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Abstract. This paper is concerned about the aggregation function which plays a central

role in the majority judgement that was recently proposed by Balinski and Laraki as a

new voting mechanism. We raise two issues about their aggregation function, named order

function, and show that they are resolved by relaxing the strong monotonicity condition

imposed on the aggregation function, and that the anonymous, weakly monotonic and

strategy-proof aggregation function is completely determined by the set of final grades

when the judges split deeply.

1. Introduction

The problem we consider is how to determine the final grade of an alternative based on
the grades reported by a number of judges. Let N = {1, 2, . . . , n} denote the set of judges,
or a jury. Each judge reports a grade by choosing one out of m approved words, which
is called the common language and will be denoted by Λ = {λ1, λ2, . . . , λm}. We assume
that Λ is an ordered set with respect to ! such that λ1 ≺ λ2 ≺ · · · ≺ λm. For the sake
of simplicity, we will denote the minimum element λ1 and the maximum element λm by α

and ω, respectively. This paper is concerned about the aggregation function f defined as
follows.

Definition 1.1 (Aggregation function). A function f that provides a grade f(x) ∈ Λ for
the grades x = (x1, x2, . . . , xn) ∈ ΛN reported by the jury N , i.e., f : ΛN → Λ, is called an
aggregation function.

Aggregation function plays a central role in the majority judgment that was proposed
by Balinski and Laraki as a new voting mechanism in [1, 2]. Let M denote the set of m

alternatives or candidates. Each judge reports a grade to each alternative, which is brought
together to an m × n matrix of grades. This matrix is called a profile. The social grading
function is a function that assigns to each profile an m-dimensional vector consisting of
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2 Y. YAMAMOTO AND Y. ZHOU

grades. If we assume the neutrality and the independence of irrelevant alternatives, we
readily see that the grade assigned to alternative i is given by an aggregation function
whose input is the ith row of the profile. See Chapter 9 of [2]. Thus the point of discussion
moves on to the aggregation function defined in Definition 1.1.

In this paper we first introduce the conditions that Balinski and Laraki imposed on the
aggregation function and then raise two issues of their order function in Section 2 and 3.
After giving several preliminary lemmas in Section 4, relaxing the conditions, we show the
uniqueness of the aggregation function in Section 5. We also discuss the reduction of the
parameters of the function and the recovery of the unanimity. Section 6 is devoted to the
relationship between the aggregation function and Balinski and Laraki’s order function.

2. Fundamental Conditions

Among conditions that aggregation functions should satisfy, the following two should be
the most fundamental.

Definition 2.1 (Anonymity). The aggregation function f is said to be anonymous if

f(x1, x2, . . . , xn) = f(xτ(1), xτ(2), . . . , xτ(n))

for any (x1, x2, . . . , xn) ∈ ΛN and for any permutation τ on N .

Definition 2.2 (Weak Monotonicity). The aggregation function f is said to be weakly
monotonic if xi ! x′

i for all i ∈ N implies f(x1, x2, . . . , xn) ! f(x′
1, x

′
2, . . . , x

′
n).

Anonymity means that the name of judges does not matter, and weak monotonicity means
that better grades reported by the jury can yield a better outcome. Throughout this paper
we assume that the aggregation function is anonymous and weakly monotonic.

3. Conditions of Balinski and Laraki

Balinski and Laraki [2] required the aggregation function to meet three more conditions.
Two of them are strong monotonicity and unanimity defined as follows.

Definition 3.1 (Strong Monotonicity). The aggregation function f is said to be strongly
monotonic if xi ≺ x′

i for all i ∈ N implies f(x1, x2, . . . , xn) ≺ f(x′
1, x

′
2, . . . , x

′
n).

Definition 3.2 (Unanimity). The aggregation function f is said to be unanimous if f(x, x,

. . . , x) = x for any x ∈ Λ.

