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A Note on the Second Order Asymptotic Efficiency
of Estimators in an Autoregressive Process”

Masafumi AKAHIRA®*

Abstract
Let {Xi} be defined by Xi=0X:+U; (i=1,2, --), where Xo=0 and {U}}

is a sequence of independent identically distributed real random variables having
a density f with mean 0 and variance o®. We assume that |8|<l. The
purpose of this paper is to obtain the bound of the second order asymptotic
distributions of second order asymptotically median unbiased estimators of 0
and the estimator of @ attaining it, that is, the second order asymptotically

efficient estimator of 0.

1. Introduction

Let X: (=1, 2, .--) be defined recursively by
Xi=0X:ia2+U; i=1,2, -,

where Xo=0 and {U:: 7=1,2, .-} is a sequence of independent identically distributed real
random variables having a density f with mean 0 and variance o2

We shall define an estimator to be second order asymptotically  efficient if the second
order asymptotic distribution of it attains the bound of the second order asymptotic distribu-
tions of second order asymptotically median unbiased (AMU) estimators of 8. We assume
that |8]<1. The purpose of this paper is to obtain the bound of the second order asymptotic
distributions of second order AMU estimators of § and to show that a modified least squares
estimator of @ is second order asymptotically efficient. The approach in this paper is similar

to Bahadur [2] dealing with the bound for asymptotic variances.

2. Notations and definitions

Let X be an abstract sample space whose generic point is denoted by z, B a o-feld
of subsets of X, and let ©® be a parameter space, which is assumed to be an open set in a
Euclidean l-space R'. We shall denote by (X, $™) the n-fold direct products of (X, B).
For each n=1, 2, ---, the point of X will be denoted by Za=(z\, ---, a). We consider a
sequence of classes of probability measures {Pn4: 80} (n=1, 2, ---) each defined on (X,
B™) such that for each n=1, 2, .-+ and each 6 the following holds:

P o(BW)=Ppyy o B X X))

for all B"We F™,

An estimator of @ is defined to be a sequence {§.} of B -measurable functions 6. on
X qnto @ (n=1, 2, -+).

* Recieved on June 3, 1975.
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For an increasing sequence of positive numbers {cx} (lim cr=00) an estimator {0n} is

n—oo

called consistent with order {c»} (or {ca}-consistent for short) if for every €>0 and every ¥

of O, there exist a sufficiently small positive number § and a sufficiently large positive number

L satisfying the following :

Im sup Paollcn|bn—0|>L}))<e
n—eoo 6:10—9i<6

(Akahira [17).
In the subsequent discussions we shall deal only with the case when ¢x=1"7n. Let
{62} be a {177 }-consistent estimator.

Definition 1. {6a} is second order asymptotically median unbiased (or second order

AMU for short) if for any 9€0 there exists a positive number § such that
lim sup 17| Pro ({17 (6s—6)<0))——| =0
n—oo 6 14(9) 2
where I5(9)=(9—6, 9+0).
Definition 2. For {én} second order asymptotically median unbiased Fo(t)+(1/V )
Ge(t) is called a second order asymptotic distribution of it if
ELI{;V?IPn,o({V7(9n—0)si})—Fa(t)—(l/l/?)Ga(f)l=0-

If {64} is second order AMU, then Fid,.6%, F 6,67, Giéu},6* and G 4,6~ are defined as
follows :
Um V7 | Pao({V 7 (00— 0) < t}) = Fibn),6%(6) = (1/V 70)G 6y, 6¥(2)| =0 21

Nn—o0

for all £>0,
Um V' 7% | P, o({V 7 (Bn—0)<2}) = Fiday,67(£)— (L1 7)G (), 67 (2)] =0 (2.2)

n—oo

for all £<0.
Let 6o(=@) be arbitrary but fixed. Consider the problem of testing hypothesis H*: 6=

Go+(¢/V"%) (1>0) against alternative K: §=0,. We define fs,*(¢) and 74,%(¢) as follows:
sup  Llim V7 {En,00($n) — Bao*(t) — (1)1 7)70,*(£)} =0 (2.3)

{Bn) EQ1pz nmsoo
where Diz={{Pn} : Enbott/vm) ($n)=1/240(1/1V ), 0<In(£a)<1 for all 2,€X™ (n=1,

