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The WHOT-QCD Collaboration is pushing forward a series of lattice studies of quantum chro-
modynamics (QCD) at finite temperatures and densities using improved Wilson quarks. Because
Wilson-type quarks require more computational resources than the more widely used staggered-
type quarks, various theoretical and computational techniques have to be developed and applied.
In this paper, we introduce a fixed-scale approach armed with a T -integration method, a Gaussian
method based on cumulant expansion, and a histogram method combined with the reweight-
ing technique. Using these methods, we have carried out the first study of finite-density QCD
with Wilson-type quarks and the first calculation of the equation of state with 2 + 1 flavors of
Wilson-type quarks. We present the results of these studies and discuss perspectives towards clar-
ification of the properties of 2 + 1 flavor QCD at the physical point at finite temperatures and
densities.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

Temperature, T , and density are controllable parameters in a system. At sufficiently high T , we
expect that confinement is violated and chiral symmetry is recovered because the effective coupling
at the thermal energy scale becomes small due to the asymptotic freedom of quantum chromody-
namics (QCD). At this point, systems with quarks and gluons will form a colored plasma state called
“quark–gluon plasma” (QGP). Although humankind has never experienced QGP, it is expected to
play an important role in the creation of matter during the early development of the Universe. Fur-
thermore, QGP is considered to be observed by relativistic heavy-ion collision experiments at RHIC
and LHC [1].

As in the high-temperature case, we expect deconfinement at sufficiently high density, because the
average distance between quarks becomes small at this point and the properties of the system will be
dominated by the asymptotic freedom. The density is controlled by the chemical potential μ. At very
large μ and low T , we expect a BCS-like state called a “color superconductor” due to the attractive
interaction between quarks. At lower densities around the nuclear density, we expect a nuclear fluid
state, which may appear around the core of neutron stars. We thus expect a rich phase structure in
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Fig. 1. Prospective phase diagram of QCD at finite temperatures and densities.

Fig. 2. Prospective order of the finite-temperature QCD transition at μ = 0 as a function of the light quark

mass mud
def= mu = md and the strange quark mass ms . The top-right corner corresponds to the quenched limit

of QCD. Lattice simulations with improved staggered quarks suggest that the physical point is located in the
crossover region. The phase diagram is not fully established yet. See Refs. [3–5] for discussions and caveats.

QCD as a function of T and μ. See, e.g., Ref. [2] for a recent review. A prospective phase diagram
is shown in Fig. 1.

When we vary the quark masses off the physical point, the nature of the quark matter may be
different as a result. The usual expectation for the order of the finite-temperature QCD transition at
μ = 0, based on effective model studies and lattice simulations, is summarized in Fig. 2. The details
of the phase diagram as well as the nature of the quark matter at finite T and μ are, however, not
well clarified yet. Because the issue is essentially nonperturbative, numerical studies on the lattice
are the only systematic way to investigate the phase structure directly from the first principles of
QCD [3–9].

Most lattice studies of hot/dense QCD have been done with computationally less demanding
staggered-type lattice quarks [3–9]. In particular, in the study of the equation of state (EOS),
extrapolations to the physical point and to the continuum limit have been achieved only with
staggered-type quarks. However, theoretical bases such as locality and universality are not well estab-
lished with them [3–5]. Therefore, to evaluate the effects of lattice artifacts and thus to obtain reliable
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predictions to be compared with experiment, it is important to perform simulations using theoreti-
cally sound lattice quarks, such as Wilson-type quarks. Here we note that, until recently, the O(4)
scaling property expected around the chiral transition of two-flavor QCD [10–12] had been observed
only with Wilson-type quarks [13,14]. Quite recently, O(N ) scaling behavior1 was observed with an
improved staggered quark by letting the light quark mass be much lighter than the physical u and d
quark masses [15]. Therefore, some of the chiral properties around the transition temperature may
be easier to extract with Wilson-type quarks.

One reason for which Wilson-type quarks have not been widely used in the study of hot/density
QCD is that the computational cost is larger than that for staggered-type quarks, especially at small
quark masses. Previous studies with Wilson-type quarks were limited to large quark masses and the
case of two-flavor QCD at vanishing chemical potentials [14,16]. The WHOT-QCD Collaboration
is pushing forward studies of lattice QCD at finite T and μ using improved Wilson quarks [17]
coupled to RG-improved Iwasaki glues [18,19]. We want to extend the studies to more realistic 2 + 1
flavor QCD at finite chemical potentials with physical light quarks. Towards this goal, we made a
series of simulations by implementing and developing efficient methods for Wilson-type quarks.
We developed the T -integration method to make the fixed-scale approach applicable [20], tested
the Gaussian method to moderate the sign problem [21], and extended the histogram method by
combining it with the reweighting technique to investigate the phase structure [22–24]. With these
techniques, we have studied the thermodynamic properties of quark matter through the equation of
state [25,26], heavy-quark free energies and screening masses [27–29], spectral functions [30,31],
etc.

In Section 2, we review the techniques used in our investigation of finite-temperature QCD on the
lattice. We also introduce the T -integration method to calculate the EOS in the fixed-scale approach.
We then report our calculation of EOS with 2 + 1 flavors of improved Wilson quarks in Section 3.
Sections 4, 5 and 6 are devoted to our study of finite-density QCD. We first discuss in Section 4
major methods to perform simulations of QCD at finite densities. We introduce our approach using
the cumulant expansion in a hybrid version of the Taylor and reweighting methods. We then present
in Section 5 our results for the pressure and quark number susceptibility at finite densities in two-
flavor QCD, using these methods. In Section 6, we introduce another method, a histogram method, to
investigate the first-order transition and its boundary. We apply the method to calculate the location
of the critical point where the first-order deconfining transition of QCD in the heavy quark limit
turns into a crossover as the quark masses are decreased. We then study the critical point at nonzero
chemical potentials. We also present our ongoing project to study finite-density QCD with light
dynamical quarks by combining the histogram method with phase-quenched simulations. Finally, in
Section 7, our results for the heavy-quark free energy are summarized for zero and finite densities.
A short summary is given in Section 8.

2. Thermodynamics of QCD on the lattice

On a lattice with a size N 3
s × Nt ≡ Nsite, the temperature of the system is given by T = 1/(Nta),

where a is the lattice spacing. To vary T , we may either vary a at a fixed Nt, or vary Nt at a fixed a.
Let us call the former the fixed-Nt approach and the latter the fixed-scale approach.

1 Presumably O(2) scaling, as expected from the symmetry of staggered-type quarks.
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In the fixed-Nt approach, we can vary T continuously through a continuous variation of a. This is
one reason that the fixed-Nt approach has been widely used in many simulations.

The value of a is controlled by coupling parameters, which we denote as �b. For QCD with
Wilson-type quarks, �b = (β, κu, κd , κs, . . .). We first define the lines of constant physics (LCPs)
in the coupling parameter space by the fixed dimensionless ratios of physical observables such as
mπ/mρ = mπa/mρa. Here, to remove additional dependence on T , these observables have to be
measured at T = 0. An LCP represents a physical system at different values of a. In two-flavor QCD
with improved Wilson quarks, LCPs defined by mπ/mρ are determined in Refs. [16] and [27]. In
2 + 1 flavor QCD, we have to fix one more dimensionless ratio, such as mK /mρ or mηss/mφ . Our
world corresponds to the LCP with mπ/mρ ≈ 135/770, etc.

The beta function a d �b/da is defined as the variation of �b along an LCP. In the fixed-Nt approach,
we vary T of a given physical system by varying �b along an LCP on a lattice with a fixed value
of Nt.

The energy density ε and the pressure p of the system are given by derivatives of the partition
function Z in terms of T and the physical volume V = (Nsa)3:

ε = −
〈

1

V

∂ ln Z

∂T −1

〉
sub
, p =

〈
T
∂ ln Z

∂V

〉
sub
. (2.1)

where 〈· · · 〉sub is the thermal average with zero temperature contribution subtracted for renormal-
ization. To vary T and V independently, we need to introduce anisotropic lattices. When as and at

are lattice spacings in the spatial and temporal directions, V and T are given by V = (Nsas)
3 and

T = 1/(Ntat). Then, in principle, (2.1) can be evaluated by independent variations of as and at. How-
ever, this requires a systematic study of a set of physical observables on anisotropic lattices, varying
both as and at, which is quite demanding.

Here, we note that the combination

ε − 3p = − T

V

〈(
T −1 ∂

∂T −1 + 3V
∂

∂V

)
ln Z

〉
sub

(2.2)

is given in terms of a uniform rescaling at
∂
∂at

+ as
∂
∂as

, which can be realized without introducing
anisotropic lattices. We thus obtain on isotropic lattices

ε − 3p = − T

V

〈
a

d ln Z

da

〉
sub

= − T

V
a

d �b
da

·
〈
∂ ln Z

∂ �b

〉
sub

= T

V
a

d �b
da

·
〈
∂S

∂ �b

〉
sub
, (2.3)

where S is the lattice action. The coefficient a d �b/da is just the beta-function of the system, whose
nonperturbative values can be determined by simulations on isotropic lattices. Equation (2.3) enables
us to study ε − 3p nonperturbatively without introducing anisotropic lattices. The combination ε −
3p is nothing but the trace of the energy-momentum tensor, called the trace anomaly. ε − 3p vanishes
for free gases, but will have nontrivial values with interacting matter.

2.1. Fixed-Nt approach and integration method

In order to obtain ε and p separately, we need one more independent input. The most widely used is
the integration method [32], with which we can determine the pressure p nonperturbatively through
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an integration in the coupling parameter space:

p = T

V

∫ �b

�b0

d �b ·
〈

1

Z

∂Z

∂ �b

〉
sub

= − T

V

∫ �b

�b0

d �b ·
〈
∂S

∂ �b

〉
sub
. (2.4)

This relation is obtained by differentiating and then integrating the thermodynamic relation p =
(T/V ) ln Z in the coupling parameter space. The integration path can be freely chosen, as long as
the initial point �b0 is located in the low-temperature phase such that p(�b0) ≈ 0. See Appendix A of
Ref. [16] for a concrete demonstration of the path-independence.

Several points need to be kept in mind with the fixed-Nt approach, as follows: (i) When we fix
Ns, the spatial volume V = (Nsa)3 is varied simultaneously as we vary T . In the high T region,
V may be quite small with a fixed Ns. To keep V around a fixed value, Ns has to be increased as
we increase T . (ii) At low T , the lattice may be coarse. To ensure asymptotic scaling around the
QCD transition temperature, a large Nt together with improvement of the lattice action is mandatory.
(iii) For the zero-temperature subtraction, we have to carry out zero-temperature simulations at all
of the finite-temperature simulation points. Together with systematic zero-temperature simulations
to determine the LCP over a wide range of coupling parameter space, an indispensable fraction of
the total computational cost is required to carry out systematic zero-temperature simulations in the
fixed-Nt approach.

2.2. Fixed-scale approach and T -integration method

In the fixed-scale approach, T is varied by varying Nt at a fixed �b (and thus at a fixed a), i.e., the simu-
lations are done at the same �b point for all values of T . Therefore, all the simulations are automatically
on an LCP without fine-tuning. Furthermore, the T = 0 subtractions can be done by a common T = 0
lattice. We may even borrow high statistic configurations at T = 0 on the International Lattice Data
Grid (ILDG) [33]. Therefore, we can largely reduce the cost for the zero-temperature simulations
with the fixed-scale approach [20,34].