To explain the last condition they required, we first define the manipulability of f . Here
we write

x/i x
′ = (x1, . . . , xi−1, x

′, xi+1, . . . , xn)

for x = (x1, . . . , xi−1, xi, xi+1, . . . , xn) ∈ ΛN and x′ ∈ Λ.
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Definition 3.3 (Manipulability). The aggregation function f is said to be manipulable by
judge i ∈ N at x ∈ ΛN if there exists a grade x′ ∈ Λ such that

f(x)

{
≺
&

}
f(x/i x

′) when f(x)

{
≺
&

}
xi. (3.1)

The statement (3.1) means that the final grade f(x) is worse (better) than judge i’s
grade xi, which gives him/her an incentive to raise (lower) the final grade in some way,
and he/she will gain by misreporting his/her evaluation. If the aggregation function admits
such manipulation, judges would be tempted to misreport their evaluations, thereby the
credibility of the voting mechanism would be undermined. The last condition that Balinski
and Laraki imposed on the aggregation function is the strategy-proofness.

Definition 3.4 (Strategy-proofness). The aggregation function f is said to be strategy-proof
when it is not manipulable by any judge at any x ∈ ΛN .

A natural question would be what the aggregation function is like when it satisfies the
conditions listed so far. Balinski and Laraki showed that it is the order function.

Definition 3.5 (Order Function). For k ∈ {1, 2, . . . , n}, the kth order function is the
function that gives the kth lowest grade among n grades reported by the jury.

The kth oder function permutes the input grades in ascending order as xi1 ! xi2 ! · · · !
xin and returns the grade xik in the kth position. This definition is different from that in
Chapter 10 of Balinski and Laraki [2], where they put the grades in descending order.

Theorem 3.6 (Theorem 10.1 in Balinski and Laraki [2]). The unique aggregation function
satisfying anonymity, weak monotonicity, strong monotonicity, unanimity, and strategy-
proofness is the kth order function for some k ∈ {1, 2, . . . , n}.

For the sake of discussion in the succeeding sections, we point out that the unanimity
condition is redundant in Balinski and Laraki’s framework.

Lemma 3.7. A strongly monotonic aggregation function is unanimous.

Proof. By the strong monotonicity we have

f(λ1, λ1 . . . , λ1) ≺ f(λ2, λ2, . . . , λ2) ≺ · · · ≺ f(λm, λm, . . . , λm),

all of which belong to Λ = {λ1, λ2, . . . , λm}. Therefore f(λk, λk . . . , λk) = λk for k ∈
{1, 2, . . . ,m}. !

Although the kth oder function is the unique aggregation function that satisfies anonymity,
weak monotonicity, strong monotonicity and strategy-proofness, there remain two issues to
settle.

The first issue is concerning the number k. As Theorem 3.6 states, the kth order function
meets all the desired conditions regardless of the value of k. Some convincing discussion
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about which number to select is needed. Balinski and Laraki defined the middlemost order
function as

f(x1, x2, . . . , xn)





= x(n+1)/2 when n is odd

∈ [xn/2, xn/2+1] when n is even,

where xi’s are assumed to be put in ascending order. They showed in Chapter 12 of [2] that
it minimizes the probability of cheating as well as maximizes the social welfare. When n

is even, there still remains the problem of which of xn/2 and xn/2+1 should be chosen. See
also their definition of majority grade in the same chapter.

The second issue is that the order function always singles out a grade among those given
by the judges, i.e.,

f(x1, x2, . . . , xn) ∈ {x1, x2, . . . , xn},

no matter how they may split. Even when half of the judges give α and the other half give
ω, the oder function provides either α or ω, not any grade in between.

Moulin’s paper [3] on the facility location problem provides a clue about how to resolve
these issues. He assumed that each inhabitant in a one-dimensional city has his/her single-
peaked utility function, and considered the location problem of a public institution. He
showed that his generalized majority relation is the unique function that satisfies some de-
sirable conditions: anonymity, weak monotonicity, Pareto-efficiency and strategy-proofness.
The generalized majority relation is a median of the real numbers that inhabitants reported
as the peaks of their utility functions as well as several fixed real numbers, which he named
phantom voters. See also Definition 11.6 and Theorem 11.6 of Moulin [4]. His work is
based on the premise that each inhabitant has a single-peaked utility function, however
careful reading of his work suggested a possible application of his discussion to Balinski and
Laraki’s framework with the common language consisting of a finite number of grades. In
the following sections we will show that relaxing some of the conditions that Balinski and
Laraki required resolves the two issues raised above.