2, )},
Putting Ads,6= {1V 7 (0.—0)<t} we have for £>0

Prbot+(t/nm) (Aifn),80) = Pr,8o+t//7) ({V?(&—&—(HV?)KO}):%%- o(vl—-;)

Since a sequence {IA{d.),6,} of the indicators (or characteristic functions) of A4,),e (n=1,
2, ) belongs to @iz, it follows from (2.1) and (2. 3) that
m V7 {F (61,67 (2)+ (UV 72)G by, 0,7 () — Bo " (8)— (V)70 ()} <O (2.4)

71—00

for all #>0.
Consider next the problem of the testing hypothesis H™: §=0,+(¢/1 %) (¢<0) against
alternative K: §=0o. Then we define 85,7 (¢) and 74,7(¢) as follows:
inf  lim 1 % {En go(@n) — Bs ()= (1)1 7 )76,7(2)) =0. (2.5)

{Bn} €Dz oo
In a similar way as the case >0, we have from (2. 2) and (2. 5)
Wm v {F (6., 6,7 () + (Vv 7)G (62, 6,7(2) — Bo~(£) — (1/V 7 )ye0™(£)} =0 (2.6)

o0
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for all ¢<0.
Since @o is arbitrary, the bound of the second order asymptotic distributions of second order

AMU estimators is obtained as follows:

Tm V7 {F 6,07 (O (UV )G 14y, 67 (6) — Ba* (1) — (V7)) 70%(£)) <0 for all £>0;

lim v {Fi6,07(0)+ (1V 7)) G 61,67 () = Bo™(£) = (1/V )70 (1)} 20 for all £<0.

For any §€0 letting £,%(0)=1/2 and 7,"(0)=0 we make the following definition.
Definition 3. For {64} second ordsr asymptotically median unbiased it is called
second order asymptotically eficient if for each €6

Jﬁa*(t)—%]/l_]{n*(t)%-o(‘/l.n) For all ¢>0,

lm Puo({V 7 (Gn—0)<t))=

lﬂo—(f)+yl7z~7g_(£)+o<7;7) For all ¢<0.

Throughout the subsequent section we assume that =R and & is an open interval

(—1,1) and consider an autoregressive process {X:} given in Introduction.

3. Second order asymptotic efficiency of estimators

In this section it will be shown that the bound of the second order asymptotic distribu-
tions of second order AMU estimators of § is obtained using the best test statistics and that a
modified least squares estimator of @ is second order asymptotically efficient if f is a normal
density with mean 0 and variance ¢2. We assume the following:

Assumption (A). f is continuously di fferentiable for four times and f(u)>0 for all w.

Let 0o be arbitrary but fixed in @. Consider the problem of testing hypothesis [ : 0=
Oo+ (/v 1) (¢>0) against alternative K : §=0o. Putting 1=00+4 with d=¢/V' 7, we

define Zi, as follows:

Xi—0oXi1)
Z, = log L Ei=beXi1)
X =0, Xi )
If 8=40,, then we have
o S
Zm—log—_———w—f(U[——AXf_x)

42 4° 44 ‘
=4 Ui Xi “'?Q['H(Ui)Xi»Jz‘!“’gQ[//”(Ui)Xi—ls*‘ﬂgb(“(Ui*)Xf—l“ (3.1)

where ¢(u)=log f(x) and for each 7, U:* lies between U; and U;—4X:i-1.
If §=0,, then we have ‘
JU:+4X: )
Zin=log——r
IO
42 4 44 .
=A¢'(Ur)Xf-1+7<//”(Ui)X.‘-1z+—é-<,l)”'(Ui)Xi~13+ﬂ¢1“’(Uf**)Xf—x“ (3.2)

where for each i, U;** lies between U; and U;+4X:_,.
For the subsequent discussions we assume the following:

Assumption (B). d*log f(u)/du' (=¢™(w)) is a bounded function and lim f(u)=

u— +co

lim f'(w)= lim f"(u)=0 and E[|U;|*]<0 k=1, 2, 3, 4).