On the other hand, the conventional integral method of obtaining p by integration in the coupling
parameter space is inapplicable, because data are available at only one �b point in the fixed-
scale approach. To overcome the problem, we have developed a new method, the T -integration

method [20]. Using a thermodynamic relation at vanishing chemical potential, we obtain

T
∂

∂T

( p

T 4

)
= ε − 3p

T 4 =⇒ p

T 4 =
∫ T

T0

dT
ε − 3p

T 5 (2.5)

with p(T0) ≈ 0. When we vary T by varying �b along an LCP, the integral in (2.5) is equivalent to
that in (2.4) with the integration path chosen to be on this LCP. However, (2.5) allows us to integrate
over T without varying �b.

In the fixed-scale approach, various values of T are achieved by varying Nt. Because Nt is discrete,
we have to interpolate the data with respect to T to carry out the integration of (2.5). We need to check
the magnitude of systematic errors from the interpolation of the trace anomaly in T . Application of
the method to finite μ is straightforward when we reweight from μ = 0.

We find that the fixed-scale approach is complementary to the conventional fixed-Nt approach
in many respects, as follows. At very high temperatures, typically at T � 1/3a, the fixed-scale
approach suffers from lattice artifacts as discussed below, while the fixed-Nt approach can keep Nt

finite and can keep the lattice artifact small by adopting a sufficiently large Nt. On the other hand,
at small T , typically at T � Tc, the fixed-scale approach can keep a small at larger cost due to the
large Nt, while the fixed-Nt approach suffers from lattice artifacts due to large a.
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Fig. 3. Test of the fixed-scale approach armed with the T -integration method in quenched QCD [20]. Left: trace
anomaly on an anisotropic lattice (a2) compared with an isotropic lattice with similar spatial lattice spacing
and volume (i2). Right: energy density and pressure with the T -integral method. The shaded curves represent
the results of the conventional fixed-Nt method at Nt = 8 [35]. See ref. [36] for a recent result.

Another attractive point of the fixed-scale approach in a study with improved Wilson quarks is that,
unlike the case of the fixed-Nt approach, we can keep the lattice spacing small at all temperatures and
thus can avoid extrapolating the nonperturbative clover coefficient cSW to coarse lattices on which
the improvement program is not quite justified.

It should be kept in mind that the fixed-scale approach is not applicable at very high temperatures
where, besides the artifacts due to a quite small value of Nt, the lattice spacing a may also be too
coarse to resolve thermal fluctuations [20,29]. To get an idea about the latter effects, we estimate
a typical length scale of thermal fluctuations by the thermal wavelength λ ∼ 1/E , where E is an
average energy of massless particles at finite T . We find E ∼ 3T ζ(4)/ζ(3) ∼ 2.7T for the Bose–
Einstein distribution and E ∼ 3T ζ(4)/ζ(3)× 7/6 ∼ 3.15T for the Fermi–Dirac distribution. We
then obtain λ ∼ 1/3T . Thus, the data at T � 1/3a for which a � λ should be taken with care [29].

We have tested the fixed-scale approach and the T -integration method in quenched QCD [20]. The
main results are summarized in Fig. 3. Comparing the EOS obtained on various lattices as well as the
result from the fixed-Nt approach on large lattices, we find that the fixed-scale approach is reliable
and powerful in calculating EOS, in particular at low and intermediate temperatures. The systematic
errors due to the interpolation in T are well under control in these studies. The EOS from the fixed-
scale approach was shown to be very consistent with that from the fixed-Nt approach with large Nt

(Nt � 8), except for the high-temperature limit where the fixed-scale approach suffers from lattice
discretization errors.

We adopt the fixed-scale approach to calculate the EOS in 2 + 1 flavor QCD in Section 3. We also
compute heavy-quark free energies in 2 + 1 flavor QCD with the fixed-scale approach in Section 7.2.

3. Equation of state in 2 + 1 flavor QCD with improved Wilson quarks

A systematic study of finite-temperature QCD with improved Wilson quarks was made by the CP-
PACS Collaboration around the beginning of this century for the case of two-flavor QCD at vanishing
chemical potentials using the fixed-Nt approach [14,16]. From a series of systematic simulations,
they determined the phase structure and LCPs, confirmed the O(4) scaling, and obtained the EOS
along several LCPs in the range mπ/mρ � 0.65 around and above the pseudocritical temperature
Tpc on Nt = 4 and 6 lattices.
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We extend the study to 2 + 1 flavor QCD. By adopting the the fixed-scale approach, we use zero-
temperature configurations generated by the CP-PACS+JLQCD Collaborations [37–39]. Our lattice
action consists of the RG-improved Iwasaki gauge action [18,19] and the clover-improved Wilson
quark action [17]:

S = Sg + Sq (3.1)

Sg = −β
∑

x

{∑
μ>ν

c0W 1×1
x,μν +

∑
μ,ν

c1W 1×2
x,μν

}
, (3.2)

Sq =
∑

f =u,d,s

∑
x,y

q̄ f
x M f

xyq f
y , (3.3)

M f
xy = δx,y − κ f

∑
μ

{
(1 − γμ)Ux,μδx+μ̂,y + (1 + γμ)U †

x−μ̂,μδx−μ̂,y
}

− δx,y cSW(β) κ f

∑
μ>ν

σμνFx,μν, (3.4)

where c1 = −0.331 and c0 = 1 − 8c1. We set κu = κd ≡ κud and use the clover coefficient cSW

nonperturbatively determined by the Schrödinger functional method in [39]. Fx,μν = ( fx,μν −
f †
x,μν)/8i is the lattice field strength, with fx,μν the standard clover-shaped combination of gauge

links. Hadronic properties with this action have been studied down to the physical point by the
CP-PACS, JLQCD and PACS-CS Collaborations [37–43].

As the first determination of the EOS with Wilson-type quarks in 2 + 1 flavor QCD, we study
at (β, κud , κs) = (2.05, 0.1356, 0.1351), which corresponds to the smallest lattice spacing and the
lightest u and d quark masses (mπ/mρ 
 0.63) among the zero-temperature configurations gener-
ated by the CP-PACS+JLQCD Collaborations [37,38]. The s quark mass is set around its physical
point (mηss/mφ 
 0.74). The u and d quark masses are still much larger than their physical values.
A study at the physical point [43] is reserved for the next step. The hadronic radius at this simulation
point is estimated to be r0/a = 7.06(3) [44]. Setting the lattice scale by r0 = 0.5 fm, we estimate
1/a 
 2.79 GeV (a 
 0.07 fm). The lattice size is 283 × 56 with Nsa 
 2 fm.

3.1. Beta functions

Using the same coupling parameter values as the zero-temperature simulation, we have generated
finite-temperature configurations on 323 × Nt lattices with Nt = 4, 6, . . . , 16 [25,26]. This range of
Nt corresponds to T 
 170–700 MeV.

To evaluate the trace anomaly using (2.3), we need the beta functions a(dβ/da) and a(dκ f /da)
( f = ud and s). These beta functions can be determined nonperturbatively through the coupling
parameter dependence of zero-temperature observables. We use the data for amρ , mπ/mρ and
mηss/mφ at 30 simulation points from the CP-PACS+JLQCD zero-temperature configurations
[37,38] to extract the three beta functions. The first observable amρ sets the scale. A naive method to
obtain the beta functions is to fit the data of these observables as functions of the coupling parame-
ters (β, κud , κs), and invert the matrix of the slopes ∂(amρ)/∂β, etc. However, because the values for
a(dκ f /da) are numerically much smaller than a(dβ/da), the former produce large relative errors
through the matrix inversion procedure, i.e., errors for large components contaminate and domi-
nate the errors for small components. On the other hand, from the previous experience of two-flavor
QCD with improved Wilson quarks in the fixed-Nt approach [16], we expect that, although the
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Fig. 4. Determination of the beta functions in 2 + 1 flavor QCD [26]. Left: The global fit for β as a function
of mρa with corresponding mρ/mπ and mηss/mφ . Square symbols show coupling parameters in the CP–
PACS+JLQCD study. To avoid too busy a plot, only half of the data points are shown. Right: Beta functions
on our LCP, mπ/mρ = 0.6337 and mηss/mφ = 0.7377, as functions of β. The scale setting is made with amρ .
Beta functions for κud and κs are magnified by factor 100.

a(dκ f /da) values are small, the quark contribution is important in the trace anomaly. Therefore, a
precise determination of a(dκ f /da) is required.

To avoid the matrix inversion procedure, we instead fit the coupling parameters �b = (β, κud , κs) as
functions of three observables amρ , mπ/mρ ≡ X , and mηss/mφ ≡ Y . Consulting the overall quality
of the fits, we adopt the following third-order polynomial function for the observables in this study:

�b = �c0 + �c1 (amρ)+ �c2 (amρ)
2 + �c3 X + �c4 X2 + �c5 (amρ)X + �c6Y + �c7Y 2

+ �c8 (amρ)Y + �c9 XY + �c10 (amρ)
3 + �c11 X3 + �c12Y 3 + �c13 (amρ)X

2

+ �c14 (amρ)
2 X + �c15 (amρ)Y

2 + �c16 (amρ)
2Y + �c17 XY 2 + �c18 X2Y

+ �c19 (amρ)XY. (3.5)

The global fits for each component of �b are independent and have dof = 10. We find reasonable
χ2/dof of O(1)2. The result for β is shown in the left panel of Fig. 4.

In this study, we define LCPs by mπ/mρ and mηss/mφ at T = 0. Therefore, the beta functions are
extracted as a dβ/da = (amρ) ∂β/∂(amρ), etc., in terms of the coefficients �c1, �c2, �c5, �c8, · · · in (3.5).
The resulting beta functions for our LCP (mπ/mρ = 0.6337, mηss/mφ = 0.7377) are shown in the
right panel of Fig. 4 as functions of β. Their values at β = 2.05 are used to determine the trace
anomaly.

As the variable to set the scale, we may alternatively use amπ , amK or amK ∗ instead of amρ in
(3.5). We use this freedom to estimate a systematic error. Taking the results from amρ as the central
value, we obtain

a
dβ

da
= −0.279(24)(+40

−64), a
dκud

da
= 0.00123(41)(+56

−68), a
dκs

da
= 0.00046(26)(+42

−44) (3.6)

at our simulation point, where the first brackets are for statistical errors and the second ones are for
systematic errors [26].

2 We find χ2/dof = 1.63, 1.08, and 1.69 for the fit of β, κud , and κs , respectively. Here, χ2 is evaluated using
a standard deviation for each coupling parameter estimated by the error propagation rule using the errors of
the observables and the partial derivatives of the resulting fitting function (3.5) with respect to the observables,
neglecting the covariance among the observables.
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Fig. 5. Trace anomaly (ε − 3p)/T 4, energy density ε/T 4, and pressure 3p/T 4 in 2 + 1 flavor QCD [26]. The
thin and thick vertical bars represent statistical and systematic errors, respectively. The curves are drawn by
the Akima spline interpolation.