4. Preliminary Lemmas

The median function defined below plays an essential role in our discussion.

Definition 4.1 (Median). Let r = (r1, r2, . . . , r2k+1) be a vector of an odd number of grades
of Λ. The (k + 1)st lowest grade of r1, r2, . . . , r2k+1 with respect to the oder ! defined on
Λ is called their median and denoted by med(r1, r2, . . . , r2k+1) or med(r).

The following lemma is straightforward from the definition of median.

Lemma 4.2. Let r = (r1, r2, . . . , r2k+1) be a vector of an odd number of grades of Λ.

(1) If med(r) ≺ ri, then med(r/i r′) = med(r) for all r′ ∈ Λ such that med(r) ! r′.
(2) If med(r) & ri, then med(r/i r′) = med(r) for all r′ ∈ Λ such that med(r) ' r′.
(3) If r′ ! med(r) ! r′′, then med(r′, r, r′′) = med(r).
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As will be shown in Lemma 6.1, strong monotonicity in Definition 3.1 is the most sig-
nificant source of the issues. Therefore we assume only anonymity, weak monotonicity
and strategy-proofness. The following lemma shows that the median function with several
phantom grades, which are denoted by γ therein, satisfies all the conditions that we assume.

Lemma 4.3. Let the aggregation function f : ΛN → Λ be defined by

f(x) = med (x,γ) ,

for arbitrarily fixed, not necessarily distinct, grades γ0, γ1, · · · , γk of Λ, where n + k is
assumed to be an odd number. Then f is anonymous, weakly monotonic and strategy-proof.

Proof. The anonymity and weak monotonicity of f are clear.
To prove the strategy-proofness, suppose that f(x) ≺ xi, i.e., judge i has an incentive

to raise the final grade at x ∈ ΛN . For x′
i ∈ Λ such that x′

i ! xi, we readily see that
f(x/i x′

i) = med(x/i x′
i, γ) ! med(x, γ) = f(x) by the weak monotonicity of median. By

(1) of Lemma 4.2 we see that replacing xi by x′
i & xi will not affect the median, i.e.,

f(x/i x′
i) = med(x/i x′

i,γ) = med(x, γ) = f(x). Thus f admits no strategic manipulation.
The proof when f(x) & xi will be done in the same way. !

Now consider the case of a single judge, i.e., |N | = 1. Recall that α = λ1 = min# Λ and
ω = λm = max# Λ.

Lemma 4.4. Suppose |N | = 1 and let f : Λ → Λ be a weakly monotonic aggregation
function. Then f is strategy-proof if and only if

f(x) = med (x, f(α), f(ω)) (4.1)

for all x ∈ Λ.

Proof. The “if” part follows Lemma 4.3. To show the “only if” part we will consider the
three cases: f(x) = x, f(x) ≺ x and f(x) & x.

Firstly, suppose f(x) = x. Then by the weak monotonicity we have f(α) ! f(x) = x !
f(ω). This means f(x) = med(x, f(α), f(ω)).

Secondly, suppose f(x) ≺ x. Since f is strategy-proof, even ω cannot raise the final grade,
i.e., f(ω) ! f(x), which together with the weak monotonicity implies f(ω) = f(x). Then
we obtain f(α) ! f(ω) = f(x) ≺ x. This means f(x) = med(x, f(α), f(ω)).

When f(x) & x, we can prove in the same way as above. !

