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a b s t r a c t

A new sesquiterpene with an a-methylene-g-lactone moiety, artabolide (1), and three known derivatives
2e4 were isolated from Artemisia absinthium. The structure of 1 was elucidated by 1D and 2D NMR
analyses, and the absolute configuration was determined using the modified Mosher’s method and X-ray
crystal structural analysis. Approximately 2.5 mg/plant treatment of artabolide (1) exhibited ca. 50% in-
hibition of polar auxin transport in radish hypocotyls, while 2e4 showed no significant inhibitory ac-
tivity. Therefore, these results support the importance of the a-methylene-g-lactone moiety for the
inhibition of polar auxin transport.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The plant hormone auxin (indole-3-acetic acid; IAA) plays an
important role in plant growth and development. First, IAA is
synthesized in the apical part of the shoot and young leaf and is
then transported basipetally in a cell-to-cell system. This system,
named polar auxin transport, is regulated by the influx carriers
AUXIN RESISTANT1/LIKE AUXIN RESISTANT (AUX1/LAX) and efflux
carriers PIN-FORMED (PIN) and ATP-binding cassette subfamily B
(ABCB) located on the plasma membrane.1e3

Overmany decades, the mechanism of polar auxin transport has
been revealed using synthetic polar auxin transport inhibitors, such
as N-(1-naphthyl)phthalamic acid (NPA), 2,3,5-triiodobenzoic acid,
9-hydroxyfluorene-9-carboxylic acid, and morphactin. NPA, the
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most frequently used inhibitor of auxin efflux, has been shown to
noncompetitively inhibit PIN and ABCB auxin efflux activities.4

Furthermore, a number of flavonoids have been reported to be
some of the few naturally occurring inhibitors of polar auxin
transport.5 Flavonoids have also been shown to displace NPA from
the plasma membrane binding site.6 However, except in the case of
flavonoids, few studies on natural polar auxin transport inhibitors
have been reported.

In our exploratory study of naturally occurring inhibitors of
polar auxin transport, we isolated and identified physiologically 4-
hydroxy-b-thujone and dehydrocostus lactone as naturally occur-
ring inhibitors of polar auxin transport from some Asteraceae
plants.7 We recently found that the EtOAc-soluble portion of an
acetone extract of Artemisia absinthium has potent inhibitory ac-
tivity against polar auxin transport. We successfully isolated a new
germacranolide-type sesquiterpene, artabolide (1), as the bio-
active substance, and also isolated three known pelenolides 2e4.
Here we report the isolation, structural elucidation, and the
structureeactivity relationship of 1e4 for polar auxin transport
activity.
ts reserved.
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Fig. 2. 2D NMR correlations of 1.
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2. Result and discussion

2.1. Extraction and separation of A. absinthium

The aerial parts of A. absinthium (750 gFW) were extracted with
80% acetone/H2O. The crude extract was partitioned between EtOAc
and H2O. The EtOAc-soluble portion was subjected to repeated
silica-gel column chromatography on a Sep-Pak ODS cartridge to
afford a mixture of compounds 1 and 2. The mixture was purified
by reversed-phase high-performance liquid chromatography
(HPLC) to yield artabolide (1, 0.00025%) and hydroxypelenolide (2,
0.0022%). The other two fractions shown as brown spots on thin-
layer chromatography (TLC) visualized by 10% H2SO4/H2O and
heat treatment were subjected to Sep-Pak ODS cartridges and
subsequently purified by reversed-phase HPLC to yield ketopele-
nolide a (3, 0.00027%) and ketopelenolide b (4, 0.000093%), re-
spectively. The structures of 2e4 were identified by comparison
with spectral data in the literature (Fig. 1).8,9
Fig. 1. Structures of isolated compounds 1e4.

Fig. 3. Representative NOESY correlations of 1.