3.2. Equation of state

We now calculate the trace anomaly by (2.3):

ε − 3p

T 4 = N 3
t

N 3
s

{
a

dβ

da

〈
∂S

∂β

〉
sub

+ a
dκud

da

〈
∂S

∂κud

〉
sub

+ a
dκs

da

〈
∂S

∂κs

〉
sub

}
(3.7)

with 〈
∂S

∂β

〉
sub

= −
〈 ∑

x,μ>ν

c0W 1×1
x,μν +

∑
x,μ,ν

c1W 1×2
x,μν

〉
sub

+ dcSW

dβ

∑
f =ud,s

κ f

〈 ∑
x,μ>ν

tr(c,s)σμνFx,μν (M
f )−1

x,x

〉
sub

, (3.8)

〈
∂S

∂κ f

〉
sub

= c f ×
(〈∑

x,μ

tr(c,s)
{
(1 − γμ)Ux,μ(M

f )−1
x+μ̂,x

+ (1 + γμ)U
†
x−μ̂,μ(M

f )−1
x−μ̂,x

}〉
sub

+ cSW

〈 ∑
x,μ>ν

tr(c,s)σμνFx,μν (M
f )−1

x,x

〉
sub

⎞
⎠ , (3.9)

where c f = 2 for f = ud and 1 for f = s. We evaluate the spatial traces in (3.8) and (3.9) by the
random noise method with U(1) random numbers [21]. The number of voice vectors is 1 for each
of the color and spinor indices.

Our result for the trace anomaly (ε − 3p)/T 4 is shown by a thick red curve in Fig. 5. We note that
the peak height of about 7 at T = 199 MeV (Nt = 14) is roughly consistent with recent results for
highly improved staggered quarks obtained with the fixed-Nt approach at Nt = 6–12 [45,46]. The
shape of (ε − 3p)/T 4 suggests that Tpc locates between 174 and 199 MeV.

Carrying out the T -integration (2.5) of the trace anomaly, we obtain the pressure p shown in Fig. 5.
The energy density ε is calculated from p and ε − 3p.

Apart from the larger errors, our EOS looks roughly consistent with recent results with highly
improved staggered quarks near the physical point [45,46]. We note that our peak is slightly higher.
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This is consistent with the fact that our light quark masses are heavier than their physical values:
the experience with improved staggered quarks suggests that the peak becomes slightly higher as the
light quark masses are increased (see, e.g., Ref. [45]).

Our final goal is to extend the study towards the physical point, using the on-the-physical-point
configurations generated by the PACS-CS Collaboration [43]. From the present study at mud heavier
than the physical point, we encountered a couple of issues, as follows. The EOS errors in Fig. 5 are
larger than those obtained with the fixed-Nt approach [45,46]. Besides smaller statistics, this is due
to the large statistical error in (ε − 3p)/T 4 at T � 200 MeV, which is caused by the enhancement
factor N 4

t in (3.7) (note that S is proportional to Nt). To obtain an accurate EOS at low temperatures,
we need a large statistics of O(N 7

t )
3. This is, however, an unavoidable step to suppress discretization

errors, and the issue is common with the fixed-Nt approach. Another source of systematic errors in
EOS is the limited resolution in T due to the discrete variation of Nt in the fixed-scale approach.
Note that the lattice spacings in full QCD studies are usually coarser than those in quenched studies.
Furthermore, in the present study, Nt is limited to be even due to the simulation program set we have
used. To improve the resolution in T , we need simulations at odd values of Nt and/or a finer lattice
spacing a. An alternative way would be to combine results at different a, since we can choose a to
be fine with the fixed-scale approach and thus, after confirming that the discretization effects are
sufficiently small in the observables under study, we may combine the results at different a to more
smoothly interpolate in T . We leave these trials to a forthcoming study with lighter quarks.

4. Finite-density QCD on the lattice

Next, let us move on to the issues of finite-density QCD. We consider the action given by (3.1)–(3.3)
with the quark matrix M f

xy replaced by

M f
xy = δx,y − κ f

3∑
μ=1

{
(1 − γμ)Ux,μδx+μ̂,y + (1 + γμ)U †

x−μ̂,μδx−μ̂,y
}

− κ f

{
eμ f a(1 − γ4)Ux,4δx+4̂,y + e−μ f a(1 + γ4)U †

x−4̂,4
δx−4̂,y

}
− δx,y cSW(β) κ f

∑
μ>ν

σμνFx,μν. (4.1)

Here, the theory at μ f �= 0 is known to have a serious problem. In a Monte Carlo simulation, we
generate configurations of link variables {Ux,μ} with the probability in proportion to the Boltzmann
weight (

∏
f det M f ) e−Sg . The expectation value of an operatorO[U ] is then evaluated as an average

of O over the configurations,

〈O〉(β,�κ, �μ) ≈ 1

Nconf.

∑
{Ux,μ}

O[U ], (4.2)

where �κ = (κu, κd , . . .) and �μ = (μu, μd , . . .). At �μ = 0, the quark determinants are real due to the
γ5-hermiticity of the quark matrices, (M f )† = γ5 M f γ5. However, whenμ f �= 0, the γ5-hermiticity

3 One power of Nt is reduced by averaging over the lattice sites.
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relation changes to [
M f (μ f )

]† = γ5 M f (−μ f )γ5, (4.3)

and thus det M f becomes complex unless μ f = 0. Because the Boltzmann weight has to be real and
positive, we cannot perform a Monte Carlo simulation at μ f �= 0 directly.

Various methods have been proposed to study finite-density QCD avoiding the complex weight
problem. However, at present, all of them are applicable in smallμ f /T regions only. In the following
subsections, we introduce these methods, mainly focusing on the Taylor expansion and reweighting
methods we use.

4.1. Taylor expansion method

The simplest approach to studying finite-density QCD avoiding the complex weight problem is the
Taylor expansion method, in which physical quantities are expanded in terms of μ f /T around �μ =
0 [47–51]. For example, the pressure p = (T/V ) ln Z is expanded as

p

T 4 =
∞∑

i, j,k=0

ci jk(T )
(μu

T

)i (μd

T

) j (μs

T

)k
, (4.4)

ci jk = 1

i! j!k!

1

V T 3

∂ i+ j+k ln Z

∂(μu/T )i∂(μd/T ) j∂(μs/T )k

∣∣∣∣ �μ=0
(4.5)

in three-flavor QCD. The Taylor coefficients ci jk can be evaluated by a conventional Monte Carlo
simulation at �μ = 0 which is free from the complex weight problem. We expect that QCD in the high-
temperature limit is well described by a free gas of quarks and gluons, in which p consists of terms
proportional to μ2

f and μ4
f only. Therefore, the expansion will converge well in the high-temperature

region.
Other observables can also be calculated similarly. The quark number density n f is given by

n f

T 3 = 1

V T 3

∂ ln Z

∂(μ f /T )
= ∂(p/T 4)

∂(μ f /T )
, (4.6)

where T is fixed in the differentiations. When we define the light quark number density as nq =
nu + nd , the susceptibilities of the light quark number density (χq) and the strange quark number
density (χs) are given by

χq

T 2 =
(

∂

∂(μu/T )
+ ∂

∂(μd/T )

)
nu + nd

T 3 ,
χs

T 2 = ∂(ns/T 3)

∂(μs/T )
, (4.7)

respectively. The susceptibility of the isospin number can also be given as

χI

T 2 =
(

∂

∂(μu/T )
− ∂

∂(μd/T )

)
nu − nd

T 3 . (4.8)

These quantities are expanded around �μ = 0 in terms of ci jk defined in (4.5). The trace anomaly

is given by Eq. (2.3). The entropy density is given by s = T −1
(
ε + p − ∑

f μ f n f

)
. The chiral

condensate is defined by the derivative of ln Z with respect to the quark mass. Their Taylor expansion
can also be derived.

4.2. Reweighting method and sign problem

Another popular approach to finite-density QCD is the reweighting method [52–57], using the
reweighting technique [58–60] in finite-density QCD. Using the configurations generated at �μ = 0,
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expectation values at finite �μ are computed by correcting the Boltzmann weight with the “reweighting
factor”:

〈O〉(β,�κ, �μ) =

〈
O × ∏

f

[
det M f (μ f )/ det M f (0)

]〉
(β,�κ,0)〈∏

f

[
det M f (μ f )/ det M f (0)

]〉
(β,�κ,0)

. (4.9)

The denominator is the ratio of the partition functions at finite �μ and �μ = 0,

Z(β, �κ, �μ)
Z(β, �κ, 0)

=
〈∏

f

det M f (μ f )

det M f (0)

〉
(β,�κ,0)

. (4.10)

Here, because det M f (μ f ) is complex, the reweighting factor

∏
f

det M f (μ f )

det M f (0)

has a complex phase ei θ̂ . When the fluctuation of θ̂ is larger than O(π/2), a reliable calculation of the
numerator and denominator in Equation (4.9) is difficult. This difficulty is called the “sign problem
(complex phase problem)”. We actually encounter large fluctuations of θ̂ at large μ f and/or large
lattice volume.

It is worth rewriting the denominator of Equation (4.9) in terms of the distribution function for
P̂ ≡ −Sg/(6Nsiteβ) (which is the plaquette if Sg is the standard gauge action) and the logarithm of

the absolute value of the reweighting factor F̂ ≡ ln
∣∣∣∏ f

(
det M f (μ f )/ det M f (0)

)∣∣∣:〈∏
f

det M f (μ f )

det M f (0)

〉
(β,�κ,0)

=
∫ 〈

ei θ̂
〉

P,F
eFw0(P, F;β, �κ, 0) d Pd F, (4.11)

where w0 is the distribution function for the phase-quenched system,

w0(P, F;β, �κ, �μ) =
∫

DU δ(P − P̂[U ])δ(F − F̂[U ])

∣∣∣∣∣∣
∏

f

det M f (μ f )

∣∣∣∣∣∣ e6Nsiteβ P̂ , (4.12)

and 〈ei θ̂ 〉P,F is the expectation value of the operator ei θ̂ at �μ = 0 with fixed values of P̂ and F̂ to P
and F :

〈
ei θ̂

〉
P,F

=

〈
δ(P − P̂) δ(F − F̂) ei θ̂

〉
(β,�κ,0)〈

δ(P − P̂) δ(F − F̂)
〉
(β,�κ,0)

. (4.13)

By measuring the histogram of P̂ and F̂ in a phase-quenched simulation, we can determine w0

around the peak of the histogram. However, in the calculation of Equation (4.11), precise information
on w0 is required around the maximum of the integrant, which may deviate from the peak of w0 due
to the factor 〈ei θ̂ 〉P,F eF . To calculatew0 in a wider range of (P, F), we combine the results of phase-
quenched simulations at different points in the coupling parameter space, adopting the reweighting
formulae for the phase-quenched theory [21]. Further demonstration of such calculations will be
given in Section 6.