5. Uniqueness of Aggregation Function

5.1. Main Result. We will prove the main theorem stating that an anonymous, weakly
monotonic and strategy-proof aggregation function f : ΛN → Λ is given as

f(x1, x2, . . . , xn) = med
(
x1, x2, . . . , xn, γ0, γ1, . . . , γn

)

for some n + 1 grades γ0, γ1 . . . , γn ∈ Λ. The proof will be based on the induction over
the size n of the jury N . Note that we have proved the assertion when |N | = n = 1 in
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Lemma 4.4 with γ0 = f(α) and γ1 = f(ω). Now let λk be a vector consisting of n − k of
grade α and k of grade ω, i.e.,

λk = (α, . . . , α︸ ︷︷ ︸
n−k

, ω, . . . , ω︸ ︷︷ ︸
k

) ∈ ΛN for k ∈ {0, 1, . . . , n}. (5.1)

Theorem 5.1. Suppose that the aggregation function f : ΛN → Λ satisfies anonymity, weak
monotonicity and strategy-proofness. Let γ = (γ0, γ1, . . . , γn) be an (n+1)-vector consisting
of

γk = f(λk) for k ∈ {0, 1, . . . , n}. (5.2)

Then
f(x) = med

(
x, γ

)
(5.3)

holds for all x ∈ ΛN .

Proof. Since we have seen in Lemma 4.4 that (5.2) and (5.3) hold when |N | = n = 1, we
assume as the induction hypothesis that an anonymous, weakly monotonic, and strategy-
proof aggregation function defined on ΛN is given by (5.3) together with (5.2). We then add
a judge named 0 to the jury N and consider an aggregation function f defined on Λ{0}∪N .

Firstly, for each x0 ∈ Λ, let τx0 : ΛN → Λ be

τx0(x) = f(x0, x).

It is clear that τx0 is anonymous, weakly monotonic, and strategy-proof as well. According
to the induction hypothesis, τx0(x) is given by (5.3), i.e.,

τx0(x) = med
(
x, γ0(x0), γ1(x0), . . . , γn(x0)

)

for all x ∈ ΛN , where by (5.2)

γk(x0) = τx0(λ
k) = f(x0, λ

k) for k ∈ {0, 1, . . . , n}.

The argument x0 in parentheses indicates the dependence of γk on x0. Therefore we see
that

f(x0, x) = med
(
x, f(x0, λ

0), f(x0, λ
1), . . . , f(x0,λ

n)
)

(5.4)

holds for all (x0,x) ∈ Λ{0}∪N .
Secondly, for each x ∈ ΛN let σx : Λ → Λ be defined by

σx(x0) = f(x0, x).

It is anonymous, weakly monotonic, and strategy-proof as well. Hence by Lemma 4.4 σx(x0)
is given as

σx(x0) = med
(
x0, γ0(x), γ1(x)

)

for all x0 ∈ Λ, where by (5.2)

γ0(x) = σx(α) = f(α,x) and γ1(x) = σx(ω) = f(ω, x).



CHARACTERIZATION OF AGGREGATION FUNCTIONS 7

Therefore

f(x0, x) = med
(
x0, f(α, x), f(ω, x)

)

holds for all (x0,x) ∈ Λ{0}∪N . Especially we see that

f(x0, λ
k) = med

(
x0, f(α, λk), f(ω, λk)

)
for k ∈ {0, 1, . . . , n}. (5.5)

Substituting (5.5) for f(x0, λ
k) of (5.4) we have

f(x0, x) = med





x,

med
(
x0, f(α,λ0), f(ω, λ0)

)
,

med
(
x0, f(α,λ1), f(ω, λ1)

)
,

...
med

(
x0, f(α,λn), f(ω, λn)

)




.

For k ∈ {0, 1, . . . , n − 1} the vector (ω, λk) is a permutation of the vector (α,λk+1), hence
by the anonymity of f we have

f(ω, λk) = f(α, λk+1) for k ∈ {0, 1, . . . , n − 1}.

Now let

λ(k) = (α,λk) = (α, . . . , α︸ ︷︷ ︸
n+1−k

, ω, . . . , ω︸ ︷︷ ︸
k

)

γ(k) = f(λ(k))
for k ∈ {0, 1, . . . , n},

λ(n+1) = (ω, λn) = (ω, ω, . . . , ω︸ ︷︷ ︸
n+1

)

γ(n+1) = f(λ(n+1)).