Fig. 4. Representative Dd values (Dd¼dS�dR in parts per million) obtained from the
MTPA esters of 1.
2.2. Structural elucidation

Themolecular formula of 1was established as C15H22O3 by high-
resolution electrospray ionization mass spectrometry (HR-ESI-MS)
[m/z 273.1493 (MþNa)þ, D þ2.6 mmu], implying a degree of
unsaturation of five. The infrared (IR) spectrum exhibited absorp-
tion bands at 3447 cm�1 for the hydroxyl group and 1751 cm�1 for
the a,b-unsaturated g-lactone ring. The 1H NMR spectrum showed
three olefinic protons at dH 6.26, 5.56, and 5.55, two of which were
doublets assigned to exo-olefin protons (dH 6.26 and 5.56); two
oxymethine protons at dH 4.20 and 4.08; two methine protons at dH
2.60 and 1.99; six methylene protons at dH 2.48, 2.32, 2.31, 2.27,1.87,
and 1.60; a methyl singlet at dH 1.73; and a methyl doublet at dH
1.03. The 13C NMR spectrum of 1 indicated the presence of 15 car-
bons, which were assigned to an ester carbonyl carbon at dC 170.1;
four olefinic carbons at dC 140.4, 135.6, 123.9, and 122.2; two oxy-
genated methine carbons at dC 84.9 and 73.0; two methine carbons
at dC 48.0 and 38.1; four methylene carbons at dC 42.0, 40.4, 35.4,
and 33.8; and two methyl carbons at dC 18.8 and 16.1. Considering
that the degree of unsaturation was five, three of these signals
could be assigned to two olefins and one carbonyl group. Conse-
quently, 1 was shown to be a bicyclic compound consisting of a 10-
membered ring and g-lactone.

1H and 13C NMR assignments were supported by 2D NMR
1He1H correlation spectroscopy (COSY), heteronuclear multiple-
quantum correlation (HMQC), and heteronuclear multiple bond
correlation (HMBC) experiments (Fig. 2). In the 10-membered ring,
1He1H COSY experiments indicated the two substructures by the
connectivity of H-1/H-2/H-3 and H-15/H-4/H-5/H-6/H-7/H-8/H-9.
The linkages of the two substructures were elucidated by HMBC
correlations of H-15/C-3 and H-14/C-1, C-9, and C-10. HMBC ex-
periments suggested the correlations of H-6/C-12, H-13/C-7, C-11,
and C-12. Therefore, the connection points between the 10-
membered ring and a-methylene-g-lactone were determined as
the C-6 and C-7 positions. Artabolide (1) was determined to be
a germacranolide-type sesquiterpene lactone, 3-hydroxy-4,6,7(H)-
germa-cra-1(10),11(13)-dien-6,12-olide.

The relative structure of 1 was deduced from a nuclear Over-
hauser enhancement spectroscopy (NOESY) spectrum of 1. The
representative correlations are shown in Fig. 3. In the NOESY
spectrum, despite the absence of an H-1/H-14 correlation, a corre-
lation of H-2b/H-14 was observed. Thus, the configuration of the C-
1/C-10 endocyclic double bond was denoted E. Correlations of H-3/
H-4 and H-15, H-4/H-6, H-5a/H-7, and H-5b/H-6 and H-15, and the
transannular correlations of H-1/H-5a and H-6/H-14 suggested that
the relative configuration of 1 was 3R*, 4S*, 6R*, 7S*.
To determine the absolute configuration, the modified Mosher’s
methodwas applied to 1.10 The (R)- and (S)-MTPA esters (1a and 1b)
were prepared by the reaction of 1with (S)- and (R)-MTPA chloride,
respectively. Each proton signal of 1a and 1b was assigned by
1He1H COSY, and Dd (dS�dR) values were obtained (Fig. 4). Judging
from the obtained values, the configuration of 1 at C-3 was denoted
R. Thus, the absolute configuration of 1was determined to be 3R, 4S,
6R, 7S.
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Artabolide (1) was successfully crystallized from an n-hexane/
EtOAc mixed solution in the orthorhombic space group,
P212121(#19). The ORTEP drawing of 1 is shown in Fig. 5. X-ray
crystal structural analysis defined the absolute configuration of 1,
which was in agreement with that described above, and also in-
dicated that the 10-membered ring adopted a chairechair
conformation.
Fig. 5. ORTEP drawing derived from X-ray crystal structural analysis of 1.
2.3. Inhibitory effects of isolated compounds