For Equation (4.11), we also need to estimate 〈ei θ̂ 〉P,F . Because the total distribution function is
real and positive in finite-density QCD due to the charge conjugation symmetry, the imaginary part
of 〈ei θ̂ 〉P,F must be averaged out when the statistics is infinite. Since the imaginary part is the source
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Fig. 6. The histogram of θ̂ in Nf = 2 QCD with improved Wilson quarks at (mπ/mρ, T/Tpc) = (0.65, 0.94)
(left) and (0.65, 1.32) (right) [21].

of the sign problem, we may remedy or mitigate the problem if we could find a method in which the
imaginary part is removed and the real part is reliably estimated. In the next subsection, we show
that it is useful to consider a cumulant expansion of 〈ei θ̂ 〉P,F in which ln〈ei θ̂ 〉P,F is separated into
real and imaginary parts [21,61].

4.3. Cumulant expansion and Gaussian approximation

For simplicity, let us consider the case of Nf degenerate quarks in the following. A crucial step in
handling the fluctuations in the phase θ̂ is to introduce an appropriate definition of θ̂ removing the
ambiguity of a complex phase with modulo 2π . We uniquely define the complex phase by the Taylor
expansion as

θ̂ (μ) = Nf Im [ln det M(μ)]

def= Nf

∞∑
n=0

1

(2n + 1)!
Im

[
∂2n+1(ln det M(μ))

∂(μ/T )2n+1

]
μ=0

(μ
T

)2n+1
, (4.14)

where the derivatives of ln det M can be unambiguously expressed in terms of M−1 and derivatives
of M . Note that the expectation value of θ̂ defined by Equation (4.14) is not restricted to the range
(−π, π), and the maximum value of |θ̂ | is proportional to the volume of the system. The conventional
complex phase in the range (−π, π) is recovered by taking the principal value of θ̂ with modulo 2π .

Typical results for the histogram of θ̂ are shown in Fig. 6 for Nf = 2 QCD with improved Wilson
quarks [21], where the power series in (4.14) is evaluated up to (μ/T )3, discarding O (

(μ/T )5
)

terms4. We see that the width of the distribution becomes wider as μ/T is increased, indicating a
more severe sign problem.

To mitigate the sign problem, we evaluate 〈ei θ̂ 〉P,F by the cumulant expansion [61]:

〈
ei θ̂

〉
P,F

= exp

[
i〈θ̂〉c − 〈θ̂2〉c

2
− i〈θ̂3〉c

3!
+ 〈θ̂4〉c

4!
+ i〈θ̂5〉c

5!
− 〈θ̂6〉c

6!
+ · · ·

]
, (4.15)

4 In two-flavor QCD with p4 improved staggered quarks [61], the influence of the next-order term was shown
to be small at μ/T � 2.5. See, e.g., Fig. 9 of Ref. [61].
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where 〈θ̂n〉c is the nth-order cumulant: 〈θ̂2〉c = 〈θ̂2〉P,F , 〈θ̂4〉c = 〈θ̂4〉P,F − 3〈θ̂2〉2
P,F , 〈θ̂6〉c =

〈θ̂6〉P,F − 15〈θ̂4〉P,F 〈θ̂2〉P,F + 30〈θ̂2〉3
P,F , . . . . A key observation in handling the cumulant expan-

sion is that 〈θ̂n〉c = 0 for any odd n due to the symmetry under θ̂ → −θ̂ . This implies that, provided
that the cumulant expansion converges, 〈ei θ̂ 〉P,F is guaranteed to be real and positive and the sign
problem is resolved. The sign problem is transformed into the convergence problem of the cumulant
expansion in this approach.

As shown in Fig. 6, we find that the distribution of θ̂ is well described by a Gaussian function up
to μ/T ∼ O(1). The Gaussian distribution of θ̂ is also observed with improved staggered quarks
in two-flavor QCD [61], and was discussed in Refs. [62,63] too. The Gaussian distribution means
that the cumulant expansion (4.15) is dominated by the lowest nontrivial order of 〈θ̂2〉, and thus the
expansion is well converged. Corrections to the Gaussian distribution can be incorporated by taking
higher-order terms in the cumulant expansion.

Here, we note that θ̂ = O(μ/T ) from Equation (4.14). Therefore, if we take into account the cumu-
lants up to the nth order, the truncation error does not affect the Taylor expansion up to O ((μ/T )n).
This means that the convergence of the cumulant expansion is closely related to the convergence of
the Taylor expansion in μ. The Gaussian approximation is valid, at least at small μ, and higher-order
cumulants may become visible at large μ. The applicability range of the Gaussian approximation in
μ has to be checked for each case by calculating the higher-order cumulants.

We now argue that the range of applicability does not change with the system volume on sufficiently
large lattices when the correlation length of the system is finite [21]. The expansion coefficients for θ̂
in Equation (4.14) are given by traces of products of M−1 and ∂n M/∂(μ/T )n over the spatial posi-
tions. For example, the first coefficient is given by the trace of Nf[M−1(∂M/∂(μ/T ))]. We note that
the diagonal elements of this matrix are the local quark-number density operators [∼ ψ̄(x)γ0ψ(x)]
at μ = 0. When the correlation length of the local operators is finite and is much shorter than the
system size, we may decompose the trace into a summation of independent contributions from spa-
tially separated regions. The same discussion is applicable to higher-order coefficients too. Then, the
phase θ̂ may be written as a sum of local contributions from spatially separated regions, which are
statistically independent of each other, i.e. θ̂ ≈ ∑

x θ̂x , where θ̂x is the contribution from a spatial
region labeled by x . The average of exp(i θ̂ ) is thus

〈
ei θ̂

〉
≈

∏
x

〈
ei θ̂x

〉
= exp

(∑
x

∑
n

in

n!

〈
θ̂n

x

〉
c

)
. (4.16)

This suggests that all cumulants 〈θ̂n〉c ≈ ∑
x 〈θ̂n

x 〉c increase in proportion to the volume as the volume
increases, that is, 〈θ̂n〉c ∝ volume for any n, in contrast with a naïve expectation that θ̂n may be
proportional to (volume)n since θ̂ is proportional to the volume.5 Therefore, while the width of
the distribution, i.e. the phase fluctuation, increases in proportion to the volume, the ratios of the
cumulants are independent of the volume—the higher-order terms in the cumulant expansion are
well under control in the large volume limit.

5 This property of the higher-order cumulants can also be understood from the effective potential
Veff(P, F) = − lnw0(P, F)− ln〈ei θ̂ 〉(P,F), which will be studied in Section 6. Because Veff and lnw0 are

proportional to the system volume, each term in the expansion of ln〈ei θ̂ 〉(P,F) = ∑
n(i

n/n!)〈θ̂n〉c should not
increase faster than (volume)1 for any n. Otherwise, Veff becomes singular in the thermodynamic limit.
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Thus, the range where the cumulant expansion is applicable is independent of the volume. This is
good news in attacking the sign problem, which is known to become more severe with increasing lat-
tice volume. Furthermore, we find that, when the system size is sufficiently larger than the correlation
length, the distribution of θ̂/volume tends to a Gaussian distribution, since the distribution function
of an average over many independent variables θ̂x tends to a Gaussian function by the central limit
theorem.

4.4. Other approaches

Besides the Taylor expansion method and the reweighting method, as well as combinations thereof,
various methods have been proposed as alternative approaches to study QCD at finite densities. One
approach is to perform analytic continuation from simulations at imaginary chemical potentials [64–
68]. For a complex μ f , Equation (4.3) is generalized to [M f (μ f )]† = γ5 M f (−μ∗

f )γ5. Therefore,
when μ f is purely imaginary, the Boltzmann weight is real, and we can simulate the system without
the sign problem. Using results of simulations performed at imaginary μ, information at small real
μ can be obtained by an analytic continuation. The analytic continuation is usually based on a Taylor
expansion in terms ofμ aroundμ = 0, i.e. we fit observables obtained at imaginaryμwith the Taylor
expansion ansatz and extrapolate the resulting fitting function to a small real μ. Improvements of the
analytic continuation procedure have also been discussed in Refs. [69–72] to obtain results in a wider
range of real μ. Systematic high precision simulations over a wide imaginary-μ range are required
for a reliable analytic continuation.

Another approach is to construct the canonical partition function ZC(T, N ) by fixing the total quark
number N or the quark number density [55–57,73–78]. Using the canonical partition function, we
can also discuss the effective potential as a function of the quark number. The relation between the
grand canonical partition function Z(T, μ) and the canonical partition function ZC(T, N ) is given by

Z(T, μ) =
∫
DU [det M(μ)]Nf e−Sg =

∑
N

ZC(T, N ) e Nμ/T (4.17)

for the degenerate Nf-flavor case. Because this is a Laplace transformation, ZC is obtained from Z
by an inverse Laplace transformation. To find N that makes the largest contribution to Z , it is worth
introducing an effective potential as a function of N ,

Veff(N , T, μ) ≡ − ln ZC(T, N )− N
μ

T
= f (T, N )

T
− N

μ

T
, (4.18)

where f is the Helmholtz free energy. Veff is useful to study the nature of phase transitions [78].

5. Two flavors of improved Wilson quarks at finite density

Using the Taylor expansion method and the Gaussian method discussed in the previous section, we
made the first study of finite-density QCD with Wilson-type quarks [21]. We study two-flavor QCD
with RG-improved gauge action and clover-improved Wilson quark action. A systematic study of
finite-temperature QCD with this action has been made by the CP-PACS Collaboration [14,16]. The
phase diagram at μ = 0 as well as LCPs determined with mπ/mρ are given in Refs. [14,16,21]. We
extend the study to μ �= 0.

5.1. Taylor expansion for EOS

We study the pressure and quark number densities defined by Eqs. (4.4) and (4.6) for the case of
two-flavor QCD. Defining the quark chemical potential μq = (μu + μd)/2 and the isospin chemical
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potential μI = (μu − μd)/2, the quark number and isospin susceptibilities are given by

χq

T 2 = ∂2(p/T 4)

∂(μq/T )2
,

χI

T 2 = ∂2(p/T 4)

∂(μI /T )2
, (5.1)

which measure the fluctuations in baryon and isospin numbers in the medium [79].
We study the isosymmetric case μu = μd = μ, μI = 0. The pressure is given by

p

T 4 =
∞∑

n=0

cn(T )
(μ

T

)n
, cn(T ) = 1

n!

N 3
t

N 3
s

∂n ln Z

∂(μ/T )n

∣∣∣∣ �μ=0
. (5.2)

Here, c0(T ) is the pressure at �μ = 0 and has been computed by the CP-PACS Collaboration [14,16].
The susceptibilities are then expanded as

χq(T, μ)

T 2 = 2c2 + 12c4

(μ
T

)2 + · · · , χI (T, μ)

T 2 = 2cI
2 + 12cI

4

(μ
T

)2 + · · · , (5.3)

where

cI
n = 1

n!

N 3
t

N 3
s

∂n ln Z(T, μ+ μI , μ− μI )

∂(μI /T )2 ∂(μ/T )n−2

∣∣∣∣∣ �μ=0

. (5.4)

In this study, we compute the Taylor expansion coefficients for the second and fourth derivatives
in (5.2). This enables us to compute χq and χI to the lowest nontrivial order in μ.

