N
let Xn = X1X2 · · ·Xn be a random variable representing n
outputs from a source, where each Xi takes values in a finite
or countable set X. The probability distribution of Xn is
denoted by PXn . The probability of Xn = xn is expressed as
PXn (xn). We call X = {Xn}n∈N a general source [5]. We do
not impose the consistency condition on PXn , n ∈ N. The
probability distribution of 1

n log 1
PXn (Xn) , the self information
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per symbol, is called the entropy spectrum.
For a general source X, we define four limits concern-

ing the entropy spectrum.

Definition 2.1 (Han-Verdú [5]):

H(X) = inf
{
α : lim inf

n→∞ Pr
{1

n
log

1
PXn (Xn)

≤ α
}
= 1
}
,

(1)

H(X) = sup
{
β : lim inf

n→∞ Pr
{1

n
log

1
PXn (Xn)

≥ β
}
= 1
}
.

(2)

Definition 2.2 (Chen-Alajaji [2]):

H
∗
(X) = inf

{
α : lim sup

n→∞
Pr
{1

n
log

1
PXn (Xn)

≤ α
}
= 1
}
,

H∗(X) = sup
{
β : lim sup

n→∞
Pr
{1

n
log

1
PXn (Xn)

≥ β
}
= 1
}
.

(3)

Throughout this paper, the bases of logarithmic and expo-
nential functions are assumed to be 2, and any source X is
assumed to satisfy H(X) < ∞.

Next we define the asymptotic width of the entropy
spectrum of a source.

Definition 2.3 (Koga [6], [7]):

W(X) = inf
G

lim sup
n→∞

(bn − an), (4)

where

G =
{{

(an, bn)
}
n∈N : for any constant γ > 0

lim
n→∞Pr

{1
n

log
1

PXn (Xn)
∈ (an − γ, bn + γ)

}
= 1
}

is a set of sequences of intervals and throughout this paper
we consider sequences

{
(an, bn)

}
n∈N of intervals satisfying

an ≤ bn for all n ≥ 1.

It is known that W(X) has the following upper and
lower bounds [6], [7], [9]:

W(X) ≤ H(X) − H(X), (5)

W(X) ≥ H(X) − H∗(X), (6)

W(X) ≥ H
∗
(X) − H(X).

In the following, we show several examples of sources.
First we give two sources such that the equalities hold in
both (5) and (6).

Example 2.1: Let X1 and X2 be stationary and memory-
less sources with probability distributions P1 and P2, re-
spectively. The entropies of P1 and P2 are written as H(P1)
and H(P2), respectively. Assume that H(P1) < H(P2). Let
X = {Xn}n∈N be the mixed source of X1 and X2 with proba-
bility distribution

Fig. 1 Example of a source such that the equalities hold in both (5) and
(6).

PXn (xn) = (1 − α)
n∏

i=1

P1(xi) + α
n∏

i=1

P2(xi),

where α is a constant satisfying 0 < α < 1. Then H(X) =
H
∗
(X) = H(P2) and H(X) = H∗(X) = H(P1). For this

source, W(X) = H(X) − H(X) = H(X) − H∗(X) = H(P2) −
H(P1).

Example 2.2: Consider the three probability distributions
PX1 , PX2a and PX2b on X satisfying H(PX1 ) = a, H(PX2a ) = b
and H(PX2b ) = c for some constants a < b < c. For all n ≥ 1
define the probability distributions on Xn by

PXn (xn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2

PXn
1
(xn) +

1
2

PXn
2a

(xn) if n is odd,

1
2

PXn
1
(xn) +

1
2

PXn
2b

(xn) if n is even,

for all xn ∈ Xn, where PXn
1
(xn) =

∏n
i=1 PX1 (xi), PXn

2a
(xn) =∏n

i=1 PX2a (xi) and PXn
2b

(xn) =
∏n

i=1 PX2b (xi).
Figure 1 depicts the entropy spectrum of this source

for sufficiently large n. Concerning (5) and (6), this source
satisfies H(X) = H∗(X) and

W(X) = H(X) − H∗(X) = H(X) − H(X) = c − a. (7)

Next we give an example of X such that the inequality
strictly holds in (5) and the equality holds in (6).

Example 2.3: Let X1 and X2 be the sources defined in Ex-
ample 2.1. Let X = {Xn}n∈N be a nonstationary source de-
fined as

PXn (xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∏
i=1

P1(xi) if n is odd,

n∏
i=1

P2(xi) if n is even.

Then it holds that H(X) = H(P2) and H(X) = H(P1). For
this source, H(X) − H(X) = H(P1) − H(P2). On the other
hand, this source satisfies W(X) = 0 because the informa-
tion spectrum concentrates to one point as n→ ∞ due to the
law of large numbers.

Finally, we give an example such that the inequalities
strictly hold in both (5) and (6).
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Fig. 2 Example of a source such that the inequalities strictly hold in both
(5) and (6).

Example 2.4: Consider three probability distributions
PX1a , PX1b and PX2 onX satisfying H(PX1a ) = a, H(PX1b ) = b
and H(PX2 ) = c for some constants a < b < c. Define

PXn (xn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

PXn
1a

(xn) +
1
2

PXn
1b

(xn) if n is odd,

PXn
2
(xn) if n is even,

for all xn ∈ Xn and n ≥ 1, where PXn
1a

(xn) =
∏n

i=1 PX1a (xi),
PXn

1b
(xn) =

∏n
i=1 PX1b (xi) and PXn

2
(xn) =

∏n
i=1 PX2 (xi).