—+oco u~—+ 00
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Then we have

U orwrwdu==3{" ¢ rudu={ (@@ s

Put J:S:W(u)yﬂu)du, J:f ' ()" (1) f (), K:S:W(u)}s f)du and

ﬂs=5°j ud fu)du.

. 1—-gea-n 1—g3G-u
Since E(¢"'U:))=—1, Eg(X;_lz)zozT-e—z— and Eg(X;_13)=ﬂ3T9—3~, it follows from
(3. 1) that
t o, \_ ndtdtl  ad3J+K)us s 3 3
E"“(,-‘EZ ‘")“2@-(902) sa—om o4 (3.3)
Similarly we have
7 n 2
vob(v_l Z) =E[{ ,;1<Z;H—Eeo<zm>>} }
_ndiotl  ndPJ s . 3.4
=Togr 1 g +o(nd3). (3. 4)
Further we have
n n 3
Eaa[{ZZm—an(Z Zm)} ]:A%K‘;uo(nm) (3. 5)
=1 i=1 1*60
Since 4=t/v"n, it follows from (3.3), (3.4) and (3. 5) that
2o, \_ tr™ t3us(3/4K) ( 1 ‘) 36
E"“(EIZ ’")—2(1—~602) sV n(l—6 T O\VH) (3-6)
2o, N\ttt tiusd ( 1 ) (3.7
V“(Ef‘“)"l%f 1/7(1—603)+0 I S
n n 3 ts,U.sK ( 1 ) 3
R . - . .8
Eof (£ Zu=Fa( 5 20)] |-t to (o (3.8)
Since 61=00+(t/V 7 ), it follows that for éufﬁciently large n
1 _ 1 2t0, 1 . (3.9
1—612_1~003+V_77(1~602)2+0<V7>’ 3.9)
1 1 R 1
= — . 3.10
1—613 1—‘603_}—1/72(1*603)2-*’0(]/71) ( )
In a similar way as the case 6§=§; we have from (3. 2), (3.9) and (3. 10)
2o, N el 8gilG, (3 +K) ( 1 ) 3 11
E9‘<§1Z‘“)‘ 20—6:%) Vn(1—65F 6V n(l—60%) tolvz) 8- 11)
n tic?l 283q218, s ( 1 )
7 in) = —_ — =1 ; 3.12
”‘EZ‘) 1—002 V7 (1—0%? 1/n<1_@03>+" Vn (3-12)
n L n , _ lf3ﬂ3K ( l ) 3 13
Eo,[{gzm Eﬂ’(i—.—lzm)} _1/7(1_603)—%-0 Vinl (3. 13)
If
Eo(ig‘ z, ):;z+ 1_cl+o(~1=)- 3. 14)
=" V Vin)’
V,(;E AR 1_52+o( 1_.>- (3. 15)
Fs B Vin Vin)’ '
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- [ n N1 1 5
B (£ 2u-5{ £ 20)] Jorzertels) 519
then using Gram-Charlier expansion™ we have
o7z
i=1
_opfa—u\ _ fa—p a 2 [a—pu Cs a—p\® 1
"‘D( v ) ¢( - )[m/z*zm/?( v )+6v3V72—[( v ) 1}]“(1/71)
(3. 17)
—_ - M _— 1 —(ut
where @(x)_g—mgé(u)du with ¢(u)_1/§7-[-e @B

Next we shall choose a such that

Pn,m([élzmza}) =—é—+ 0(1/171 )

For the purpose putting

a—p\_4la=p\_a & fa—p ¢ [fa=p\_
CD( v ) ¢< v )[L’V;+2v21/—72_< v )+603V7{( v ) IH

St
=(D(O)+o< 1_),
Vin
we have
. vﬂ:O<1/1—7T>
Since

o) -om-ne el ) o

where & lies between 0 and (a— u)/v, we obtain

_ &y cs 1
From (3. 11)~(3.16) and (3. 18) we have
_ttfl BuaBI+K) %P6 psK(1—60%) 4 (_}ﬁ (3.19
T2(1—6%) 6V a(l—0) Va(l—6 6V ntic?l(1—60% ° 1/7[)' +19)