Note that

γ(0) ! γ(1) ! · · · ! γ(n) ! γ(n+1). (5.6)

Then we finally obtain that

f(x0,x) = med





x,

med
(
x0, γ(0), γ(1)

)
,

med
(
x0, γ(1), γ(2)

)
,

...
med

(
x0, γ(n), γ(n+1)

)




. (5.7)

To simplify the composite of median functions (5.7), we consider the following three cases
concerning the location of x0.

Case 1: x0 ! γ(0).
We readily see from (5.6)

med
(
x0, γ(k), γ(k+1)

)
= γ(k) for k ∈ {0, 1, . . . , n}.
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Hence by (5.7)

f(x0, x) = med
(
x, γ(0), γ(1), . . . , γ(n)

)
.

Since there are n+1 of γ(k)’s, and n of xk’s, γ(0) ! med
(
x, γ(0), γ(1), . . . , γ(n)

)
! γ(n)

holds. Then by (3) of Lemma 4.2 adding x0 satisfying x0 ! γ(0) and γ(n+1) satisfying
γ(n) ! γ(n+1) does not change the median. Hence we obtain

f(x0, x) = med
(
x0, x, γ(0), γ(1), . . . , γ(n), γ(n+1)

)
.

Case 2: γ(n+1) ! x0.
In the same way as above we obtain

med
(
x0, γ(k), γ(k+1)

)
= γ(k+1) for k ∈ {0, 1, . . . , n},

then by (5.7)

f(x0, x) = med
(
x, γ(1), γ(2), . . . , γ(n+1)

)
.

We then have γ(0) ! γ(1) ! med
(
x, γ(1), γ(2), . . . , γ(n+1)

)
! γ(n+1) ! x0, hence

adding γ(0) and x0 does not change the median, i.e.,

f(x0, x) = med
(
x0, x, γ(0), γ(1), γ(2), . . . , γ(n+1)

)
.

Case 3: γ(l) ≺ x0 ! γ(l+1) for some l such that 0 ≤ l ≤ n.
We have

med
(
x0, γ(k), γ(k+1)

)
= γ(k+1) for k ∈ {0, 1, . . . , l − 1},

med
(
x0, γ(l), γ(l+1)

)
= x0,

med
(
x0, γ(k), γ(k+1)

)
= γ(k) for k ∈ {l + 1, . . . , n}.

Then by (5.7)

f(x0, x) = med
(
x0, x, γ(1), . . . , γ(l), γ(l+1), . . . , γ(n)

)
.

Note that γ(1) is a minimal element and γ(n) is a maximal element among n + 1
elements γ(1), . . . , γ(l), x0, γ(l+1), . . . , γ(n). Therefore γ(0) ! γ(1) ! med

(
x0, x, γ(1),

. . . , . . . , γ(n)

)
! γ(n) ! γ(n+1), hence adding γ(0) and γ(n+1) does not change the

median.

Thus we have seen that

f(x0, x) = med
(
x0, x, γ(0), γ(1), . . . , γ(n+1)

)

holds in all cases, and completed the proof. !

Corollary 5.2. An aggregation function f : ΛN → Λ satisfies the anonymity, weak mono-
tonicity and strategy-proofness if and only if

f(x) = med
(
x, γ

)

for some γ = (γ0, γ1, . . . , γn) ∈ Λn+1.
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Proof. Straightforward from Lemma 4.3 and Theorem 5.1. !

5.2. Reduction of Phantom Grades. When the aggregation function has some other
properties, we can reduce the number of the phantom grades γ0, γ1, . . . , γn.

Definition 5.3 (Unanimity at Ends). The aggregation function f is said to be unanimous
at ends when

f(α, α, . . . , α) = α and f(ω, ω, . . . , ω) = ω

hold.

Corollary 5.4. Let f : ΛN → Λ be an anonymous, weakly monotonic and strategy-proof
aggregation function. Then it is unanimous if and only if it is unanimous at ends.