Figure 2 depicts the entropy spectrum of this source
for sufficiently large n. Concerning (5) and (6), this source
satisfies W(X) = H

∗
(X) − H(X) and therefore we have

W(X) > H(X) − H∗(X) = 0, (8)

W(X) < H(X) − H(X). (9)

3. Infimum Achievable Redundancy of FF Codes

In this section, we study the redundancy of an FF code for
a general source X. An output xn ∈ Xn from the source is
encoded by an encoder ϕn : Xn → Mn = {1, 2, . . . , Mn} to
a codeword ϕn(xn), where Mn < ∞. The codeword ϕn(xn)
is decoded by a decoder ψn : Mn → Xn to ψn(ϕn(xn)). The
coding rate is given by 1

n log Mn. Since ϕn is not one-to-one,
decoding error occurs for some xn. Define the probability of
the decoding error (error probability) as

εn = Pr{Xn � Dn},
where Dn = {xn ∈ Xn : ψn(ϕn(xn)) = xn}. Let C denote a
sequence {(ϕn, ψn)}n∈N of the pairs of an encoder ϕn and a
decoder ψn. We call C a code for simplicity.

Han and Verdú define the infimum achievable coding
rate of an FF code as follows.

Definition 3.1 (Han-Verdú [5]): A rate R is called achiev-
able coding rate for a source X if there exists a code C =
{(ϕn, ψn)}n∈N satisfying

lim
n→∞ εn = 0, (10)

lim sup
n→∞

1
n

log Mn ≤ R. (11)

The infimum of achievable coding rate R for X is called the
infimum achievable coding rate and is denoted by Rrate(X).

The infimum achievable coding rate for X is given in
the following theorem.

Theorem 3.1 (Han-Verdú [5]):

Rrate(X) = H(X).

Next we introduce the infimum achievable redundancy
of an FF code.

Definition 3.2: A redundancy R is called an achievable re-
dundancy for X if there exists a code C = {(ϕn, ψn)}n∈N sat-
isfying (10) and

lim
n→∞Pr

{1
n

log Mn − 1
n

log
1

PXn (Xn)
≤ R + γ

}
= 1 for any γ > 0. (12)

The infimum of the achievable redundancy R for X is
called the infimum achievable redundancy and is denoted
by Rred(X).

A general formula of the infimum achievable redun-
dancy for X is given in the following theorem.

Theorem 3.2:

Rred(X) = W(X).

Proof : Letting γ > 0 be an arbitrary constant, we first
prove that W(X) is achievable redundancy. To this end, we
note that the definition of G guarantees the existence of a
sequence of intervals {(an, bn)}n∈N ∈ G satisfying

lim sup
n→∞

(bn − an) ≤ W(X) + γ, (13)

lim
n→∞Pr{X

n ∈ An} = 0, (14)

lim
n→∞Pr{X

n ∈ Bn} = 0, (15)

whereAn and Bn are defined as

An =

{
xn ∈ Xn :

1
n

log
1

PXn (xn)
≤ an − γ

}
, (16)

Bn =

{
xn ∈ Xn :

1
n

log
1

PXn (xn)
≥ bn + γ

}
. (17)

Define Mn = exp(
n(bn+γ)�). Then, from [4, Lemma 1.3.1],
there exists a code C satisfying

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ 1
n

log Mn

}
≤ Pr
{1

n
log

1
PXn (Xn)

≥ bn + γ
}
. (18)

In view of (15), (17) and (18), the error probability of C
satisfies

lim
n→∞ εn = 0.

Next, we evaluate the redundancy of C. Due to (13),
there exists an integer n0 = n0(γ) satisfying



ARIMURA et al.: REDUNDANCY-OPTIMAL FF CODES FOR A GENERAL SOURCE AND ITS RELATIONSHIPS TO THE RATE-OPTIMAL FF CODES
2335

bn − an ≤ W(X) + 2γ

for all n ≥ n0. Then, for all n ≥ max{n0, 1/γ} the pointwise
redundancy of each xn � An is bounded as follows:

1
n

log Mn − 1
n

log
1

PXn (xn)
≤ bn + γ +

1
n
− (an − γ)

≤ W(X) + 5γ.

Therefore, together with (14), we obtain

lim
n→∞Pr

{1
n

log Mn − 1
n

log
1

PXn (Xn)
≤ W(X) + 5γ

}
= 1.

Since γ > 0 is arbitrary, this establishes that W(X) is the
achievable redundancy.

Hereinafter, we prove that R ≥ W(X) always holds if
R is an achievable redundancy. From the assumption, there
exists a code satisfying

lim
n→∞ εn = 0, (19)

lim
n→∞Pr

{1
n

log Mn − 1
n

log
1

PXn (Xn)
≤ R + γ

}
= 1 (20)

for any γ > 0. Recall here that any code C satisfies

εn ≥ Pr
{1

n
log

1
PXn (Xn)

≥ 1
n

log Mn + γ
}
− exp(−nγ)

for all n ≥ 1 and any γ > 0 [4, Lemma 1.3.2]. Then (19)
implies that

lim
n→∞Pr

{1
n

log
1

PXn (Xn)
≥ 1

n
log Mn + γ

}
= 0. (21)

Define an and bn by

an =
1
n

log Mn − R and bn =
1
n

log Mn.

Then, it follows from (20) and (21) that

lim
n→∞Pr

{1
n

log
1

PXn (Xn)
∈ (an − γ, bn + γ)

}
= 1

for any γ > 0, which shows that {(an, bn)}n∈N ∈ G. There-
fore, the definition of W(X) implies that

lim sup
n→∞

(bn − an) = R ≥ W(X).

