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A particle simulation of an interchange instability was performed by taking into account the ion

finite Larmor radius (FLR) effects. It is found that the interchange instability with large FLR grows

in two phases, that is, linearly growing phase and the nonlinear phase subsequent to the linear

phase, where the instability grows exponentially in both phases. The linear growth rates observed

in the simulation agree well with the theoretical calculation. The effects of FLR are usually taken

in the fluid simulation through the gyroviscosity, the effects of which are verified in the particle

simulation with large FLR regime. The gyroviscous cancellation phenomenon observed in the

particle simulation causes the drifts in the direction of ion diamagnetic drifts. VC 2013 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution
3.0 Unported License. [http://dx.doi.org/10.1063/1.4829682]

I. INTRODUCTION

The interchange instability is perhaps the most funda-

mental and basic magnetohydrodynamic (MHD) instability

for magnetically confined plasma. There are some methods

to stabilize the interchange instability. One is to make use of

the line tying effects.1,2 The magnetic surfaces created in the

torus,3 for example, stabilize the interchange instability with

the rotation of the magnetic field lines lying on the magnetic

surface, which is the results of line tying effects.

The ion finite Larmor radius (FLR) effects are also

expected to stabilize the interchange instability. The first

work of the FLR effects on an interchange instability was

seen in Ref. 4, where Rosenbluth, Krall, and Rostoker have

found the stability effects of FLR with the help of Vlasov

equation. Roberts and Taylor derived the same stability con-

dition as Ref. 4 by using the extended MHD equations.5

Here, they used the generalized Ohm’s law and they

included the viscosity in the equation of motion. The

extended MHD equations have been widely used to study

interchange instability, because they are able to be applied to

the complicated magnetic confined closed systems.6,7 The

FLR effects on an interchange instability are also important

in an open system such as a tandem mirror.8–12

The generalized Ohm’s law and gyroviscosity in the

extended MHD equation were derived theoretically.5,13

Recently, it has been reported that the complete FLR stabili-

zation of the interchange mode may not be attainable by the

gyroviscosity or generalized Ohm’s law alone in the frame

work of extended MHD.7 The stability boundary of an inter-

change instability with FLR was determined by the kinetic

analysis.4,14 Thus, it is worth verifying with the help of a

particle simulation that the interchange instability can be

really stabilized by FLR effects completely.

The traditional electrostatic particle-in-cell code

(explicit PIC code) uses the equation of ion and electron

motions with the Poisson equation.15,16 The mesh interval D
and the time step Dt have to be taken smaller than the Debye

length kDe and the inverse of the plasma oscillation x�1
pe and

electron cyclotron frequency X�1
ce , respectively, because all

of the electrostatic oscillations are included in the explicit

code.

The interchange instability by using the explicit PIC

code was carried out by Goede, Humanic, and Dawson,17

where two-dimensional spatial 64� 64 grid was used. In

order to follow such a slow time scale of interchange insta-

bility, they used the very small ion/electron mass ratio

Mi/Me¼ 1. The linear growth rate of an interchange instabil-

ity observed in the simulation did not compare well with the

growth rate derived from the Vlasov equation in a local

approximation, although it showed the stabilization due to

FLR effects. Recently, the interchange instabilities mainly in

the magnetotail are simulated by the electromagnetic explicit

PIC code.18,19 However, the comparison of the interchange

instabilities itself observed in the simulation with those

derived theoretically has not been made.

The increases of the time step Dt and the grid interval D
enable to simulate a low frequency phenomena in the plasma

on a large scale. The implicit time integration scheme has a

potential to increase Dt and D keeping the numerical stability

of the simulation. Cohen et al. have described the implicit

plasma simulation algorithm and analyzed for one-

dimensional case.20–22 Watanabe et al. have described the

implicit algorithm and applied to the two-dimensional

plasma with external magnetic field, where ion and electron

cross-field motions are assumed only E�B drifts.23 Barnes

et al. have developed the implicit algorithm which can be

able to applied to the two-dimensional plasma with the exter-

nal magnetic field directly, and they demonstrated the simu-

lation on an interchange instability (without FLR).24

This paper uses the uniform gravitational field g ¼ gêx

shown in Fig. 1, where êx is the unit vector along x-axis.