Proof. The necessity is trivial. By Theorem 5.1 we have f(x) = med
(
x,γ

)
with γk = f(λk)

for k ∈ {0, 1, 2, . . . , n}. If we assume that f is unanimous at ends, then γ0 = f(λ0) =
f(α, α, . . . , α) = α and γn = f(λn) = f(ω, ω, . . . , ω) = ω. Therefore f(x) = med

(
x, γ

)
=

med
(
x, α, γ1, . . . , γn−1, ω

)
= med

(
x, γ1, . . . , γn−1

)
. When x = (x, x, . . . , x) for some x ∈ Λ,

we then see that f(x, x, . . . , x) = med(x, x, . . . , x︸ ︷︷ ︸
n

, γ1, . . . , γn−1︸ ︷︷ ︸
n−1

) = x, the unanimity of f . !

Corollary 5.5. Let f : ΛN → Λ be an anonymous, weakly monotonic and strategy-proof
aggregation function. If f is unanimous at ends or strongly monotonic, there are n − 1
phantom grades γ = (γ1, γ2, . . . , γn−1) ∈ Λn−1 such that

f(x) = med
(
x, γ

)

holds for all x ∈ ΛN .

Proof. If f is unanimous at ends or strongly monotonic, we see that f(α, α, . . . , α) = α and
f(ω, ω, . . . , ω) = ω. See Lemma 3.7. Then γ0 = α and γn = ω, hence med

(
x, γ0, γ1, . . . ,

γn−1, γn
)

= med
(
x, α, γ1, . . . , γn−1, ω

)
= med

(
x, γ1, . . . , γn−1

)
. This completes the proof.

!

5.3. Resurgence of Unanimity. In this section we discuss how to recover the unanimity
when f is not unanimous.

Definition 5.6. The aggregation function is said to be onto if f(ΛN ) = Λ.

If f is onto, we readily see that it is unanimous at ends, and then obtain the following
corollary from Corollary 5.5.

Corollary 5.7. Let f : ΛN → Λ be an anonymous, weakly monotonic and strategy-proof
aggregation function. If f is onto, then it is unanimous.

Definition 5.8. For f : ΛN → Λ and Λ′ = f(ΛN ), the restriction of f to Λ′ is the function
f ′ : (Λ′)N → Λ′ such that f ′(x) = f(x) for all x ∈ (Λ′)N .
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Corollary 5.9. For an anonymous, weakly monotonic and strategy-proof aggregation func-
tion f : ΛN → Λ, let Λ′ = f(ΛN ). Then the restriction of f to Λ′ is unanimous.

Proof. Let α′ and ω′ be the minimum and maximum elements of Λ′, respectively. Then by
the weak monotonicity we have f(α, α, . . . , α) = α′ and f(ω, ω, . . . , ω) = ω′. Therefore by
Theorem 5.1 we have for x ∈ Λ′

f(x, x, . . . , x) = med
(
x, x, . . . , x, γ0, γ1, . . . , γn−1, γn

)

= med
(
α′, x, x, . . . , x, γ1, . . . , γn−1, ω

′)

= med
(
x, x, . . . , x︸ ︷︷ ︸

n

, γ1, . . . , γn−1︸ ︷︷ ︸
n−1

)
= x.

!

Thus by discarding the grades that are not used as a final grade, we can recover the
unanimity. We will give another proof of this corollary in Appendix A where the strategy-
proofness is used more directly.

6. Derivation of the Oder Function

As we have seen, the aggregation function is completely determined by n + 1 phantom
grades γ0, γ1, . . . , γn, each of which is the final grade when f receives a grade vector consisting
of α and ω alone. See (5.1) for the definition of λk. Now consider an aggregation function
that is unanimous at ends and returns either α or ω when it receives a grade vector λk. By
the weak monotonicity there is an l such that

γk =





α for 0 ≤ k ≤ l

ω for l + 1 ≤ k ≤ n.

Note that 0 ≤ l ≤ n − 1 due to the unanimity at ends of f . Then f(x) is given as

f(x) = med(x, α, . . . , α︸ ︷︷ ︸
l+1

, ω, . . . , ω︸ ︷︷ ︸
n−l

)

= med(α, . . . , α, x1, . . . , xn−l−1︸ ︷︷ ︸
n

, xn−l, xn−l+1, . . . , xn, ω, . . . , ω︸ ︷︷ ︸
n

)

= xn−l,

where we assume without loss of generality that x1 ! x2 ! · · · ! xn. In other words, f is
the (n − l)th order function proposed by Balinski and Laraki.