Q.E.D.

Example 3.1: Consider the nonstationary source in Exam-
ple 2.3 with a finite alphabet X. Let C be a code satisfying
Mn = exp(
n(H(P2) + γn)�) for all n ∈ N and εn → 0 as
n → ∞, where {γn}n∈N is a sequence of positive numbers
satisfying γn → 0 and

√
nγn → ∞ as n→ ∞. The existence

of such C is easily verified by using the weak law of large
numbers. It is obvious that C is optimal with respect to the
coding rate, i.e., C satisfies (10) and (11) with R = H(X).
However, C is not optimal with respect to the redundancy

because (12) is not satisfied with R = W(X) = 0.
On the other hand, let C′ be another code with M′n

codewords satisfying εn → 0 as n→ ∞, where

M′n =
{

exp(
n(H(P1) + γn)�) if n is odd,
exp(
n(H(P2) + γn)�) if n is even.

The existence of C′ is also verified by using the weak law
of large numbers. Since this C′ satisfies (10) and (11) with
R = H(X) and (12) with R = W(X) = 0, C′ is optimal with
respect to both the coding rate and the redundancy.

In Example 3.1 we can say that C′ is more efficient
than C because M′n ≤ Mn for all n ≥ 1 and M′n is much
smaller than Mn for odd n. This means that the optimality
with respect to the rate does not always ensure the efficiency
of codes for finite n, while a certain property on the source
should be reflected in the construction of the optimal code
with respect to the redundancy. Introducing the nonconven-
tional notion of the optimality can unveil new aspects of the
FF coding of X as are discussed in the following section.

4. Relationships between the Two Classes of Optimal
Codes

4.1 Definitions of the Two Classes

In this section we discuss differences between the two kinds
of optimalities defined based on Definitions 3.1 and 3.2, re-
spectively. First, we introduce the class CH(X) of the opti-
mal codes as follows.

Definition 4.1: A code C is said to be H-optimal (or rate-
optimal) for X if C satisfies (10) and (11) with R = H(X).

Definition 4.2: The class CH(X) of the H-optimal codes is
the set of all the H-optimal codes for X.

Next we define another class CW(X) of the optimal
codes as follows.

Definition 4.3: A code C is said to be W-optimal (or
redundancy-optimal) for X if C satisfies (10) and (12) with
R = W(X).

Definition 4.4: The class CW (X) of the W-optimal codes is
the set of all the W-optimal codes for X.

We investigate relationships between the two classes
CW(X) and CH(X). Table 1 summarizes all the relationships
between CW(X) and CH(X), where the dependency on X is
omitted. Note that all the conditions are given in the form
whether the equalities are satisfied or not in (5) and (6). In
addition, we can show that all the conditions are necessary
and sufficient.

4.2 Condition for CH(X) ⊆ CW(X)

In this subsection, we investigate the condition for CH(X) ⊆
CW(X). We show that CH(X) ⊆ CW (X) if and only if the



2336
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.12 DECEMBER 2013

Table 1 The relationships between CW and CH .

W(X) =
H(X) − H∗(X)

W(X) >
H(X) − H∗(X)

W(X) =
H(X) − H(X)

CW = CH CW � CH

W(X) <
H(X) − H(X)

CW � CH

CW ∩ CH � ∅,CW\CH � ∅,CH\CW � ∅

equality holds in (5). The “if” and “only if” parts are estab-
lished separately in Theorems 4.1 and 4.2, respectively.

Theorem 4.1: If X satisfies W(X) = H(X) − H(X), then
CH(X) ⊆ CW(X).

Proof : Fix an H-optimal code C arbitrarily. This code
satisfies (10) and

lim sup
n→∞

1
n

log Mn ≤ H(X). (22)

Fix a constant γ > 0 arbitrarily. Then (22) guarantees the
existence of an integer n0 = n0(γ) satisfying

1
n

log Mn ≤ H(X) + γ (23)

for all n ≥ n0. On the other hand, with defining a set Ln by

Ln =

{
xn ∈ Xn :

1
n

log
1

PXn (xn)
≤ H(X) − γ

}
,

it holds from (2) and (10) that

lim
n→∞Pr

{
Xn ∈ Dn ∩ Lc

n
}
= 1, (24)

where Lc
n is the complement of Ln. From the assumption of

the theorem and (23), any xn ∈ Dn ∩ Lc
n satisfies

1
n

log Mn − 1
n

log
1

PXn (xn)
≤ H(X) + γ − (H(X) − γ)

= W(X) + 2γ (25)

for all n ≥ n0. Combining (24) and (25), we have

Pr
{1

n
log Mn − 1

n
log

1
PXn (Xn)

≤ W(X) + 2γ
}

≥ Pr{Xn ∈ Dn ∩ Lc
n
}→ 1 as n→ ∞. (26)

Since C satisfies (10) and γ > 0 is arbitrary in (26), C turns
out to be W-optimal. Q.E.D.

Theorem 4.2: If CH(X) ⊆ CW(X), then X satisfies W(X) =
H(X) − H(X).

Proof : Since (5) holds for any X, it suffices to establish
W(X) ≥ H(X) − H(X). Suppose that a code C is H-optimal
and satisfies (10),

1
n

log Mn > H(X) for all n ≥ 1 and

lim
n→∞

1
n

log Mn = H(X). (27)

Note that the existence of such a code C can be proved by the
diagonal line argument as follows. Let {γk}k∈N and {εk}k∈N
be arbitrary sequences satisfying

γ1 > γ2 > · · · > γk > · · · > 0 and lim
k→∞

γk = 0, (28)

1 > ε1 > ε2 > · · · > εk > · · · > 0 and lim
k→∞

εk = 0,

(29)

respectively. For each k define M(k)
n = exp(
n(H(X) + γk)�).