Here, the centrifugal force due to the non-zero magnetic field

line curvature is replaced by the gravitational force. Thea)Electronic address: katanuma@prc.tsukuba.ac.jp
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uniform external magnetic field B ¼ Bêz is applied along

z-axis. The FLR effects on the interchange instability are

investigated in the geometry of Fig. 1. The PIC code used in

this paper has adopted the implicit algorithm by Barnes

et al.24

II. LINEAR GROWTH RATES OF AN INTERCHANGE
INSTABILITY WITH FLR

Rosenbluth and Simon derived the dispersion relation of

an interchange instability with the FLR effects14

d

dx
T

dw
dx

� �
� k2

y T � g
dq
dx

� �
w ¼ 0 where

w ¼ Ey

ðx� ckyE0=BÞ ; (1)

where x is the wave frequency, ky is the wave number, Ey is

the perturbed electric field of the interchange instability, and

c is the light speed. The steady state electric field E0, gravita-

tional acceleration g and equilibrium density gradient dq=dx
are assumed to be a function of x and their vectors are in the

x direction. The uniform external magnetic field B is

assumed to be applied in the z direction. The coefficients T
and S in Eq. (1) are defined as

T � ðx� ckyE0=BÞ2qS;

S � 1þ X2
ci

x2
pi

þ ky

qXciðx� ckyE0=BÞ
dP

dx
;

(2)

where xpi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnie2=Mi

p
is the ion plasma frequency,

Xci � eB=Mic is the ion cyclotron frequency, e is the unit

charge, Mi is the ion mass, and ni is the ion number density.

The mass density q and pressure P of ions are given as

P ¼ Mi

2

ð
v2fi dv; q ¼ Mi

ð
fi dv: (3)

Here, fi is the ion distribution function in the equilibrium

state as

fiðX;vÞ ¼ ngðXÞ
Mi

2pTi

� �3=2

exp � Miv
2

2Ti

� �
: (4)

The distribution in the equilibrium state should be a function

of constant of motion, so that X is a canonical momentum in

the y direction which is the same as the guiding center posi-

tion in the case of uniform external magnetic field, i.e.,

X ¼ xþ vy=Xci, where x is the real position of ion in the x
direction. Henceforth, the ion guiding center density profile

ng(X) is assumed to be

ngðXÞ ¼ n0½1� hðX � LHÞ�; (5)

where h(x) is the Heaviside step function [h(x)¼ 0 for x< 0

and h(x)¼ 1 for x> 0]. The guiding center density ng(X) of

Eq. (5) lead to the real density ni(x) of

niðxÞ ¼
n0

2
1þ erf �ðx� LHÞ=ð

ffiffiffi
2
p

qiÞ
n o� �

for x < LH

n0

2
1� erf ðx� LHÞ=ð

ffiffiffi
2
p

qiÞ
n o� �

for x > LH;

8><
>:

(6)

where qi �
ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=Mi

p
=Xci is the ion Larmor radius. The error

function erf(x) is defined as

erf xf g � 2ffiffiffi
p
p
ðx

0

exp �t2f gdt: (7)

Figure 2 plots the linear growth rates of an interchange

instability with FLR in the case of kyg=X2
ci ¼ 10�4, which

FIG. 1. Initial ion guiding center positions, gravitational acceleration vector

(g), and external magnetic field. Vertical (horizontal) axis is the x axis (y
axis) with the scale in mesh numbers.