On the other hand since

n ~ L wer el
Pn.ﬂu({‘z Zin24}>——-Pﬂ,so({ ([;lzm a 1_—(90_2>S1—002}>’

i=1

putting

an—-(izm—a z‘202]>
i=1

16y
we have from (3.6), (3.7), (3.8) and (3. 19)

8020 tumK(1—0®) | ( 1 )
Va (=02 6V rotl(1-0% ‘\V )’

Eg(Wa)= (3. 20)

* Since Zi. are not independently and identically distributed, the usual form of Gram-Charlier expan-
sion may not be applicable but in this particular situation it can be proved that Gram-Charlier
expansion holds true.
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2% fus ( 1 )
Vﬂo(x’vn) l 00 1/72 (1 00 ) +0 *’“‘1/7; N (3 21)
Eo [ {Wne Ea(Wa)} ] = ——oeitsB 4 o[ L 3.2
o[ {Wn s(Wa)} )= 1/72'(1_003)'%‘0 V) (3.22)

From (3.17), (3. 20), (3. 21) and (3. 22) we obtain

l‘uz]
P”'ao({ —1-‘00 })

toV'T | taV'T 220V T 8, 2V 1200 1,
d(m G ) 4”(171—-002){1/‘77(1—002)3/2+6J1/1 1/;:'(1—003)(3J+M]+°<177)
If {6} is second order asymptotically median unbiased, then it follows by (2. 1), (2.3), (2.4)

and the fundamental lemma of Neyman and Pearson that for all ¢>0

e — s VT
’}Lﬂ;lol/n{})n60({Vn(67z—60)£t})“@(%)
- toV'T 12,61V T G, , 12V T84 s o
¢(1/1 —002){1/9?<1 —Go2)er2 TG;V?‘V?Q—603>(°‘]+K>H30

In a similar way as the case #>0, we have by (2.2), (2.5), (2. 6) and the fundamental lemma

of Neyman and Pearson

lim V?{Pn,e.((V?(énﬁ@o)gt})—@( toV I )

n—oo 1/1 - 602

_¢(:0VT ){ t2%0V T G, 4 12V T—04 s
V102V n(1=0:5%2 606V 1V n(l—06%

(3J+K)H20
for all £<0.

Since fo is arbitrary, we have now established
Theorem 1. Under Assumptions (A) and (B), the bound of the second order asymp-

totic distributions of second order AMU estimators {0x) is given as follows:

’}T;Vn[Pna({l/n( n—0)<2})— @(1711/_—?2)
e P e A LI
for all t=0;
lim V;[Pn,gul/?(én—@)gr}>~@(1§01g7)
e e e I I LD

For all +<0.
The least squares estimator 6.5 of 6 is given by (Z} XiXi—l)/Z Xio% It is seen that
i=2 i=2

under Assumptions {A) and (B) s is a {V'n}-consistent estimator. We assume that f is
a normal density. Then Assumptions (A) and (B) hold.
Since

‘ 1V 7) UK
VR (Ous—0)= =2

(1n) 3 X2
i=2

it follows that V7 (dLs—8)<t if and only if
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L S UXi -t Xi2<0
Vn;:z N i=2
Put
1 2z t Z
Zimm BUX i —L T X
N =2 N i=2
Since

2
EdZ= g+l

ot 4046t ( 1 )

Vol =g vy TO\vw)
B (Zn= B2 =i b o 7).

using Gram-Charlier exansion we obtain
Paod({V 7 (bLs—6)<t))
=P o({Z2<0})
. ¢ Gr? 4 1
“@(1/1_32)+¢<1/1 02){1/71 =2 TV R Ts 92}”(1/71)

As is immediately seen from above, 815 is not second order AMU. If we define a modified

least squares estimator §.s* as follows:

Grs*= (1“5“‘1‘)9145,
n

then G.5* is second order AMU and

Poal (V7 Gus*—6) <)) =0 52)“’5(1/1 62)”(5"262)3,24-0(-1717). (3. 25)

Since ¢%I=1 and u3=0, it follows from (3.23), (3.24) and (3.25) that the second order

asymptotic distribution of §15* attains the bound of the second order asymptotic distributions

of second order AMU estimators. Therefore we have now established

Theorem 2. If f is a normal density with mean 0 and wvariance 0%, then G.s* is
second order asymptotically efficient.
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