From [4, Lemma 1.3.1], there exists a code {(ϕ(k)
n , ψ(k)

n )}k∈N
satisfying

Pr{Xn � D(k)
n } ≤ Pr

{1
n

log
1

PXn (Xn)
≥ H(X) + γk

}
,

(30)

where D(k)
n = {xn ∈ Xn : ψ(k)

n (ϕ(k)
n (xn)) = xn}. Since the right

hand side of (30) converges to 0 as n → ∞ for each k ∈ N
from the definition of H(X) in (1) and the fact that γk > 0,
Pr{Xn � D(k)

n } ≤ εk for all sufficiently large n. Set

Nk =

{
n ∈ N : Pr

{1
n

log
1

PXn (Xn)
≥ H(X) + γk

}
≤ εk

}
and define a sequence {Nk}∞k=0 by N0 = 1 and

Nk = min
{
N > Nk−1 : n ∈ Nk for all n ≥ N

}
(31)

for k ≥ 1. Notice that for any k ∈ N there exists an N such
that n ∈ Nk for all n ≥ N since (30) holds for all sufficiently
large n. Clearly, {Nk}∞k=0 is strictly monotone increasing and
satisfies Nk → ∞ as k → ∞. Then we can define the encoder
and the decoder by ϕn = ϕ(k)

n and ψn = ψ(k)
n , respectively,

where k is the nonnegative integer satisfying Nk ≤ n < Nk+1.
Clearly, this code C = {(ϕn, ψn)}n∈N satisfies (10) and (27)
and therefore is H-optimal.

From the assumption of the theorem, any H-optimal
code is W-optimal. Therefore, letting γ > 0 be an arbitrary
constant, the code C satisfies

lim
n→∞Pr

{1
n

log Mn − 1
n

log
1

PXn (Xn)
≥ W(X) + γ

}
= 0.

(32)

Then, it follows from (27) and (32) that

lim
n→∞Pr

{1
n

log
1

PXn (Xn)
≤ H(X) −W(X) − γ

}
= 0.

Notice that due to the definition of H(X) in (2), it holds that
H(X) −W(X) − γ ≤ H(X), i.e., W(X) ≥ H(X) − H(X) − γ.
Since γ > 0 can be arbitrarily small, W(X) ≥ H(X) − H(X)
is established. Q.E.D.
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4.3 Condition for CW(X) ⊆ CH(X)

Next, we investigate the condition for CW(X) ⊆ CH(X). We
show that CW (X) ⊆ CH(X) if and only if the equality holds
in (6).

Theorem 4.3: If X satisfies W(X) = H(X) − H∗(X), then
CW(X) ⊆ CH(X).

Proof : Fix a constant γ > 0 arbitrarily. Let C be an
arbitrary W-optimal code. Then, C satisfies (10) and

lim
n→∞Pr

{1
n

log Mn − 1
n

log
1

PXn (Xn)
≤ W(X) + γ

}
= 1

for any γ > 0. Due to the assumption of the theorem, we
have

lim
n→∞Pr

{1
n

log
1

PXn (Xn)

≥ 1
n

log Mn + H∗(X) − H(X) − γ
}
= 1. (33)

Define A = lim sup
n→∞

1
n

log Mn. Then, it holds that

1
n

log Mn ≥ A − γ infinitely often. (34)

By using (33) and (34), it is not hard to verify that

lim sup
n→∞

Pr
{1

n
log

1
PXn (Xn)

≥ A + H∗(X) − H(X) − 2γ
}
= 1.

In view of the definition of H∗(X) in (3), we have

A + H∗(X) − H(X) − 2γ ≤ H∗(X),

which yields

lim sup
n→∞

1
n

log Mn ≤ H(X) + 2γ.

Since γ > 0 can be arbitrarily small, it holds that

lim sup
n→∞

1
n

log Mn ≤ H(X). (35)

Since C satisfies both (10) and (35), the code turns out to be
H-optimal. Q.E.D.

Theorem 4.4: If CW(X) ⊆ CH(X), then X satisfies W(X) =
H(X) − H∗(X).

We actually establish the following Proposition 4.1 in-
stead of proving Theorem 4.4 directly. This is because the
combination of the contraposition of Proposition 4.1 with
(6) lead to the claim of Theorem 4.4.

Proposition 4.1: If X satisfies W(X) > H(X)−H∗(X), then

there exists a code C satisfying C ∈ CW(X) and C � CH(X).

In the following, we construct the code C in the claim
of Proposition 4.1. Before describing the construction, we
give four lemmas for clarifying the key ideas in the con-
struction.

Fix sequences {γk}k∈N and {εk}k∈N satisfying (28) and
(29) arbitrarily. From the definition of H∗(X) in (3), it holds
for any constant γ > 0 and ε ∈ (0, 1) that

Pr
{1

n
log

1
PXn (Xn)

≤ H∗(X) − γ
}
≤ ε infinitely often.

Defining Nk by

Nk =

{
n ∈ N : Pr

{1
n

log
1

PXn (Xn)
≤ H∗(X) − γk

}
≤ εk

}
for k ∈ N, we have Lemmas 4.1–4.3.

Lemma 4.1: Nk+1 ⊆ Nk for all k ∈ N.