FIG. 2. Dispersion relation of the interchange instabilities with FLR. (a) is

the linear growth rates c as a function of Xci=xpi, where each number in (a)

denotes the magnitude of kyqi. (b) is the linear growth rates as a function

kyqi, where each number in (b) denotes the magnitude of Xci=xpi.
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was obtained by solving Eq. (1) in the range of 0 � kyx � 2p
with the boundary condition that w¼ 0 at kyx¼ 0 and w¼ 0

at kyx ¼ 2p and kyLH ¼ p. The vertical axis c in Fig. 2 is the

linear growth rate of the interchange instability, i.e.,

x ¼ xr þ ic, where i �
ffiffiffiffiffiffiffi
�1
p

. The linear dispersion relation

in the geometry of Fig. 1 for kyqi ¼ 0 is given by25

x2 ¼ �jkyjg
1

2X2
i =x

2
pi þ 1

; (8)

which is plotted in Fig. 2(a) in case of kyqi ¼ 0. Figure 2

indicates that the interchange instability is stabilized

more strongly by FLR for the smaller Xci=xpi and larger

kyqi.

III. ELECTROSTATIC PIC CODE

The electrostatic PIC code is used in order to research

the stabilization effects of FLR on an interchange instability.

The PIC code used in this paper adopts the implicit algo-

rithm,1,2,24 so as to remove the unnecessary high frequency

electrostatic oscillations such as the electron cyclotron

waves.

The equation of motion makes use of the modified leap-

frog differential scheme

xnþ1
j ¼ xn

j þ v
nþ1=2
j Dt;

v
nþ1=2
j ¼ vn�1=2

j � ea

Ma
r�/nDtþ 1

c
v

nþc0

j �XcaDtþ gDt;

(9)

where the superscript n means the time step nDt and the sub-

script a indicates the particle species.

The electrostatic potential �/n is solved by the following

equations:

�/n ¼ 2

5
/nþ1 þ 2�/n�1 � 1

2
�/n�2

�
;

 

r2/nþ1 ¼ �4peðnnþ1
i � nnþ1

e Þ; (10)

where the second equation in Eq. (10) is the Poisson

equation.

The velocity v
nþc0

j in the right hand side of Eq. (9) is

defined by

v
nþc0

j ¼ 1

2
þ c0

� �
v

nþ1=2
j þ 1

2
� c0

� �
v

n�1=2
j : (11)

If c0¼ 0 and /n instead of �/n are used, Eq. (9) becomes the

normal centered leap-frog scheme with the second order ac-

curacy of time step Dt and is numerically unstable if

jXcajDt > 1. The detailed algorithm of the implicit PIC code

is given in Ref. 24.

In this paper, c0¼ 0.1 has been adopted for electrons

and the time step is chosen xpeDt ¼ 2 for the simulation of

an interchange instability, where xpe �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2=Me

p
is the

electron plasma frequency. However, c0¼ 0 is chosen for

ions so that the ion Larmor motion is followed with the sec-

ond order accuracy of time step Dt.

IV. SIMULATION RESULTS

The code uses the two-dimensional 128� 128 spatial

meshes in x – y and three velocity components vx, vy, and vz.

The (4� 128)2¼ 262, 144 ions, and electrons each are

included in the simulation. The geometry used in the simula-

tion and analysis is plotted in Fig. 1. The ion guiding centers

are uniformly distributed in the region x< 64D, where D is

the spatial mesh interval, at t¼ 0 and electron real positions

are distributed at each ion real position. The uniform mag-

netic field B is applied in the z direction and gravitational

acceleration g is in the x direction (g ¼ gêx), as shown in

Fig. 1. Henceforth, xpi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4phniie2=Mi

p
and xpe �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4phniie2=Me

p
are used as ion and electron plasma frequen-

cies, where hnii ¼ n0=2 is the ion (electron) density averaged

over the entire simulation space.

The interchange instability is observed in the simulation

because the geometry in Fig. 1 is unstable to the interchange

modes. Figure 3 plots the linear growth rates of interchange

instability with (1, 1) mode measured in the linearly growing

phase of the simulation. Here the (1, 1) mode means the one

with the wave numbers ky ¼ 2p=128D and kx ¼ 2p=128D.

The solid circles in Fig. 3 are the results without FLR, where

c0¼ 0.1 has been chosen for ions in Eqs. (9) and (11). The

solid line arrowed by a symbol sA is the theoretically calcu-

lated linear growth rate Eq. (8).