Corollary 6.1 (Theorem 10.1 in Balinski and Laraki [2]). Suppose that the aggregation
function f : ΛN → Λ satisfies the strong monotonicity in addition to the anonymity, weak
monotonicity and strategy-proofness. Then γk is either α or ω for all k ∈ {0, 1, . . . , n}, and
f is the order function.
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Proof. Note that f(x) = med(x, γ) by Theorem 5.1 and that γ0 = α and γn = ω by
Lemma 3.7 or Corollary 5.5. We will show that γk *∈ {α, ω} for some k ∈ {1, . . . , n − 1}
leads to a contradiction. Let

x = (α, . . . , α︸ ︷︷ ︸
n−k

, γk, . . . , γk︸ ︷︷ ︸
k

) and x′ = (γk, . . . , γk︸ ︷︷ ︸
n−k

, ω, . . . , ω︸ ︷︷ ︸
k

).

Then we readily see that x ≺ x′ and both of med(x, γ) and med(x′,γ) are equal to γk.
This contradicts the strong monotonicity assumption on f . !

Thus the strong monotonicity urges f to take either the lowest grade α or the highest
grade ω when the judges split deeply, and makes it the order function. Another proof of
this corollary will be given in Appendix B where we prove it without using Theorem 5.1.

7. Conclusion

In this paper we have proved that the aggregation function is given by the median function
with n + 1 phantom grades when it meets the conditions: anonymity, weak monotonicity
and strategy-proofness. We also showed that those phantom grades are the outcomes when
judges split deeply. Therefore the jury has only to decide the final grades when the jury’s
opinion split deeply in order to decide the aggregation function.
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Appendix A. Proof of Corollary 5.9

Now suppose that f is not unanimous, and let Λ′ be the image of f , i.e., Λ′ = f(ΛN ). Then
by Corollary 5.7 Λ′ is a proper subset of Λ. Let α′ and ω′ be the minimum and maximum
elements of Λ′, respectively. Then by the weak monotonicity we have f(α, α, . . . , α) = α′

and f(ω, ω, . . . , ω) = ω′. We will show that f(x, x, . . . , x) *= x for some x ∈ Λ′ leads to
a contradiction. Now let s = f(x, x, . . . , x) and assume s ≺ x. The first judge has an
incentive to misreport his/her grade as, say ω, to raise the final grade, but due to the
strategy-proofness it is not possible. Then f(ω, x, . . . , x) = s. Repeating this argument we
obtain f(ω, ω, . . . , ω) = s. Since s ≺ x ! ω′, this contradicts the definition of ω′. When
s & x, we will yield f(α, α, . . . , α) = s & x ' α′, again a contradiction.
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Appendix B. Proof of Corollary 6.1

Since we have seen in Lemma 3.7 that γ0 = α and γn = ω, we will show that γk = f(λk) ∈
{α, ω} for k ∈ {1, . . . , n − 1}. Let s = f(λk) and suppose s *∈ {α, ω} for some k. By the
weak monotonicity we see f(λk/1s) ' s. The inequality f(λk/1s) & s would imply that the
judge 1 is able to strategically manipulate f at λk/1s by misreporting his grade as α, hence
contradict the strategy-proofness. Then we have f(λk/1s) = s. Repeating this argument
n − k times, we obtain

f(s, . . . , s︸ ︷︷ ︸
n−k

, ω, . . . , ω︸ ︷︷ ︸
k

) = s.

In the same way we also have

f(α, . . . , α︸ ︷︷ ︸
n−k

, s, . . . , s︸ ︷︷ ︸
k

) = s.

These facts contradict the strong monotonicity of f since (s, . . . , s, ω, . . . , ω) & (α, . . . , α,

s, . . . , s). Thus we obtain γk ∈ {α, ω} for all k ∈ {0, 1, . . . , n}. The argument before this
corollary yields that f is the order function.
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