Proof : Fix k ∈ N arbitrarily and assume that n ∈ Nk+1.
Then it follows from (28) and (29) that

Pr
{1

n
log

1
PXn (Xn)

≤ H∗(X) − γk

}
≤ Pr
{1

n
log

1
PXn (Xn)

≤ H∗(X) − γk+1

}
≤ εk+1 ≤ εk,

which means n ∈ Nk. Therefore, Nk+1 ⊆ Nk for all k ∈ N
follows. Q.E.D.

Lemma 4.2: There exists a strictly monotone increasing
sequence {nk}k∈N of positive integers satisfying {nj : j ≥
k} ⊆ Nk for all k ∈ N.

Proof : Define n0 = 0 and

nk = min{n ∈ Nk : n > nk−1} for k ≥ 1. (36)

Note that, sinceNk is a countably infinite set, for each k ≥ 1
nk is well-defined. That is, if there is no n ∈ Nk satisfying
n > nk−1, Nk turns out to be a finite set, which is a contra-
diction. Therefore, the claim of this lemma follows because
nk ∈ Nk and Nk+1 ⊆ Nk for k ∈ N. Q.E.D.

Lemma 4.3: The sequence defined by (36) satisfies

lim
k→∞

Pr
{ 1

nk
log

1
PXnk (Xnk )

≤ H∗(X) − γ
}
= 0. (37)

Proof : Letting ε ∈ (0, 1) be an arbitrary constant, we
prove

Pr
{ 1

nk
log

1
PXnk (Xnk )

≤ H∗(X) − γ
}
≤ ε

for all sufficiently large k. In view of the definition of
{εk}k∈N, for any ε ∈ (0, 1) we can define k0 as the minimum
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integer k ≥ 1 satisfying εk ≤ ε. This implies that

Pr
{ 1

nk
log

1
PXnk (Xnk )

≤ H∗(X) − γ
}
≤ εk ≤ εk0 ≤ ε

for all k ≥ k0. Q.E.D.

The following lemma plays a key role in the construc-
tion of a code C satisfying C ∈ CW(X) and C � CH(X).

Lemma 4.4: There exists a sequence of intervals {(an, bn)}
n∈N ∈ G and a monotone increasing function κ : N→ N∪{0}
such that for any γ > 0 and any {γk}k∈N satisfying (28) it
holds that

lim sup
n→∞

(bn − an) ≤ W(X) +
γ

3
, (38)

lim
n→∞Pr

{1
n

log
1

PXn (Xn)
≤ an − γ

}
= 0, (39)

lim
n→∞Pr

{1
n

log
1

PXn (Xn)
≥ bn + γκ(n)

}
= 0, (40)

lim
n→∞ κ(n) = ∞. (41)

Proof : Fix γ > 0, {γk}k∈N satisfying (28) and {εk}k∈N
satisfying (29) arbitrarily. It is obvious from (4) that there
exists {(an, bn)}n∈N ∈ G satisfying (38). Since we have

lim
n→∞Pr

{1
n

log
1

PXn (Xn)
∈ (an − γ, bn + γ)

}
= 1,

(39) clearly holds. In the following, (40) and (41) are proved
by using an argument similar to the proof of Theorem 4.2.

Since it holds that {(an, bn)}n∈N ∈ G, for each k ≥ 1

Pr
{1

n
log

1
PXn (Xn)

∈ (an − γk, bn + γk)
}
≥ 1 − εk (42)

is satisfied for all sufficiently large n. Set

Nk =

{
n ∈ N : Pr

{1
n

log
1

PXn (Xn)
∈ (an − γk, bn + γk)

}
≥ 1 − εk

}
and define a sequence {Nk}∞k=0 by N0 = 1 and (31) for k ≥
1. Notice that {Nk}∞k=0 is strictly monotone increasing and
satisfies Nk → ∞ as k → ∞. Then, for each n ∈ N we
can find k ≥ 0 satisfying Nk ≤ n < Nk+1. Define κ(n) by
κ(n) = k. Then we have (41). Setting k = κ(n) in (42), it
holds that

Pr
{1

n
log

1
PXn (Xn)

∈ (an − γκ(n), bn + γκ(n))
}

≥ 1 − εκ(n) for all n ∈ N,
which yields (40) because the right hand side of the above
inequality converges to 1 as n→ ∞. Q.E.D.

Now we are ready to prove Proposition 4.1.
Proof of Proposition 4.1: In this proof we construct

a code C which is W-optimal but not H-optimal under the
assumption of W(X) > H(X) − H∗(X). We use {(an, bn)}n∈N
∈ G in Lemma 4.4.

(a) Construction of a code: Define

1
n

log Mn =

⎧⎪⎪⎨⎪⎪⎩H∗(X) +W(X) if n ∈ N ,
bn + γκ(n) if n � N ,

where N = {nk : k ∈ N} is the set of integers defined in
Lemma 4.2. Then, [4, Lemma 1.3.1] guarantees the exis-
tence of a code C = {(ϕn, ψn)}n∈N satisfying

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ 1
n

log Mn

}
. (43)

Hereinafter, we focus on the case where not onlyN but also
N\N is a countably infinite set. As is obvious from the proof
below, the proof becomes simpler if N\N is a finite set.

(b) Error probability: Since W(X) > H(X) − H∗(X)
from the assumption of the proposition, there exists a con-
stant δ0 > 0 satisfying W(X) = H(X) − H∗(X) + δ0. In the
following, we evaluate the error probability using (43). Let
ε ∈ (0, 1) be an arbitrary constant. If n ∈ N , we have

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ H∗(X) +W(X)
}

= Pr
{1

n
log

1
PXn (Xn)

≥ H(X) + δ0

}
,

which is smaller than ε for sufficiently large n ∈ N from (1).
On the other hand, if n � N , we have

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ bn + γκ(n)

}
,

which is smaller than ε for sufficiently large n � N from
(40). Combining both cases, the error probability is bounded
by ε for all sufficiently large n. Since ε ∈ (0, 1) is arbitrary,
this means that the error probability of this code converges
to 0 as n→ ∞.