5.2. Random noise method

To evaluate the Taylor coefficients (5.2) and (5.4), we calculate

Dn = Nf
∂n ln det M

∂(μa)n

∣∣∣∣ �μ=0
(5.5)

up to n = 4 [21]. We thus study

D1 = Nf tr

(
M−1 ∂M

∂(μa)

)
�μ=0

,

D2 = Nf

[
tr

(
M−1 ∂2 M

∂(μa)2

)
− tr

(
M−1 ∂M

∂(μa)
M−1 ∂M

∂(μa)

)]
�μ=0

, (5.6)

etc., where(
∂n M

∂(μa)n

)
x,y

∣∣∣∣∣ �μ=0

= −κ
[
(1 − γ4)Ux,4δx+4̂,y + (−1)n(1 + γ4)U

†

x−4̂,4
δx−4̂,y

]
. (5.7)

In terms of Dn , we have c2 = (Nt/2N 3
s ){〈D2〉 + 〈D2

1

〉}, cI
2 = (Nt/2N 3

s ) 〈D2〉 , . . . . Note that Dn is
real for even n and purely imaginary for odd n [47,48].

These traces, say trA, can be evaluated by the “random noise method”. In this method, instead of
calculating the diagonal elements Aii individually for all i , we calculate η†Aη for several random
noise vectors η. The contributions of the off-diagonal elements Ai j (i �= j) in these quantities are
removed by averaging over the random noises, η∗

i η j = δi j .
As is clear from the construction, the random noise method is effective when the contamina-

tions from off-diagonal elements are small. Because the propagator (M−1)x,y decreases rapidly with
increasing |x − y|, the random noise method will work well to suppress small contaminations of
spatially off-diagonal elements. On the other hand, the off-diagonal elements in the color and spinor
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indices are from the same spatial point and thus are not suppressed by |x − y|—they are suppressed
only by 1/

√
Nnoise, where Nnoise is the number of noise vectors. This motivates us to apply the ran-

dom noise method for the spatial coordinates only. For the trace over the color and spinor indices,
we just repeat the calculation generating the random noise vectors for each color–spin index6.

For a product of traces, the random noise vectors for each trace must be independent. We compute
such a product by subtracting the contribution of the same noise vector from the naive product of two
noise averages for each trace. This effectively increases the number of noises to Nnoise · (Nnoise − 1)
for the products and thus suppresses their errors due to the noise method.

In practice, Nnoise can be small when the error due to the smallness of Nnoise is smaller than the
statistical errors from the averaging over the configurations. The required number of noise vectors
depends on each operator. In Ref. [21], we have tested the random noise method in the evaluation
of Dn (with n = 1–4). We find that D1 has larger fluctuations under noise vector variation than D2

etc., and the error in D1 dominates in the errors of c4 and cI
4 when we use the same Nnoise. From this

test, we choose Nnoise = 100–400 for tr[(∂n M/∂(μa)n)M−1] (n = 1–4), and Nnoise = 10 for other
operators.

5.3. Quark number densities and susceptibilities at μ �= 0

Simulations are done on a 163 × 4 lattice in the fixed-Nt approach in the range β = 1.50–2.40
(T/Tpc ≈ 0.8–3 or 4 on LCPs corresponding to mπ/mρ = 0.65 and 0.80, where Tpc is the pseu-
docritical temperature for each LCP. See Ref. [21] for details.

Our results with the standard Taylor expansion method are shown in Fig. 7 for the LCP at
mπ/mρ = 0.65. The left panel is for the finite density correction �p/T 4 ≡ p(μ)/T 4 − p(0)/T 4

of the pressure at finite μ. T0 is Tpc at μ = 0. Recall that we have a crossover at Tpc at μ = 0. The
pressure changes more sharply as μ is increased. When we increase μ, �p/T 4 becomes the same
size as p/T 4 at μ = 0 around μ/T ∼ O(1). In the right panel of Fig. 7, we show the results of
the quark number susceptibility χq(μ) at μ �= 0. We see that a peak seems to be formed when we
increase μ. However, in spite of various improvements in random noise estimators etc., as discussed
in the previous subsection, the statistical errors due to the complex phase fluctuation of the quark
determinant are still a bit too large to draw a definite conclusion about the peak.

In order to suppress the errors from the phase fluctuation, we apply the cumulant expansion
method discussed in Section 4.3. We compute the quark determinant ratio in Eq. (4.11) by the Taylor
expansion up to O(μ4),

F̂(μ) ≡ Nf Re

[
ln

(
det M(μ)

det M(0)

)]
≈

Nmax∑
n=1

1

(2n)!
ReD2n (μa)2n, (5.8)

θ̂ (μ) = Nf Im[ln det M(μ)] ≈
Nmax∑
n=1

1

(2n − 1)!
ImD2n−1 (μa)2n−1, (5.9)

6 Because a staggered-type quark does not have a spinor index at a spatial point, the number of off-diagonal
elements is only 6 in the color 3 × 3 matrix, and the contamination of off-diagonal elements is less serious.
This is one reason that the random noise method is used more naively with staggered-type quarks. However,
with Wilson-type quarks, the number of off-diagonal elements with similar magnitude in the quark matrix is
11 times larger than the diagonal one. Therefore, the color-spinor index should be treated more carefully with
Wilson-type quarks.
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Fig. 7. Results of two-flavor QCD at finite density by the standard Taylor expansion method [21]. Results are
obtained at mπ/mρ = 0.65. The truncation error of the Taylor expansion is O(μ6). T0 is the pseudocritical
temperature at μ = 0. Left: μ-dependent contribution to the pressure,�p/T 4 ≡ p(μ)/T 4 − p(0)/T 4. Right:
Quark number susceptibility χq .

Fig. 8. The same as Fig. 7 but with the combined hybrid and Gaussian methods [21]. Left:
�p/T 4 ≡ p(μ)/T 4 − p(0)/T 4. Right: Quark number susceptibility χq .

with Nmax = 2, and estimate the phase factor by the second-order cumulant assuming the Gaussian
distribution of θ , 〈ei θ̂ 〉 ≈ exp[−〈θ̂2〉/2]. We moreover shift β from the simulation point β0 such
that the statistical error due to the F-integration is minimized in Eq. (4.11). We perform a fit of the
resulting pressure (= free energy) in terms of μ to obtain χq . The results for�p/T 4 and χq/T 2 are
shown in Fig. 8. We find that the statistical errors are appreciably suppressed by these methods. We
also note that, although the simulations at different T are independent, the T -dependences of�p and
χq are smooth and natural. We can now clearly identify a sharp peak in χq/T 2 that appears around
Tpc when μ/T ≥ O(1). The peak becomes higher as μ increases. These points are consistent with
observations with staggered-type quarks and suggest a critical point at finite μ.

In contrast with the peak in χq , the isospin susceptibility shows no sharp peak, as shown in the
left panel of Fig. 9. This is in accordance with the expectation that χI is analytic at the critical point
since the iso-triplet mesons remain massive.

The results at mπ/mρ = 0.80 are similar, but with lower peaks in χq than those in Fig. 8, as shown
in the right panel of Fig. 9. This may be explained in part by the expectation that the critical point
locates at larger μ because the quark mass is larger than that for mπ/mρ = 0.65. See Ref. [21] for
more discussions.
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Fig. 9. Results of two-flavor QCD at finite density [21]. Left: Isospin susceptibility χI at mπ/mρ = 0.65 by the
standard Taylor expansion method. Right: Quark number susceptibility χq at mπ/mρ = 0.80 by the combined
hybrid and Gaussian methods.

6. Histogram method and QCD phase structure at zero and finite densities

In studying the QCD phase structure shown in Figs. 1 and 2, identification of first-order transi-
tion region is quite important. Among several methods to study the nature of phase transitions, the
probability distribution of physical observables provides us with the most intuitive. The probability
distribution function is defined as the generation rate of configurations with fixed expectation val-
ues of physical observables. Double or multiple peaks in the probability distribution function for
observables that are sensitive to the phase, such as the energy density, chiral order parameter, etc.,
give a signal of first-order phase transition. One problem is that, in order to trace the variation of
the shape of a probability distribution function, we need statistically reliable data on the distribution
function over a wide range of expectation values. In the identification of a first-order transition, cor-
rect evaluation of the double-peak distribution requires quite a long simulation with sufficiently many
flip-flops among different phases [see, e.g., Ref. [80]]. This is computationally quite demanding with
dynamical quarks.

Here, we note that calculation of the probability distribution function is also required for the
reweighting method for the components of the action [58–60]. Therefore, when we adopt observables
that are the components of the action, the computation of the distribution function at different points
in the coupling parameter space is straightforward with the reweighting method [61]. This helps us
to obtain the probability distribution function over a wide range of expectation values. Therefore, the
method is quite powerful for studying the location of first-order transitions.

We apply the method to explore the phase structure of QCD. In this section, we introduce the
method, which may be viewed as a variant of the histogram method or the density of state method [81–
84], and test it in the heavy-quark region of QCD [22,23]. We then present our ongoing project to
study finite-density QCD with light dynamical quarks by combining the histogram method with
phase-quenched simulations [24].

6.1. Histogram method

As a demonstration, let us consider the simplest lattice QCD: the combination of plaquette gauge
action with unimproved Wilson quarks.

S = Sg + Sq ,
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Sg = −6Nsiteβ P̂, (6.1)

Sq =
Nf∑

f =1

∑
x

⎧⎨
⎩q̄ f

x q f
x − κ f

3∑
μ=1

q̄ f
x

[
(1 − γμ)Ux,μq f

x+μ̂ + (1 + γμ)U
†
x−μ̂,μq f

x−μ̂
]

− κ f q̄ f
x

[
eμ f a(1 − γ4)Ux,4q f

x+4̂
+ e−μ f a(1 + γ4)U

†

x−4̂,4
q f

x−4̂

]}
def=

Nf∑
f =1

∑
x,y

q̄ f
x Mxy(κ f , μ f ) q f

y , (6.2)

where Nsite = N 3
s × Nt is the lattice volume and

P̂ = 1

6Nsite

∑
x, μ<ν

1

3
Re tr

[
Ux,μUx+μ̂,νU

†
x+ν̂,μU †

x,ν

]
(6.3)

is the plaquette. Note that M does not depend on β.7

Denoting the values of the operators (P̂, . . .) as (P, . . .), the probability distribution function for
(P, . . .) is defined by

w(P, . . . ;β, �κ, �μ) =
∫
DU δ

(
P̂[U ] − P

)
· · ·

∏
f

det M(κ f , μ f ) e6Nsiteβ P̂

= e6NsiteβP
∫
DU δ

(
P̂[U ] − P

)
· · ·

∏
f

det M(κ f , μ f ), (6.4)

where “· · · ” in the r.h.s. means the product of delta functions for other operators. We now define the
effective potential as

Veff(P, . . . ;β, �κ, �μ) = − lnw(P, . . . ;β, �κ, �μ). (6.5)

Note that P represents the freedom of gauge internal energy, and thus should be sensitive to the phase
structure of the system.

A useful property of the plaquette distribution function and the effective potential is

w(P, . . . ;β, �κ, �μ) = w(P, . . . ;β0, �κ, �μ) e6(β−β0)Nsite P , (6.6)

Veff(P, . . . ;β, �κ, �μ) = Veff(P, . . . ;β0, �κ, �μ)− 6(β − β0)Nsite P. (6.7)

We thus find that

dVeff

d P
(P, . . . ;β, �κ, �μ) = dVeff

d P
(P, . . . ;β0, �κ, �μ)− 6(β − β0)Nsite, (6.8)

and d2Veff/d P2 is independent of β.