The polar auxin transport regulatory activity of isolated com-
pounds 1e4 was tested using a suitable radish hypocotyl bioassay
system.11e15 As a result, 1 showed the most potent inhibition of
polar auxin transport (Fig. 6). Approximately 2.5 mg/plant treat-
ment of 1 showed ca. 50% inhibition of polar auxin transport
compared with that of control. In addition, hydroxypelenolide (2)
also exhibited the inhibition of polar auxin transport, but the effect
was much weaker than that of 1. Ketopelenolide a (3) and keto-
pelenolide b (4) did not show any such activity. These results sug-
gest that the a-methylene-g-lactone moiety is important for the
inhibition of polar auxin transport and that the hydroxyl group of
the 10-membered ring may affect the intensity of the activity.
Fig. 6. Polar auxin transport regulation of isolated compounds in radish hypocotyls (*:
significant difference, P<0.01, n¼4).
3. Conclusion

A new germacranolide-type sesquiterpene with an a-exo-
methylene-g-lactone moiety, artabolide (1), and three known
compounds 2e4were isolated from A. absinthium. From the results of
spectroscopic analysis, the structure of 1 was determined as 3-
hydroxy-4,6,7(H)-germacra-1(10),11(13)-dien-6,12-olide. The absol
ute configuration and the spatial conformation of 1 were also de-
termined as 3R, 4S, 6R, 7S, and chairechair form by X-ray crystallog-
raphy and the modified Mosher’s method, respectively. By using the
radish hypocotyl assay system method, 1 was shown to potently in-
hibit the polar transport of the plant hormone, IAA, although the other
isolated compounds showed weak or no activity. This result indicated
that the a-methylene-g-lactonemoiety is important for the inhibition
of polar auxin transport. To the best of our knowledge, this is the first
report in which a sesquiterpene with an a-methylene-g-lactone
moiety isolated from A. absinthium possessed the inhibition of polar
auxin transport.
4. Experimental section

4.1. General experimental procedure

Optical rotations were recorded on a JASCO DIP-370 spectrom-
eter. Ultraviolet (UV) spectra were recorded on a HITACHI U-2000A
spectrometer. IR spectra were recorded on a JASCO FT/IR-300
spectrometer. 1H and 13C NMR spectra were measured and recor-
ded on a BRUKER Avance 500 spectrometer in CDCl3. The reso-
nances of CDCl3 at dH 7.26 and dC 77.0 were used as internal
references for the 1H and 13C NMR spectra. ESI-MS was recorded on
a WATERS SYNAPT G2 mass spectrometer.
4.2. Plant materials

Wormwood (A. absinthium) plants were purchased from Kei-
fuen, Chiba, Japan. Radish (Raphanus sativus L. var. longipinnatus
L.H.Bailey cv. shirokukikaiwaredaikon) seeds were purchased from
Ishihara Seeds Co. Ltd. Osaka, Japan.
4.3. Extraction and isolation

The aerial parts of A. absinthium (750 gFW) were finely cut and
extracted with 80% acetone/H2O (3 L) three times at 6 �C for 7 days.
After filtration, the acetone extract was evaporated in a rotary
evaporator. The residue (33.6 g) was partitioned between EtOAc
(400 mL�3) and H2O (400 mL). The EtOAc-soluble portion (8.19 g)
was subjected to a silica-gel column chromatography
(f 4.6�36 cm) with n-hexane/EtOAc (90:10/80:20/70:30/
60:40/50:50/30:70/0:100) stepwise gradient and separated
into 12 fractions (AAEA1-12). AAEA8 (231 mg) was rechromato-
graphed on a silica-gel column (f 1.1�36 cm) with toluene/EtOAc
(98:2/90:10/80:20/70:30/60:40/50:50/0:100) to afford
11 fractions (AAEA8-1-8-11). AAEA8-5 (68.0 mg) was subjected to
separation on a Sep-Pak ODS cartridge (Waters) with MeOH/H2O
(20:80/40:60/60:40/80:20/100:0) to afford a mixture of
compounds 1 and 2. The mixture (29.0 mg) was purified by
reversed-phase HPLC (TSK-gel ODS-120A, TOSOH, f 7.8�300 mm,
flow rate 1.5 mL/min, 55%MeOH isocratic) to yield artabolide (1,
1.9 mg) and hydroxypelenolide (2, 16.3 mg). AAEA6 (165 mg) was
subjected to separation on a Sep-Pak ODS cartridge (Waters) with
MeOH/H2O (50:50/60:40/70:30/80:20/90:10/100:0) and
CHCl3/MeOH (50:50/100:0) to afford eight fractions (AAEA6-1-6-
8). AAEA 6-2 (13.1 mg) was purified by reversed-phase HPLC (TSK-
gel ODS-120A, TOSOH, f 7.8�300 mm, flow rate 2.0 mL/min, 60%
MeCN isocratic) to yield ketopelenolide a (3, 2.0 mg). AAEA8-2
(5.9 mg) was also purified by reversed-phase HPLC (TSK-gel ODS-
120A, TOSOH, f 7.8�300 mm, flow rate 2.0 mL/min, 55%MeOH
isocratic) to yield ketopelenolide b (4, 0.7 mg).
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4.3.1. Artabolide (1). Colorless prism; [a]D24 �27.2 (c 1.00, CHCl3); IR
(KBr) nmax 3447 and 1751 cm�1; UV lmax (MeOH) nm (log ε) 206
(4.0); 1H (500 MHz, CDCl3) and 13C NMR (125 MHz, CDCl3) data are
given in Table 1; ESI-MS (positive ion) m/z 273 (MþNa)þ, HR-ESI-
MS m/z 273.1493 (calcd for C15H22O3Na: 273.1467).
Table 1
1H, 13C NMR, and NOESY spectral data of artabolide (1)