(c) Redundancy: Fix γ > 0 and ε ∈ (0, 1) arbitrarily.
In the case of n ∈ N ,

Pr
{1

n
log

1
PXn (Xn)

≤ 1
n

log Mn −W(X) − γ
}

= Pr
{1

n
log

1
PXn (Xn)

≤ H∗(X) − γ
}

is satisfied. It is proved in Lemma 4.3 that this value is
bounded by ε for all sufficiently large n ∈ N .

In the case of n � N , since {(an, bn)}n∈N ∈ G satisfies
(38) for any γ > 0, there exists an integer n0 such that

bn − an ≤ W(X) +
2γ
3

for all n ≥ n0.

For the same n, we have

Pr
{1

n
log

1
PXn (Xn)

≤ 1
n

log Mn −W(X) − γ
}

= Pr
{1

n
log

1
PXn (Xn)

≤ bn + γκ(n) −W(X) − γ
}
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≤ Pr
{1

n
log

1
PXn (Xn)

≤ an + γκ(n) − γ3
}

≤ Pr
{1

n
log

1
PXn (Xn)

≤ an − γ6
}
, (44)

where the last inequality is obtained from γκ(n) < γ/6 for all
sufficiently large n because of γκ(n) → 0 as n → ∞. It is
clear from (39) that the right hand side of (44) is bounded
by ε for all sufficiently large n. Combining both cases, it is
proved for any ε > 0 and sufficiently large n that

Pr
{1

n
log Mn − 1

n
log

1
PXn (Xn)

≥ W(X) + γ
}
≤ ε.

From the above arguments on the error probability and re-
dundancy, the code C is proved to be W-optimal.

(d) Coding Rate: From the definition of Mn, we have

lim sup
n→∞

1
n

log Mn ≥ lim sup
k→∞

1
nk

log Mnk

= H∗(X) +W(X). (45)

Note that Lemma 4.2 guarantees that N is a countably in-
finite set. Since the assumption of the theorem means that
W(X) = H(X)−H∗(X)+δ0 for some δ0 > 0, it follows from
(45) that

lim sup
n→∞

1
n

log Mn ≥ H(X) + δ0 > H(X),

which means that the code C is not H-optimal. Q.E.D.

4.4 Condition for CW(X) = CH(X)

From Theorems 4.1, 4.3, 4.2, and 4.4, we can immediately
obtain the following corollary.

Corollary 4.1: CW(X) = CH(X) if and only if H(X) =
H∗(X).

Proof : If H(X) = H∗(X), we have W(X) = H(X) −
H(X) = H(X) − H∗(X). Then, Theorems 4.1 and 4.3 guar-
antee that CW(X) = CH(X).

Conversely, if CW(X) = CH(X), Theorems 4.2 and 4.4
tell us that W(X) = H(X) − H(X) = H(X) − H∗(X), which
immediately yields H(X) = H∗(X). Q.E.D.

4.5 Optimal Code with Respect to Both the Coding Rate
and the Redundancy

In this subsection, given a source X satisfying H(X) < ∞,
we show that there exists a code which is both W-optimal
and H-optimal. Before proving the theorem, we give a
lemma used in the proof of the theorem.

Lemma 4.5: For any element {(an, bn)}n∈N of G, define

ãn = min{an,H(X)} and b̃n = min{bn,H(X)}.

Then, it holds that {(ãn, b̃n)}n∈N ∈ G and

b̃n − ãn ≤ bn − an for all n ∈ N.

Proof : Since {(an, bn)}n∈N ∈ G is satisfied, it holds that
an ≤ bn for all n ≥ 1. It is easily verified that ãn ≤ b̃n and
b̃n − ãn ≤ bn − an for each n ∈ N. In fact, we have only to
treat the three cases H(X) ≤ an ≤ bn, an ≤ H(X) ≤ bn and
an ≤ bn ≤ H(X) separately.

In the following, {(ãn, b̃n)}n∈N ∈ G is proved. Let
{(an, bn)}n∈N ∈ G be an arbitrary sequence of intervals, and
γ > 0 an arbitrary constant. Define the sets An and Bn by
(16) and (17), respectively. Since {(an, bn)}n∈N ∈ G, we have

lim
n→∞Pr{X

n ∈ An} = lim
n→∞Pr{X

n ∈ Bn} = 0. (46)

With definingHn by

Hn =

{
xn ∈ Xn :

1
n

log
1

PXn (xn)
≥ H(X) + γ

}
,

it holds from the definition of H(X) in (1) that

lim
n→∞Pr{X

n ∈ Hn} = 0. (47)

Furthermore, define

Ãn =

{
xn ∈ Xn :

1
n

log
1

PXn (xn)
≤ ãn − γ

}
, (48)

B̃n =

{
xn ∈ Xn :

1
n

log
1

PXn (xn)
≥ b̃n + γ

}
. (49)

Since ãn ≤ an from the definition, we have Ãn ⊆ An. Thus,
it follows from (46) that

lim
n→∞Pr{X

n ∈ Ãn} ≤ lim
n→∞Pr{X

n ∈ An} = 0. (50)