7 When we consider improved gauge actions such as (3.2), we replace P̂ with the operator appearing in the

gauge action: P̂
def= −Sg/(6Nsiteβ). On the other hand, when M depends on β, as in the case of improved quark

actions, more careful treatment is required. See the discussions in Section 6.5.
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The �κ and �μ-dependences of Veff can also be computed by the reweighting method as follows:

Veff(P, . . . ;β, �κ, �μ) = Veff(P, . . . ;β, �κ0, �μ0)− ln R(P, . . . ; �κ, �μ, �κ0, �μ0), (6.9)

where the reweighting factor R is evaluated as

R(P, . . . ; �κ, �μ, �κ0, �μ0)
def= w(P, . . . ;β, �κ, �μ)
w(P, . . . ;β, �κ0, �μ0)

=
∫DUδ(P̂ − P) · · ·∏ f det M(κ f , μ f ) e6βNsite P̂∫DUδ(P̂ − P) · · ·∏ f det M(κ0

f , μ
0
f ) e6βNsite P̂

=
∫DUδ(P̂ − P) · · ·∏ f det M(κ f , μ f )∫DUδ(P̂ − P) · · ·∏ f det M(κ0

f , μ
0
f )

=

〈
δ(P̂ − P) · · ·∏ f

det M(κ f ,μ f )

det M(κ0
f ,μ

0
f )

〉
(�κ0, �μ0)〈

δ(P̂ − P) · · ·
〉
(�κ0, �μ0)

=
〈∏

f

det M(κ f , μ f )

det M(κ0
f , μ

0
f )

〉
(�κ0, �μ0);P,...

. (6.10)

Note that R is independent of β and thus can be evaluated at any β. By adjusting and combining β,
we can obtain precise values of R in a wide range of P, . . . .

6.2. QCD in the heavy-quark region

We first test the method in the heavy-quark region. As shown in Fig. 2, we have the first-order
deconfinement transition of the SU(3) Yang–Mills theory in the limit of infinite quark masses. The
transition is expected to turn into a crossover when we decrease the quark masses. We study the
boundary of the first-order region by the histogram method. To take advantage of light computational
costs in quenched simulations, we choose κ0

f = μ0
f = 0 ( f = 1, . . . , Nf).

For simplicity, let us consider the case of degenerate quarks: κ f = κ , μ f = μ ( f = 1, . . . , Nf).
Generalization to nondegenerate cases is easy.

To the lowest order of the hopping parameter expansion, the quark determinant ratio appearing in
the r.h.s. of (6.10) is evaluated as

det M(κ, μ)

det M(0, 0)
= exp

[
288Nsiteκ

4 P̂ + 3N 3
s 2Nt+2κNt

{
cosh

(μ
T

)
�̂R + i sinh

(μ
T

)
�̂I

}]
, (6.11)

where

�̂ = 1

3N 3
s

∑
x

Tr
[
Ux,4Ux+4̂,4 · · · Ux+(Nt−1)4̂,4

]
(6.12)

is the Polyakov loop, and �̂R = Re�̂ and �̂I = Im�̂ are its real and imaginary parts. We note that
the contribution of P̂ in the r.h.s. can be absorbed by a shift of the gauge coupling β → β + 48Nfκ

4.
The term proportional to �̂I induces the complex phase at μ �= 0, which is the origin of the sign

problem at large μ.

6.3. Results at μ = 0 in the heavy-quark region

We are now ready to calculate the effective potential. Let us first study the case μ = 0 [22,23]. In
this case, the complex phase term is absent in (6.11).
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Fig. 10. Effective potential atμ = 0 as a function of P in the heavy-quark region [22]. Left: dVeff(P;β, 0)/d P
in the heavy quark limit. Data obtained at five different values of β in the range 5.68–5.70 are converted to
β = 5.69 by (6.8). Right: Veff(P;β, κ) for κ > 0, where β is adjusted such that the two minima of Veff have
the same depth and the constant term of Veff is adjusted such that Veff = 0 at the central peak point Ppeak.

The double-well nature of the effective potential is clearly seen when we consider the effective
potential for P only:

Veff(P;β, κ) def= − ln
∫
w(P, �R;β, κ) d�R.

Our results for dVeff(P;β, 0)/d P at κ = 0 are shown in the left panel of Fig. 10. Using (6.8), we
shift the results obtained at five different β values to β = 5.69. With different β, the range of P
in which we can reliably obtain Veff is different. We find that the results of dVeff(P;β, 0)/d P at
different β are smoothly connected with each other by (6.8). We can thus obtain accurate values of
dVeff(P;β, 0)/d P in a wide range of P .

Similarly, we calculate dVeff(P;β, κ)/d P at κ > 0 by using the reweighting factor R and (6.11).
We then integrate dVeff(P;β, κ)/d P in P to get Veff(P;β, κ) as shown in the right panel of
Fig. 10. We find that the double-well structure of Veff(P) becomes weaker with increasing κ , and
eventually disappears at finite κ , say κcp. Examining the shape of Veff more closely, we obtain
κcp = 0.0658(3)(+4

−11) for two-flavor QCD in the lowest order of the hopping parameter expansion
on an Nt = 4 lattice [22].

The argument can be easily generalized to the case of nondegenerate quark masses. Our results for
the critical point κcp in 2 + 1 flavor QCD are shown in Fig. 11 [22]. The top-right corner of Fig. 2
corresponds to this plot rotated by 180◦. Our results are consistent with those obtained in an effective
model [86] and with a recent study using the hopping parameter expansion [87].

The expression (6.11) leads us to adopt �̂R as an additional operator for the effective potential Veff.
Then, �̂R in the r.h.s. of (6.11) is simply replaced by its expectation value �R, and the reweighting
factor R is just a given function of P and �R in this case. We have

∂Veff

∂P
(P, �R;β, κ) = ∂V0

∂P
(P, �R;β0)− 6Nsite

(
β + 48Nfκ

4 − β0

)
, (6.13)

∂Veff

∂�R
(P, �R; κ) = ∂V0

∂�R
(P, �R)− 3N 3

s 2Nt+2 Nfκ
Nt, (6.14)

where V0 is the effective potential in the heavy quark limit (SU(3) pure gauge theory). The argument
β in ∂Veff/∂�R and ∂V0/∂�R is omitted in (6.14) since they are independent of β due to (6.7).
Note that, besides known overall constants [the last terms in (6.13) and (6.14)], the dependences of
∂Veff/∂P and ∂Veff/∂�R on P and �R are independent of β and κ .
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Fig. 11. The phase boundary separating the first-order transition region and crossover region in the (κud, κs)

plane at μ = 0 in the heavy-quark region [22].

Fig. 12. Contour plot of ∂V0/∂P (blue curves) and ∂V0/∂�R (red curves) at μ = 0 in the heavy-quark
region [23]. Values of β∗ = β + 48Nfκ

4 and κ for the corresponding curves of ∂Veff/∂P = 0 and
∂Veff/∂�R = 0 are also given.

Because �R represents the freedom of heavy-quark free energy, we expect it be sensitive to the
phase structure of the system. Around the first-order transition point, we will have a double-well
structure of Veff in the 2D plane (P, �R). To study the phase structure, it is useful to examine the
curves ∂Veff/∂P = 0 and ∂Veff/∂�R = 0. From (6.13) and (6.14), these curves at different (β, κ)
correspond to different contour curves of ∂V0/∂P and ∂V0/∂�R. A contour plot for ∂V0/∂P and
∂V0/∂�R is given in Fig. 12. When the curves ∂Veff/∂P = 0 and ∂Veff/∂�R = 0 cross at only one
point, we have just one minimum of Veff. In this case, we have no first-order transitions around
this (β, κ). On the other hand, when we have three intersection points, we have two minima and one
saddle point, implying the existence of the first-order transition. In particular, from the merger of three
intersection points, we can determine the critical point where the first-order transition line terminates.
From Fig. 12, we find that the S-shaped curve of ∂Veff/∂�R = 0 leads to three intersection points
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at small κ , and that the S-shape becomes weaker with increasing κ . A preliminary estimate for the
critical point is κcp ≈ 0.0690(7) [23], shown by the thick contour curves in Fig. 12. We are currently
testing a refinement of the method to extract smoother contour curves.

To examine the quality of the hopping parameter expansion, we have studied the effect of the next-
leading order terms in the evaluation of the critical point κcp (WHOT-QCD Collaboration, manuscript
in preparation and Ref. [85]). To this order, we need to incorporate κ6-loops with length six and
generalized Polyakov loops with length Nt + 2 in the quark determinant ratio. The effects of κ6-loops
may be absorbed by a shift of β. Examining the effects of generalized Polyakov loops, we find that κcp

only shifts by about 3% on the Nt = 4 lattice due to the next-leading order terms. We also find that the
contribution of the next-leading order terms becomes comparable to that of the leading order terms at
κ ∼ 0.18. Because κcp is much smaller than this, we conclude that the hopping parameter expansion
is well valid up to κ ∼ κcp. Accordingly, an estimation of the pseudoscalar meson mass around κcp

leads to mπ ≈ T/0.023 for N f = 2 [22], i.e., mπ ∼ 7–9 GeV with T ∼ Tpc ∼ 160–200 MeV. Thus,
κcp locates well in the heavy-quark region.

6.4. Results at μ �= 0 in the heavy-quark region

In order to extend the study to finite densities, we have to calculate the reweighting factor due to the
complex phase, 〈

ei θ̂
〉

P,�R
with θ̂ = 3N 3

s 2Nt+2 Nfλ�̂I, λ = κNt sinh (μ/T ) , (6.15)

where 〈· · · 〉P,�R is the expectation value at fixed P and �R in quenched QCD. When θ̂ fluctuates a
lot at large μ, a reliable estimation of 〈ei θ̂ 〉P,�R becomes difficult (the sign problem).8

Before evaluating 〈ei θ̂ 〉P,�R , let us consider the case of phase-quenched finite-density QCD, in
which the complex phase term is removed in the quark determinant. In two-flavor QCD, this cor-
responds to the case of the isospin chemical potential, μu = −μd ≡ μI . From (6.11), we find that,
after shifting β → β + 48Nfκ

4, the effects of μI are just to further shift κ → κ cosh1/Nt(μI /T ).
Therefore, we have

κ I
cp(μI ) = κcp(0)/ cosh1/Nt(μI /T ) (6.16)

for the critical point in the phase-quenched QCD to the lowest order of the hopping parameter expan-
sion, where κcp(0) is the critical point at μu = μd = 0. Note that, with increasing μI , the critical
point approaches κ = 0, where the hopping parameter expansion is reliable.

We now compute the effect of the phase. To evaluate 〈ei θ̂ 〉P,�R , we adopt the Gaussian approxima-
tion with the cumulant expansion [21,61] discussed in Section 4.3. In the heavy-quark region, we
study 〈θ̂2n〉c = (

3N 3
s 2Nt+2 Nfλ

)2n 〈�̂2n
I 〉c. We find that 〈θ̂2〉c � 〈θ̂4〉c around the critical point [23].