Position dH (mult., J in Hz) dC NOESY

1 5.55 (m) 123.9 H-2a, H-2b, H-5a, H-9a, H-9b
2a 2.48 (ddd, 14.0, 10.3, 3.5) 33.8 H-1, H-3, H-14
2b 2.27 (overlapped) H-1, H-3, H-4, H-6, H-14
3 4.08 (m) 73.0 H-2a, H-2b, H-4, H-15
4 1.99 (m) 38.1 H-2b, H-3, H-5a, H-6, H-15
5a 2.31 (overlapped) 42.0 H-1, H-4, H-6, H-7
5b 1.60 (overlapped) H-6, H-15
6 4.20 (dd, 7.4, 4.6) 84.9 H-2b, H-4, H-5a, H-5b, H-7,

aH-8a, H-8b, H-14
7 2.60 (m) 48.0 H-5a, H-6,a H-8a, H-8b,

H-9a, H-13b
8a 1.87 (m) 35.4 H-6, H-7, H-9a, H-9b
8b 1.87 (m) H-6, H-7, H-9a, H-9b
9a 2.32 (overlapped) 40.4 H-1, H-7, H-8a, H-8b
9b 2.32 (overlapped) H-1, H-8a, H-8b, H-14
10 d 135.6
11 d 140.4
12 d 170.1
13a 6.26(d, 2.9) 122.2
13b 5.56(d, 2.9) H-7
14 1.73(s) 16.1 H-2a, H-2b, H-6, H-9b
15 1.03(d, 7.0) 18.8 H-3, H-4, H-5b

a Weak correlation.
4.4. Preparation of MTPA esters of artabolide (1)

(�)-(R)-MTPACl (2.1 mL, 4 equiv) and DMAP (0.5 mg) were
added to a solution of artabolide (1, 0.7 mg) in anhydrous CH2Cl2
(100 mL). After stirring at room temperature for 2.5 h, the reaction
mixture was concentrated under nitrogen gas. The residue was
applied to a silica-gel column (f 0.1�10 cm, n-hexane:EtOAc¼9:1)
to yield (S)-MTPA ester (1a, 0.6 mg). (þ)-(S)-MTPACl (1.8 mL,
4 equiv) and DMAP (0.5 mg) were added to a solution of artabolide
(1, 0.6 mg) in anhydrous CH2Cl2 (100 mL). After stirring at room
temperature for 2.5 h, the reaction mixture was concentrated
under nitrogen gas. The residue was applied to a silica-gel column
(f 0.1�10 cm, n-hexane:EtOAc¼9:1) to yield (R)-MTPA ester (1b,
0.5 mg).