The solid squares in Fig. 3 are the simulation results

with FLR, where c0¼ 0 is set for ions in Eqs. (9) and (11).

The solid line arrowed by a symbolsB is the theoretically cal-

culated linear growth rate in case of kyqi ¼ 0:16 in Fig. 2(a),

where kyqi=ðkyg=X2
ciÞ

1=4 ¼ 1:6. The simulation parameters

are that kyhqii ¼ 2:845� 10�1; Xci=xpe ¼ 2:2155� 10�3;
kyg=X2

ci ¼ 1:0� 10�3, where ky ¼ 2p=128D and hqii
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ti=Mi

p
=Xci, that is, kyhqii=ðkyg=X2

ciÞ
1=4 ¼ 1:6. Note that

all quantities in Eqs. (1) and (2) are normalized as

xffiffiffiffiffiffiffiffiffi
kyjgj

p ;
xEffiffiffiffiffiffiffiffiffi
kyjgj

p ;
kyqi

ðkyjgj=X2
ciÞ

1=4
;

xpi

Xci
; (12)

where xE � kycE0=B, although E0¼ 0 is assumed through-

out this paper. The solid squares in Fig. 3 were obtained by

FIG. 3. Dispersion relation of the interchange instabilities in theory and sim-

ulation. The solid circles are the growth rates of the (1, 1) mode measured in

the linearly growing phase of the interchange instability in the simulation

without FLR, while the solid squares are the ones with FLR. The solid lines

arrowed by the symbols sA and sB are the theoretical linear growth rates with-

out/with FLR, respectively.
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changing the ion mass Mi and the initial ion temperature Ti

in the simulation. The agreements between theory and simu-

lation are good in both cases with and without FLR in Fig. 3.

It is found that the flute instability is stabilized at Xci=xpi ’
0:5 in Fig. 3.

Figure 4 plots the simulation results with parameters

that Mi=Me ¼ 1800; kyg=X2
ci ¼ 9:94� 10�4; Xci=xpi ¼ 0:943;

Xce=xpe ¼ 40. The ion thermal Larmor radius hqii in Fig. 4

is normalized by the spatial mesh interval D. The solid

circles which are the linear growth rate observed in the simu-

lation are obtained by changing initial ion temperature Ti.

The solid line in Fig. 4 is obtained by solving Eq. (1) with

Xci=xpi ¼ 0:943. The agreements between the linear growth

rates obtained analytically and by using simulation are good.

There is the apparent systematic (but small) discrepancy

observed in Fig. 4 at small values of the ion Larmor radius

hqii< 2. The linear growth rates (solid circles) in Fig. 4 have

been measured from the wave form of field energy as shown

in Fig. 5. Thus, the discrepancy is beyond the measuring

error, but we do not know the reason. This systematic dis-

crepancy can be seen in Fig. 3 at hqii ¼ 0, which is consist-

ent with those in Fig. 4.

The time evolutions of field energy j/kj2 of (1, 1) mode

are plotted in Fig. 5. The dotted straight lines in the figure

were used to obtain the linear growth rates (solid circles) in

Fig. 4. Here, each origin of field energy has been shifted

upward (or downward) at the amount of arbitral magnitudes

in the figure, so that the relative magnitudes of j/kj2 with dif-

ferent hqii are meaningless in Fig. 5.