In addition, since either B̃n = Bn or B̃n = Hn is satisfied
from the definition of b̃n, it holds that B̃n ⊆ Bn∪Hn. Hence,

lim
n→∞Pr{X

n ∈ B̃n} ≤ lim
n→∞Pr{X

n ∈ Bn ∪Hn}
≤ lim

n→∞Pr{X
n ∈ Bn} + lim

n→∞Pr{X
n ∈ Hn}

= 0, (51)

where the second inequality follows from the union bound,
and the equality is obtained from (46) and (47). Using (50),
(51) and the union bound, we have

lim
n→∞Pr

{1
n

log
1

PXn (Xn)
∈ (ãn − γ, b̃n + γ)

}
= 1 − lim

n→∞Pr{X
n ∈ Ãn ∪ B̃n}

≥ 1 − lim
n→∞Pr{X

n ∈ Ãn} − lim
n→∞Pr{X

n ∈ B̃n} = 1,

which implies that {(ãn, b̃n)}n∈N ∈ G. Q.E.D.

Using this lemma, we can prove the following theorem.
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Theorem 4.5: There exists an FF code which is both W-
optimal and H-optimal.

Proof : Fix γ > 0 arbitrarily. First we show the existence of
a code C satisfying

lim sup
n→∞

1
n

log Mn ≤ H(X) + γ,

lim
n→∞Pr

{1
n

log Mn − 1
n

log
1

PXn (Xn)
≤ W(X) + 5γ

}
= 1

for any γ > 0,

lim
n→∞ εn = 0.

From the definition of W(X), there exists a sequence of
intervals {(an, bn)}n∈N ∈ G satisfying

lim sup
n→∞

(bn − an) ≤ W(X) + γ.

We construct another sequence of intervals {(ãn, b̃n)}n∈N ∈ G
from {(an, bn)}n∈N ∈ G in the same manner as in Lemma 4.5.
Then, it holds that

lim sup
n→∞

(b̃n − ãn) ≤ W(X) + γ, (52)

lim sup
n→∞

b̃n ≤ H(X), (53)

lim sup
n→∞

Pr{Xn ∈ Ãn} = 0, (54)

lim sup
n→∞

Pr{Xn ∈ B̃n} = 0, (55)

where Ãn and B̃n are defined in (48) and (49), respectively.
Define Mn = exp(
n(b̃n+γ)�). Then, from [4, Lemma 1.3.1],
there exists a code such that the coding rate is equal to
1
n log Mn and the error probability satisfies (43). The limit
of the error probability is bounded as follows:

lim sup
n→∞

εn ≤ lim sup
n→∞

Pr
{1

n
log

1
PXn (Xn)

≥ 1
n

log Mn

}
≤ lim sup

n→∞
Pr{Xn ∈ B̃n} = 0,

where the equality follows from (55). In addition, by using
(53), the coding rate is bounded as

lim sup
n→∞

1
n

log Mn ≤ lim sup
n→∞

(
b̃n + γ +

1
n

)
≤ H(X) + γ.

Furthermore, since the individual redundancy of xn � Ãn is
evaluated as

1
n

log Mn − 1
n

log
1

PXn (Xn)
≤
(
b̃n + γ +

1
n

)
− (ãn − γ)

= (b̃n − ãn) + 3γ

for all sufficiently large n, the combination of (52) with (54)
yields

lim
n→∞Pr

{1
n

log Mn − 1
n

log
1

PXn (Xn)
≤ W(X) + 5γ

}
= 1.

Now we apply the diagonal line argument to ob-
tain sharp bounds on the coding rate and the redundancy.
Let {γk}k∈N and {εk}k∈N be arbitrary sequences satisfying
(28) and (29), respectively. For each k define M(k)

n =

exp(
n(H(X)+γk)�). Then there exists a code {(ϕ(k)
n , ψ(k)

n )}k∈N
satisfying (30). Notice here that we can choose a strictly
monotone increasing sequence {Nk}∞k=0 in the same way as
in the proof of Lemma 4.4. Thus for each n ∈ N we can
define an encoder and a decoder by ϕn = ϕ

(k)
n and ψn = ψ

(k)
n ,

where k is a unique integer satisfying Nk ≤ n < Nk+1. The
obtained code C′ = {(ϕn, ψn)}n∈N satisfies

lim sup
n→∞

1
n

log Mn ≤ H(X),

lim
n→∞ εn = 0,

and

lim
n→∞Pr

{1
n

log Mn − 1
n

log
1

PXn (Xn)
≤ W(X) + γ

}
= 1

for any γ > 0, which establishes that C′ is both W-optimal
and H-optimal. Q.E.D.

4.6 Examples of Optimal Codes

In this subsection, we show examples of codes which are
optimal under either one of the criteria and a code which is
optimal under both criteria. All of these codes exist if the
source X satisfies both W(X) > H(X) − H∗(X) and W(X) <
H(X) − H(X), which corresponds to the lower-right cell of
Table 1.

Consider the source defined in Example 2.4. Then, (8)
and (9) imply that there exist constants δ1 > 0, δ2 > 0
satisfying

W(X) = δ1 and W(X) = H(X) − H(X) − δ2.

For this source, we give three kinds of codes below.
The first one is W-optimal but not H-optimal, the second one
is H-optimal but not W-optimal, and the last one is both H-
optimal and W-optimal. Note that since an example which
is neither H-optimal nor W-optimal code is trivial, we do
not show it.