4.4.1. Artabolide-(S)-MTPA ester (1a). 1H NMR (500 MHz, CDCl3)
d 7.53e7.45 (5H, phenyl protons); 6.28 (1H, d, J¼3.0 Hz, H-13a); 5.59
(1H, d, J¼2.6 Hz, H-13b); 5.39 (1H, overlapped, H-1); 5.38 (1H,
overlapped, H-3); 4.20 (1H, br s, H-6); 3.56 (3H, s,eOMe); 2.63 (1H,
m, H-2a); 2.57 (1H, br s, H-7); 2.40 (1H, m, H-2b); 2.36 and 2.25
(2H, overlapped, H-9); 2.01 (1H, overlapped, H-4); 1.91 (2H, over-
lapped, H-8); 1.83 (3H, overlapped, H-14); 1.25 (2H, overlapped, H-
5); 0.94 (3H, d, J¼6.7 Hz, H-15); ESI-MS (positive ion) m/z 489
(MþNa)þ, HR-ESI-MS m/z 489.1862 (calcd for C25H29O5F3Na:
489.1865).

4.4.2. Artabolide-(R)-MTPA ester (1b). 1H NMR (500 MHz, CDCl3)
d 7.56e7.45 (5H, phenyl protons); 6.28 (1H, d, J¼2.9 Hz, H-13a);
5.59 (1H, d, J¼2.5 Hz, H-13b); 5.35 (1H, overlapped, H-3); 5.30 (1H,
overlapped, H-1); 4.20 (1H, br s, H-6); 3.54 (3H, s,eOMe); 2.56 (1H,
overlapped, H-2a); 2.56 (1H, overlapped, H-7); 2.32 (1H, over-
lapped, H-2b); 2.35 and 2.23 (2H, overlapped, H-9); 2.01 (1H, br s,
H-4); 1.91 (2H, overlapped, H-8); 1.83 (3H, overlapped, H-14); 1.27
(2H, overlapped, H-5); 1.00 (3H, d, J¼6.7 Hz, H-15); ESI-MS (positive
ion) m/z 489 (MþNa)þ, HR-ESI-MS m/z 489.1862 (calcd for
C25H29O5F3Na: 489.1865).

4.5. X-ray crystal structure analysis

A colorless prism crystal of 1 having approximate dimensions of
0.200�0.200�0.200 mm was mounted on a glass fiber. X-ray
crystal structure analysis was conducted on a Rigaku R-AXIS RAPID
diffractometer with graphite monochromated Cu-Ka radiation. The
crystal-to-detector distance was 127.40 mm. Cell constants and an
orientation matrix for data collection corresponded to a primitive
orthorhombic cell with dimensions: a¼7.7594(2) �A,
b¼10.0447(2) �A, c¼17.4056(4) �A, V¼1356.60(5) �A3. For Z¼4 and
F.W.¼250.34, the calculated density was 1.226 g/cm3. The reflection
conditions of: h00: h¼2n, 0k0: k¼2n, 00l: l¼2n, uniquely determine
the space group to be: P212121 (#19).

Of the 14,859 reflections that were collected, 2465 were unique
(Rint¼0.0335). The linear absorption coefficient, m, for Cu-Ka radi-
ation was 6.723 cm�1. The data were corrected for Lorentz and
polarization effects. The structure was solved by direct methods
and expanded using Fourier techniques. The non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were refined iso-
tropically. The final cycle of full-matrix least-squares refinement on
F2 was based on 2465 observed reflections and 240 variable pa-
rameters and converged (largest parameter shift was 0.00 times its
esd) with unweighted and weighted agreement factors of:
R1¼0.0398,wR2¼0.1158. All calculations were performed using the
Crystal Structure crystallographic software package except for re-
finement, which was performed using SHELXL-97 software. Crys-
tallographic data for 1 have been deposited with the Cambridge
Crystallographic Data Center (deposit No. CCDC 923140). Copies of
the data can be obtained, free of change, on application to the Di-
rector, CCDC, 12 Union Road, Cambridge CB2, 1EZ, U.K. (e-mail:
deposit@ccdc.cam.ac.uk).

4.6. Bioassay for polar auxin transport

Measurement of polar auxin transport was performed according
to the method previously reported with suitable modification.11e15

Briefly, 2-cm hypocotyl segments were excised from 6-day-old
radish seedlings and charged into 1.5-mL Eppendorf plastic tubes in
inverted orientation. Twenty microliters of 1% agar containing 14C-
labeled IAA (American Radiolabeled Chemicals, Inc., St. Louis, MO,
USA.) with or without the test compound was supplied at the
bottom of the tubes. After incubation at room temperature for
9e18 h, a 2-mm piece of the opposite side of the segment was cut
and directly put into a vial of liquid scintillation cocktails. Radio-
activity of the small slices was counted by a liquid scintillation
counter.
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