This confirms the validity of the Gaussian approximation. We thus have

∂Veff

∂P
= ∂V0

∂P
− 6Nsite

(
β + 48Nfκ

4 − β0

)
+ (3N 3

s 2Nt+2 Nfλ)
2

2

∂〈�̂2
I 〉c

∂P
, (6.17)

∂Veff

∂�R
= ∂V0

∂�R
− 3N 3

s 2Nt+2 Nfκ
Nt cosh

(μ
T

)
+ (3N 3

s 2Nt+2 Nfλ)
2

2

∂〈�̂2
I 〉c

∂�R
. (6.18)

8 If we could treat �̂I as a variable for Veff too, the reweighting factor 〈ei θ̂ 〉 is just a given function of �I

(or equivalently θ ). However, when the fluctuation in θ̂ is large, then it is difficult to determine a reliable Veff
unless quite a high statistics is accumulated. This is a rephrasing of the sign problem.
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Fig. 13. Critical surface separating the first-order transition and crossover regions in the heavy-quark
region. Left: The case μu = μd = μs ≡ μ. Right: The case that may be realized in heavy ion collisions:
μu = μd ≡ μud and μs = 0.

When the last term in (6.18) modifies the S-shape of the curve ∂Veff/∂�R = 0 shown in Fig. 12,
κcp(μ) deviates from κ I

cp(μ). By evaluating these quantities, however, we find that the contribution
of the last term in (6.18) is at most about 3% of the second term around κ I

cp(μ), even in the large
μ limit. Therefore, κcp(μ) is indistinguishable from κ I

cp(μ) within the current statistical errors [23]:

κcp(μ) ≈ κcp(0)/ cosh1/Nt(μ/T ). (6.19)

Generalization of this result to nondegenerate cases such as the 2 + 1 flavor QCD (μu = μd ≡ μud)

is straightforward:

2 [κud( �μ)]Nt cosh(μud/T )+ [κs( �μ)]Nt cosh(μs/T ) ≈ 2 [κNf=2
cp (0)]Nt . (6.20)

Critical surfaces for the symmetric caseμu = μd = μs ≡ μ and a more realistic case ofμu = μd ≡
μud and μs = 0, which may be realized in heavy ion collisions, are shown in Fig. 13.

6.5. Phase-quenched simulations towards the physical point

Our challenge is to apply the histogram method to explore the phase structure of finite-density QCD
in the light quark region. For the sake of notational simplicity, we consider the degenerate case in
this section too. Generalization to nondegenerate cases is straightforward.

When quarks are light, the Polyakov loop �̂ no longer plays a decisive role in the dynamics of
the system. We thus consider det M itself as the additional operator for the effective potential. det M
represents the freedom of quark internal energy, and thus should be sensitive to the phase structure of
the system. We denote the absolute value and the complex phase of the quark determinant as follows:

F̂(β, κ, μ) = Nf ln |det M(β, κ, μ)/ det M(β, κ, 0)|

= Nf

∫ μ

0
Re

[
∂ ln det M(β, κ, μ′)

∂μ′

]
dμ′, (6.21)

θ̂ (β, κ, μ) = Nf Im [ln det M(β, κ, μ)]

= Nf

∫ μ

0
Im

[
∂ ln det M(β, κ, μ′)

∂μ′

]
dμ′, (6.22)

where ∂(ln det M)/∂μ′ = tr[M−1(∂M/∂μ′)] can be evaluated by the random noise method dis-
cussed in Section 5.2. Note that θ̂ is uniquely defined in the range (−∞,∞), as discussed in
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Section 4.3. The distribution function and the effective potential for P and F are now given by

w(P, F;β, κ, μ) =
∫
DUδ(P̂ − P)δ(F̂ − F) ei θ̂ |det M(β, κ, μ)|Nf e6βNsite P̂

=
〈
ei θ̂

〉
(0:β,κ,μ);P,F

w0(P, F;β, κ, μ), (6.23)

Veff(P, F;β, κ, μ) = V0(P, F;β, κ, μ)− ln
〈
ei θ̂

〉
(0:β,κ,μ);P,F

, (6.24)

where w0 and V0 = − lnw0 are the distribution function and the effective potential for the phase-
quenched system, and the expectation value 〈ei θ̂ 〉(0:β,κ,μ);P,F is evaluated with fixed P and F in the
phase-quenched simulation.

In the following, let us consider a simpler case where the quark matrix M can be treated as inde-
pendent of β. For example, in a study of the phase structure at a particular value of β, we may treat β
in M as being fixed at that value. Physical properties such as the phase structure will not be affected
by this procedure9. Then, 〈ei θ̂ 〉(0:β,κ,μ);P,F becomes independent of β and can be evaluated at any β
to cover a wider range of P and F .

Because the phase-quenched simulations in two-flavor QCD correspond to the case of isospin
chemical potentials, a comment is in order about the influence of the pion-condensed phase that
exists at large isospin chemical potentials [88]. In the pion-condensed phase, 〈ei θ̂ 〉 is expected to
vanish by model studies [89,90]. According to (6.23), this means that the configurations in the pion-
condensed phase make no contributions to the physics of phase-unquenched QCD—w and Veff are
dominated by phase-quenched configurations out of the pion-condensed phase, and we only need to
generate configurations outside the pion-condensed phase. We test the method in two-flavor QCD
using the RG-improved Iwasaki gauge action (3.2) and the clover-improved Wilson quark action
(3.3). According to the footnote in Section 6.1, P̂ is identified as

P̂ = 1

6Nsite

∑
x

{∑
μ>ν

c0W 1×1
x,μν +

∑
μ,ν

c1W 1×2
x,μν

}
(6.25)

in the present case. We perform simulations at mπ/mρ ≈ 0.8 on an 83 × 4 lattice with a nonper-
turbatively estimated cSW. In the present study of the phase structure at each β, we treat cSW as a
constant independent of β.

In the left panel of Fig. 14, we show our results of V0 as a function of F (after integrating out P).
The results of simulations at three values of μ0/T are translated to μ/T = 2.0 using a reweighting
formula for V0 in the μ-direction:

V0(P, F;β, κ, μ) = V0(P, F;β, κ, μ0)− ln R0(P, F; κ, μ,μ0) (6.26)

R0(P, F; κ, μ,μ0)
def= w0(P, F;β, κ, μ)
w0(P, F;β, κ, μ0)

=
∫DUδ(P̂ − P)δ(F̂ − F) | det M(κ, μ)|Nf e6βNsite P̂∫DUδ(P̂ − P)δ(F̂ − F) | det M(κ, μ0)|Nf e6βNsite P̂

9 When we calculate observables as functions of β, we need to incorporate the effects from the β-dependence
in M . See [91] as a trial to incorporate the β dependence of cSW in the reweighting factor.
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Fig. 14. Results of phase-quenched simulations in two-flavor QCD with RG-improved gauge action at
β = 1.5 [24]. Left: The effective potential V0(F) at μ/T = 2.0 evaluated at three different simulation points.
Right: The distribution of the phase of the quark determinant at μ/T = 2.4. The dashed curves are the fitted
results with the Gaussian function. Bθ4 is the fourth-order Binder cumulant normalized such that Bθ4 = 3 for
the Gaussian function.

=
∫DUδ(P̂ − P)δ(F̂ − F) | det M(κ, μ)|Nf∫DUδ(P̂ − P)δ(F̂ − F) | det M(κ, μ0)|Nf

=
〈∣∣∣∣ det M(κ, μ)

det M(κ, μ0)

∣∣∣∣
Nf

〉
(0:κ,μ0);P,F

, (6.27)

where R0 is not dependent on β. From this figure, we confirm that the data obtained at different
simulation points form a smooth V0. We can thus obtain precise V0 over a wide range of F .

To calculate 〈ei θ̂ 〉(0:κ,μ);P,F , we adopt the cumulant expansion method. A typical result for the dis-
tribution of θ is shown in the right panel of Fig. 14. We find that the distribution is well approximated
by a Gaussian function. We also note that the second-order cumulant increases with increasing μ,
while the fourth-order cumulant is consistent with zero within the statistical error, though the statis-
tical error increases with μ [24]. Therefore, the cumulant expansion is well controlled by the leading
term and we may reliably evaluate the complex phase factor even at these relatively high values of
μ. A project towards clarification of the phase structure at the physical point is currently underway.

7. Heavy-quark free energy

Finally, we study the heavy-quark free energies and screening masses in QGP. The free energies for
a static quark–antiquark and two static quarks characterize the inter-quark interactions in QGP, and
their Debye screening masses describe the thermal fluctuation of quarks and gluons in QGP. In a
phenomenological model, they are relevant to the fate of heavy-quark bound states such as J/ψ
and ϒ in QGP created in relativistic heavy-ion collisions at RHIC and LHC [92,93]. On the lattice,
studies in quenched QCD [94–99] and in full QCD with staggered-type quark actions [100–102]
or Wilson-type quark actions [21,27–29,103] have been made. Comparisons with analytic studies
[104,105] have also been attempted.

Heavy-quark free energies on the lattice are defined through the correlation functions of the local

Polyakov line operator �̂(x)
def= ∏Nt

τ=1 U(x,τ ),4. Note that the trace over the color indices is not taken
in �̂(x). With gauge-fixing, we define the free energy F R in various color channels R [106,107]:

e−F1(r,T,μ)/T = 1

3
〈Tr�̂†(x)�̂(y)〉, (7.1)
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Fig. 15. Heavy-quark free energies in two-flavor QCD for color singlet and octet Q Q channels (left) and
color antitriplet and sextet Q Q channels (right) obtained at mπ/mρ = 0.65 on a 163 × 4 lattice [27]. The free
energies are normalized such that they vanish at large distances.

e−F8(r,T,μ)/T = 1

8
〈Tr�̂†(x)Tr�̂(y)〉 − 1

24
〈Tr�̂†(x)�̂(y)〉, (7.2)

e−F6(r,T,μ)/T = 1

12
〈Tr�̂(x)Tr�̂(y)〉 + 1

12
〈Tr�̂(x)�̂(y)〉, (7.3)

e−F3∗
(r,T,μ)/T = 1

6
〈Tr�̂(x)Tr�̂(y)〉 − 1

6
〈Tr�̂(x)�̂(y)〉, (7.4)

where r = |x − y|, and R = 1 for the color singlet Q Q channel, 8 for the color octet Q Q channel, 3∗

for the color antitriplet Q Q channel, and 6 for the color sextet Q Q channel, respectively. To preserve
the free energy interpretation of F R by transfer matrix theory, the gauge-fixing procedure should not
include temporal links. We thus adopt the Coulomb gauge.

Above Tpc, we also introduce normalized free energies V R , whose constant terms are adjusted such
that they vanish at large distances r → ∞. This is equivalent to defining the free energies by dividing
the r.h.s. of Equations. (7.1)–(7.4) by 〈Tr�̂(x)〉2.

7.1. Heavy-quark free energies in two-flavor QCD

We first compute the free energies (7.1)–(7.4) in two-flavor QCD at zero and finite densities [27]. We
consider the caseμu = μd = μ. We use the gauge configurations generated for the studies discussed
in Section 5. As mentioned in Section 5.3, the configurations were generated on a 163 × 4 lattice on
LCPs corresponding to mπ/mρ = 0.65 and 0.80. We thus adopt the fixed-Nt approach for this study.