Figure 6 plots the ion and electron real positions at

xpet¼ 11 000, which is the time when the interchange insta-

bility enters the nonlinear growing phase from the linear

phase as is seen in Fig. 5. The ion real positions are plotted

in the upper figures and the electrons are in the lower figures,

respectively. It is found that the quasi-neutral condition is

satisfied very much in all cases of hqii. Here, Fig. 6(a) is the

simulation result with hqii ¼ 0:5, Fig. 6(b) is hqii ¼ 1:5,

Fig. 6(c) is hqii ¼ 3:0, and Fig. 6(d) is hqii ¼ 6:0, respec-

tively. When the thermal ion Larmor radius hqii, where nor-

malized by a spatial mesh interval D, is small, there can be

seen many interchange instabilities with high mode numbers,

while in the case of large hqii an interchange instability with

only the lowest ky is seen. The interchange instability is

almost stabilized by FLR for hqii ¼ 6:0. The ions begin to

behave like a viscous fluid in the presence of the magnetic

viscosity in Figs. 6(c) and 6(d). Equation (8), which is the

linear growth rate in case qi¼ 0, indicates that the linear

growth rate is c /
ffiffiffiffiffiffiffi
jkyj

p
. In the simulation with hqii 6¼ 0,

ions and electrons have the initial Maxwellian velocities, so

that the thermal fluctuations excite the interchange modes

with various ky. In the case of hqii� 2 the interchange mode

with high ky are more unstable than that with low ky, so that

many saturated high ky interchange instabilities with

mushroom-shaped front1,6 are observed in Figs. 6(a) and

6(b). On the other hand, the high ky interchange modes are

stabilized by the FLR effects in case of hqii� 2 and so the

only interchange instability with the lowest ky is observed in

Figs. 6(c) and 6(d).

Figure 7 plots the time evolution of j/kj2 of (1, 1) mode

in the case of kyg=X2
ci ¼ 10�3; Xci=xpi ¼ 1:0; hqii ’ 5:796.

It is found that an interchange instability grows with differ-

ent growth rates in the linear phase (solid straight line) and

in the nonlinear phase (dotted broken straight line). Here the

growth rate (solid straight line) in the linear growing phase

has been calculated by the linear theory Eq. (1). The growth

rates in the nonlinear phase are slower than those in the lin-

ear phase in Figs. 5 and 7.

As is seen in Fig. 8, in the linear phase (xpet ¼ 4000

� 10 000 in Fig. 7) the boundary between ions and vacuum

has a sinusoidal shape. However, in the nonlinear phase, the

shape of the boundary is distorted from the sinusoidal curve

greatly. Here, Figs. 8(a)–8(d) plot the equi-contour lines of

ion density at xpet¼ 8000, 11 000, 14 000, and 17 000,

respectively. Figures 8 and 7 are the results of the same sim-

ulation. As is seen in Fig. 7, the time 7000 � xpet � 12 000

is the linearly growing phase of the interchange instability,

so that the equi-contour lines (boundary between plasma and

FIG. 4. Dispersion relation of the interchange instabilities in theory and sim-

ulation. The solid circles are the growth rates of the (1, 1) mode measured in

the linearly growing phase of the interchange instability in the simulation

with FLR. The solid line is the theoretical linear growth rates with FLR.

FIG. 5. Time evolution of field energy j/kj2 with (1, 1) mode. The dashed

straight lines in the figure are drawn in order to determine the linear growth

rates in the simulation. The numbers in the figure denote the magnitudes of

thermal ion Larmor radius hqii, which are normalized by the mesh interval

D. Here, each origin of field energy j/kj2 has been shifted upward (or down-

ward) in order to display the growing phase clearly, so that the relative mag-

nitudes of j/kj2 with different hqii are meaningless in Fig. 5.
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vacuum) in Figs. 8(a) and 8(b) can be approximate sinusoidal

function well. On the other hand the time 12 000 �xpet
�18 000 is the nonlinearly growing phase of the instability,

so that the equi-contour lines (boundary between plasma and

vacuum) in Figs. 8(c) and 8(d) deviate from the sinusoidal

function greatly.

The remarkable feature in Fig. 8(d) is that the front of

the flute instability drifts in the –y direction, which is the ion

diamagnetic direction. It is known that this drifts result from

the gyroviscosity. The equation of motion in the extended

MHD is written to be5,7

q
@u

@t
þ u � ru

� �
¼ �rpþ 1

c
j � Bþ qg�r �Pi: (13)

The last term r �Pi is the viscosity term containing the two-

fluid effects and ion gyroviscosity effects. Frequently, the

gyroviscous stress is approximated by6,26

r �Pi ’ �qu	 � ru: (14)

Here, u	 is often assumed to be the ion diamagnetic drift ve-

locity in the uniform magnetic field, i.e.,

u	 ¼
�crp� B

nieB2
: (15)