Since PXn
1a
, PXn

1b
, and PXn

2
in Example 2.4 are stationary

and memoryless, due to the law of large numbers there exists
a sequence {γn}n∈N satisfying γn → 0,

√
n γn → ∞,

Pr
{1

n
log

1
PXn (Xn)

∈ (H(X) − γn,H
∗
(X) + γn)

}
→ 1

for odd n, (56)

and

Pr
{1

n
log

1
PXn (Xn)

∈ (H∗(X) − γn,H(X) + γn)
}
→ 1

for even n. (57)
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Example 4.1 (W-optimal but not H-optimal code): For γn

satisfying (56) and (57), define Mn by

1
n

log Mn =

{
H
∗
(X) + γn if n is odd,

H(X) +W(X) + γn if n is even,

and construct a code such that all xn satisfying PXn (xn) ≥
1/Mn are correctly decoded for all n ∈ N. This code satisfies
(43).

Error probability: From (43),

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ H
∗
(X) + γn

}
→ 0

is satisfied for odd n. For even n, it holds that

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ H(X) +W(X) + γn

}
≤ Pr
{1

n
log

1
PXn (Xn)

≥ H(X) + γn

}
→ 0.

Therefore, we have εn → 0 as n→ ∞.
Redundancy: For odd n, it holds that

Pr
{1

n
log Mn − 1

n
log

1
PXn (Xn)

≥ W(X) + 2γn

}
= Pr
{1

n
log

1
PXn (Xn)

≤ H(X) − γn

}
→ 0.

On the other hand, for even n we have

Pr
{1

n
log Mn − 1

n
log

1
PXn (Xn)

≥ W(X) + 2γn

}
= Pr
{1

n
log

1
PXn (Xn)

≤ H∗(X) − γn

}
→ 0.

Combining with the evaluation of the error probability, this
code is proved to be W-optimal.

Coding Rate: For even n, this code satisfies

1
n

log Mn = H(X) + δ1 + γn.

Since δ1 > 0, this code is not H-optimal.

Example 4.2 (H-optimal but not W-optimal code): For γn

satisfying (56) and (57), define Mn by

1
n

log Mn = H(X) + γn, (58)

and construct a code such that any xn satisfying PXn (xn) ≥
1/Mn are correctly decoded for all n ∈ N. This code satisfies
(43).

Error probability: From (43) it holds that

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ H(X) + γn

}
→ 0.

Coding Rate: From (58), we have

lim sup
n→∞

1
n

log Mn = H(X).

Thus, this code is proved to be H-optimal.
Redundancy: For odd n, it holds that

Pr
{1

n
log Mn − 1

n
log

1
PXn (Xn)

≥ W(X) + 2γn

}
= Pr
{1

n
log

1
PXn (Xn)

≤ H(X) + δ2 − γn

}
.

Note that δ2 − γn > 0 is satisfied for sufficiently large n.
Applying (2), the right hand side is positive for infinitely
many n, which implies that this code is not W-optimal.

Example 4.3 (W-optimal and H-optimal code): For γn sat-
isfying (56) and (57), define Mn by

1
n

log Mn =

{
H
∗
(X) + γn, if n is odd,

H(X) + γn, if n is even,

and construct a code such that all xn satisfying PXn (xn) ≥
1/Mn are correctly decoded for all n ∈ N. This code satisfies
(43).

Error probability: From (43),

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ H
∗
(X) + γn

}
→ 0

is satisfied for odd n. For even n, it holds that

εn ≤ Pr
{1

n
log

1
PXn (Xn)

≥ H(X) + γn

}
→ 0.

Therefore, we have εn → 0.
Redundancy: For odd n, it holds that

Pr
{1

n
log Mn − 1

n
log

1
PXn (Xn)

≥ W(X) + 2γn

}
= Pr
{1

n
log

1
PXn (Xn)

≤ H(X) − γn

}
→ 0.

On the other hand, it is satisfied for even n that

Pr
{1

n
log Mn − 1

n
log

1
PXn (Xn)

≥ W(X) + 2γn

}
≤ Pr

{1
n

log
1

PXn (Xn)
≤ H∗(X) − γn

}
→ 0.

Combining with the evaluation of the error probability, this
code is proved to be W-optimal.

Coding Rate: For odd n, this code satisfies

1
n

log Mn = H
∗
(X) + γn.

For even n, this code satisfies

1
n

log Mn = H(X) + γn.

With the evaluation of the error probability, this code is
proved to be H-optimal.

5. Concluding Remarks

In this paper we have considered fixed-to-fixed length (FF)
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coding of a general source X satisfying H(X) < ∞ and
investigated relationships of the two classes CH(X) and
CW(X) of the optimal FF codes, where CH(X) and CW(X)
denote the sets of the optimal codes in terms of the cod-
ing rate and the redundancy, respectively. The relationships
are characterized by the asymptotic width W(X) of the en-
tropy spectrum of the source that satisfies H(X) − H∗(X) ≤
W(X) ≤ H(X) − H(X) in general. It is shown that CW(X) ⊆
CH(X) if and only if W(X) coincides with the upper bound,
while CH(X) ⊆ CW(X) if and only if W(X) coincides with
the lower bound. These results immediately implies that
H(X) = H∗(X) is a necessary and sufficient condition for
CW(X) = CH(X). It has also proved that CH(X)∩CW(X) � ∅
for general sources satisfying H(X) < ∞.

Since the necessary and sufficient condition H(X) =
H∗(X) means that the left endpoint of the entropy spectrum
of X converges, we are interested in the property of FF codes
that corresponding to H(X) = H

∗
(X) as well, where H(X) =

H
∗
(X) means that the right endpoint the entropy spectrum

converges. It is shown [1] that H(X) = H
∗
(X) is actually

a necessary and sufficient condition under which the coding
rate of all the codes in CH(X) converges to H(X).
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