7.1.1. Heavy-quark free energies at μ = 0 in two-flavor QCD. The heavy-quark free energies at
μ = 0 are shown in Fig. 15 for mπ/mρ = 0.65 and T ≥ Tpc. The results for mπ/mρ = 0.80 are
similar. We find that the inter-quark interaction is “attractive” in the color singlet and antitriplet
channels and is “repulsive” in the color octet and sextet channels. We also see that, irrespective of
the channels, the inter-quark interaction rapidly becomes weak at long distances as T increases, as
expected from the Debye screening at high temperatures.

We find that the heavy-quark free energies in the high-temperature phase are well described by the
screened Coulomb form,

V R(r, T ) = CR
αeff(T )

r
e−mD(T ) r , (7.5)

where αeff(T ) and mD(T ) are the effective running coupling and Debye screening mass, respectively.
From the fits, we note that the color-channel dependence of the free energies can be absorbed by the
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Fig. 16. The effective running coupling αeff(T ) (left) and Debye screening mass mD(T ) (right) in two-flavor
QCD, obtained at mπ/mρ = 0.65 on a 163 × 4 lattice [27].

Fig. 17. Taylor coefficients for heavy-quark free energies in two-flavor QCD, obtained at mπ/mρ = 0.65 on a
163 × 4 lattice [21]. Left: vR

2 for color singlet and octet Q Q channels. Right: vR
1 for color antitriplet and sextet

Q Q channels.

kinematical Casimir factor inspired by the lowest-order perturbation theory:

C1 = −4

3
, C8 = 1

6
, C6 = 1

3
, C3∗ = −2

3
, (7.6)

This Casimir dominance at high temperatures has also been reported in quenched studies using the
Lorentz gauge [95,96]. With the Casimir factors, αeff(T ) and mD(T ) are universal to all color chan-
nels, as shown in Fig. 16. The magnitude and the T -dependence of the Debye mass are also consistent
with the next-to-leading-order thermal perturbation theory [27].

7.1.2. Heavy-quark free energies at μ �= 0 in two-flavor QCD. The Taylor expansion of V R with
respect to μq/T is given by

V R(r, T, μq) = vR
0 (r, T )+ vR

1 (r, T )
(μq

T

)
+ vR

2 (r, T )
(μq

T

)2 + O(μ3), (7.7)

where concrete forms of the Taylor coefficients vR
n are given in Ref. [21].

The color singlet and octet channels do not have odd orders in the Taylor expansion since the Q Q̄
free energies are invariant under the charge conjugation. vR

0 is the normalized free energy at μ = 0
shown in Fig. 15. The results for the lowest nontrivial order are shown in Fig. 17. See Ref. [21] for
higher orders as well as those at mπ/mρ = 0.80. From these figures, we find that, both around Tpc

and at higher temperatures, the sign of vR
1 is the same as that of vR

0 , whereas the sign of vR
2 is the
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Fig. 18. Free energies of static quarks in 2 + 1 flavor QCD at finite temperatures with the fixed-scale
approach [29]. The scale was set by the Sommer scale r0 = 0.5 fm. Left: Bare free energy in the color sin-
glet channel. The static quark–antiquark potential V (r) at T = 0 has been calculated by the CP-PACS and
JLQCD Collaborations [38]. The fit result of V (r) by the Coulomb + linear form is shown by the dashed gray
curve. The arrows on the right side denote twice the single-quark free energy 2FQ . Right: Normalized free
energies for color singlet and octet Q Q̄ channels.

opposite of that of vR
0 :

vR
1 · vR

0 > 0 (only for Q Q free energies), vR
2 · vR

0 < 0. (7.8)

Because vR
1 is absent for Q Q̄ free energies, this means that, in the leading-order of μq , the inter-

quark interaction between Q and Q̄ becomes weak at finiteμq , while that between Q and Q becomes
strong. In other words, Q Q̄ (Q Q) free energies are screened (antiscreened) by the internal quarks
induced at finite μq .

Taylor expansion coefficients for αeff(T, μ) and m D(T, μ) can be computed similarly. We find that
the leading correction in m D(T, μ) due to finite μ is larger than the prediction from leading-order
thermal perturbation theory [21].

7.2. Heavy-quark free energies in 2 + 1 flavor QCD

We now extend the study to the more realistic 2 + 1 flavor QCD [29,44]. As discussed in Section 3,
we adopt the fixed-scale approach for 2 + 1 flavor QCD. We thus vary T by varying Nt with fixed
coupling parameters. We use the finite-temperature configurations generated in Section 3 to compute
the heavy-quark free energies at mπ/mρ 
 0.63 and mηss/mφ 
 0.74. In this study of 2 + 1 flavor
QCD, we restrict ourselves to the case μ = 0.

A good feature of the fixed-scale approach is that the renormalization factors, which are determined
on a zero-temperature lattice depending on the coupling parameters, are common to all T in the
fixed-scale approach, because the coupling parameters are fixed for all T . This is also the case for
the heavy-quark free energies. Therefore, we can directly compare the bare free energies at different
T in the fixed-scale approach.

Our results for the bare free energies are shown in the left panel of Fig. 18. Plotted are the data
for the color singlet Q Q̄ channel at various T in the high-temperature phase, together with the zero-
temperature static quark–antiquark potential V (r) defined by the Wilson loop operator:

V (r) = − lim
�→∞

[
�−1 ln

〈
W r×�

i4

〉]
. (7.9)

We find that singlet free energy F1(r, T ) at any T converges to V (r) at short distances. This is in
accordance with the expectation that the short-distance physics is insensitive to temperature. With
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the fixed-scale approach, we directly confirm that the theoretical expectation is actually satisfied on
the lattice.10

At large distances, F1(r, T ) departs from V (r) and eventually becomes flat due to Debye screening.
On the right edge of the left panel of Fig. 18, we show twice the single-quark free energy defined by
2FQ = −2T ln〈Tr�(x)〉 at each T by arrows of the same color. We confirm that F1(r, T ) converges
to 2FQ(T ) quite accurately.

By subtracting 2FQ , we obtain the normalized free energies shown in the right panel of Fig. 18 for
the Q Q̄ channels. See [29] for the results for the Q Q channels. Performing fits with the screened
Coulomb form (7.5), we confirm the Casimir dominance (7.6), as in the case of two-flavor QCD.

7.3. Gauge-independent screening masses

The Debye screening masses and the effective couplings computed in the previous subsections are
dependent on the choice of the gauge. Therefore, their physical meanings are not quite clear. In
Ref. [28], we have proposed a gauge-independent definition of screening masses for electric and
magnetic channels.

Under the Euclidean time-reflection R and the charge conjugation C, the gluon fields transform as

Ai (τ, x)
R−→ Ai (−τ, x), A4(τ, x)

R−→ −A4(−τ, x), Aμ(τ, x)
C−→ −A∗

μ(τ, x). (7.10)

We call an operator magnetic (electric) if it is even (odd) under R. It is natural to extract magnetic
and electric properties by decomposing observables using these symmetries [110].

Under these transformations, the Polyakov line operator �̂(x) transforms as

�̂(x)
R−→ �†(x), �̂(x)

C−→ �∗(x). (7.11)

A magnetic (electric) Polyakov line operator can be defined as the R-even (R-odd) part of �̂(x),

�̂M(x) ≡ 1

2

(
�̂(x)+ �̂†(x)

)
, �̂E(x) ≡ 1

2

(
�̂(x)− �̂†(x)

)
, (7.12)

which can be further decomposed into C-even and odd parts as

�̂M±(x) ≡ 1

2

(
�̂M(x)± �̂∗

M(x)
)
, �̂E±(x) ≡ 1

2

(
�̂E(x)± �̂∗

E(x)
)
, (7.13)

where ± stands for even or odd under C. Note that Tr�̂M− = Tr�̂E+ = 0 and Tr�̂M+ (Tr�̂E−) is
nothing but the real (imaginary) part of Tr�̂.

Then the magnetic (electric) screening mass is extracted from the long-distance behavior of
generalized gauge-invariant Polyakov loop correlation functions,

CM+(r, T ) ≡
〈
Tr�̂M+(x)Tr�̂M+(y)

〉
−

∣∣∣〈Tr�̂〉
∣∣∣2 −−−→

r→∞ A
e−mM+(T ) r

rT
,

CE−(r, T ) ≡
〈
Tr�̂E−(x)Tr�̂E−(y)

〉
−−−→
r→∞ B

e−mE−(T ) r

rT
, (7.14)

10 In the case of the conventional fixed-Nt approach, a different renormalization factor is required at each
T . In early studies, insensitivity at short distances was just assumed and used to adjust the constant term of
F1(r, T ) at different T [97,100]. In more recent studies, the renormalization factors are computed by a series
of zero-temperature simulations at the same coupling parameters as the finite temperature simulations. See,
e.g., Ref. [108,109].
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Fig. 19. Comparison [28] of the screening ratio, mE−/mM+, with predictions in the dimensionally-reduced
effective field theory (3D-EFT) [111] and N = 4 supersymmetric Yang–Mills theory [112].

where r = |x − y| and 〈Tr�̂〉 is real due to the C symmetry. Note that the conventional gauge-
invariant Polyakov loop correlation function is given by

C�(r, T ) ≡
〈
Tr�̂†(x)Tr�̂(y)

〉
−

∣∣∣〈Tr�̂〉
∣∣∣2 = CM+(r, T )− CE−(r, T ). (7.15)

Using the configurations generated for [27], we computed these screening masss in two-flavor
QCD in the high-temperature phase. We find that (i) CM+ and CE− have opposite signs, and (ii)
CM+ has larger magnitude and longer range than CE− at long distances. The latter implies that
the the conventional C� is dominated by the magnetic sector at long distances, and thus m�(T ) 

mM+(T ). We also find that mM+(T ) < mE−(T ). A comparison with dimensionally-reduced effective
field theory [111] and N = 4 supersymmetric Yang–Mills theory with anti de Sitter/conformal field
theory correspondence [112] lead to good agreements of mE−/mM+ for 1.5 < T/Tpc < 3, as shown
in Fig. 19 [28]. Further study is needed to clarify the meanings and implications of these results.

8. Summary

The WHOT-QCD Collaboration is pushing forward a series of projects to clarify the phase struc-
ture and thermodynamic properties of QCD matter at finite temperatures and densities, mainly using
improved Wilson quarks. Wilson-type quarks do not have the theoretical lack of clarity of staggered-
type quarks, but require more computational resources. Thus, development and application of various
computational techniques are mandatory. We have developed a T -integration method to calculate the
equation of state in the fixed-scale approach, a Gaussian method based on the cumulant expansion to
tame the sign problem, and a histogram method combined with the reweighting technique to explore
the phase structure of QCD. Using them, we have made a series of studies in QCD at finite temper-
atures and densities with improved Wilson quarks. In particular, we have carried out the first study
of finite-density QCD with two flavors of Wilson quarks and the first calculation of the equation of
state with 2 + 1 flavors of Wilson quarks. We are currently extending the studies towards our final
objective of 2 + 1 flavor QCD directly at the physical point.
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