Moving the gyroviscosity term to the left hand in Eq. (13) in

the approximation of Eq. (14) yields

q
@u

@t
þu �ru

� �
þr�Pi ¼ q

@u

@t
þðu�u	Þ �ru

� �
; (16)

which is known as the “gyroviscous cancellation.”6,26

FIG. 6. Real space positions of ion (in

the upper figures) and electron (in the

lower figures) at xpet¼ 11 000. Here,

(a) is the simulation result with

hqii ¼ 0:5, (b) is hqii ¼ 1:5, (c) is

hqii ¼ 3:0, and (d) is hqii ¼ 6:0.

FIG. 7. The time evolution of field energy j/kj2 with (1, 1) mode. The solid

straight line denotes the linear growth rate which was calculated analytically

by using Eq. (1). The dashed straight line is drawn to fit the growth rate to

the wave form in the nonlinear growing phase of j/kj2. Here, the figure is

the simulation result in the case kyg=X2
ci ¼ 10�3; Xci=xpi ¼ 1:0;

hqii ’ 5:796.

FIG. 8. Contour plots of ion number density. Here, the figure is the simulation result in the case kyg=X2
ci ¼ 10�3; Xci=xpi ¼ 1:0; hqii ’ 5:796. (a) is the con-

tour plot of the ion density at xpet¼ 8000, (b) is at xpet¼ 11 000, (c) is xpet¼ 14 000, and (d) is xpet¼ 17 000, respectively.
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The simulation has not solve the time evolution of the

magnetic field because the electrostatic PIC code are used.

That is, the uniform magnetic field remains until the end of

the simulation. The equilibrium ion drift velocity, therefore,

comes from the gravitational drift which is given by ug ¼
cMig� B=qB2 ¼ �4:5� 10�4xpeDêy in the parameters

used to obtain Fig. 8. Here, Fig. 8 reveals that the inter-

change instability drifts in the –y direction. The drift speed

uf ront of wave front of the interchange instability during

14 000 � xpet � 17 000 in Fig. 8 is estimated to be

uf ront ’ �
0:14� 128D

3 000x�1
pe

êy ’ �6:0� 10�3xpeDêy: (17)

On the other hand, if u* is assumed by ion diamagnetic drift

velocity, it becomes

u	 ¼
1

en

�cTirn� B

B2
’ � 1

eqi

cTi

B
êy ’ �1:3� 10�1xpeDêy:

(18)

It is found ju	j 
 juf rontj 
 jugj, although the wave front of

the interchange instability drifts in the direction of the ion

diamagnetic drift (that is, the gyroviscous cancellation phe-

nomenon has been observed in this particle simulation with

uniform magnetic field).

V. SUMMARY

The interchange instabilities in the geometry of Fig. 1

were investigated by using the electrostatic implicit PIC

code. The growth rates of the interchange instability in the

linearly growing phase in the particle simulation agree well

with the theoretical linear growth rates with FLR which were

obtained by solving Eq. (1). It is found that the interchange

instability with the large FLR grows in two phases, that is,

the linearly growing phase and the subsequent nonlinearly

growing phase. The growth rate in the nonlinear phase is

slower than that in the linear phase, and the interchange

instability grows exponentially in both phases. The wave

front of an interchange instability deviates from a sinusoidal

shape in the nonlinear phase. The effects of gyroviscosity on

the interchange instability seems to play an important role in

its growth. The gyroviscous cancellation phenomenon has

been observed in the particle simulation. The drift speed of

wave front of the interchange instability, however, is much

slower than the ion diamagnetic drift velocity.

The simulations were performed in the parameter of

kyhqii < 1, which has been assumed in all theoretical works

with FLR.4,5,8,9,11,12,14 The particle simulation has intro-

duced no approximations in the basic laws of mechanics and

electricity. So the FLR is expected to stabilize the inter-

change instability completely in the real magnetically con-

fined plasma. In the future, the particle simulations with

kyhqii�1 will be performed to research the FLR effects on

an interchange instability in the range Xci=xpi 
 1.
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