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Abstract 

Let X be an observable random vector and Y a random variable to be observed 
in future. Assume that the joint distribution of X and Y depends on an unknown 
parameter. In this paper we consider a way of the construction of a prediction 
interval for Y based on X for a discrete exponential fq.mily of distributions. In 
particular we asymptotically construct the prediction interval in the binomial and 
Poisson cases, and give practical applications to the prediction of the number of 
wins of the Japanese professional baseball teams and that of home runs of the play­
ers in the major league of the United States. 

Key Words: (Similar) prediction region; prediction intervals; confidence coef­
ficient; sufficient statistics; Cornish-Fisher expansion; binomial case; Poisson case. 

1. Introduction 

In a statistical inference, we may consider a predictive procedure for an unobserved 

random variable based on an observable random vector (see, e.g. Guttman(1970), Lau­

ritzen(1974), Takeuchi(1975), Hinkley(1979), Butler(1986), Akahira(1990), Bjq;rnstad(1990), 

Geisser(1993), Takada(1996), Barndorff-Nielsen and Cox(1996)). 

Supp'ose that X = (Xl, . ", Xm) is an observable random vector, Y is a random vari­

able to be observed in future, and the joint distribution of (X, Y) depends on an unknown 

parameter () in 8, where e is a parameter space. Let Y be a space representing the pos­

sible outcomes of Y. If for any 0: (0 < a < 1) there exists a subset Sx ( of Y) based on 

X such that 

Pe{Y' E Sx} 2: 1 - 0:, for all e E 8, (1) 

then Sx is called a prediction region of Y at confidence coefficient 1 - 0:. If Y is a subset 

of RI and Sx is an interval [a(X), b(X)), then Sx.is called a prediction interval of Y at 

confidence coefficient 1 - a (see Figure 1). If X takes a realized value x == (Xl"" ,Xm ), 

-51-



MASAFUMI AKAHIRA.AND EISUKE HIDA 

then the interval [a(x), b(x)] is called a prediction interval of Y at confidence coefficient 

100(1 - a)%. If, in particular, the equality in (1) holds, then the prediction region Sx is 

said to be similar. 

In this paper we consider the case when the joint distribution of (X, Y) belongs to a 

discrete exponential family of distributions with an unknown one-dimensional parameter 

B. Since there exists a complete and sufficient statistic T, using a conditional distribution 

of Y given T we obtain the conditional mean, variance and third cumulant, and give a 

w~y to construct a prediction interval of Y based on X, by the Cornish-Fisher expansion. 

Indeed, for the binomial and Poisson cases, we asymptotically obtain the prediction in­

tervals and curves for Y, and give practical applications to the prediction of the number 

of wins of the Japanese professional baseball teams and that of home runs of the players 

in the major league of the United States. 

y 

~--~---------------~----- x 
x 

Figure 1: Prediction interval S x of Y based on X 

2. Prediction intervals for a discrete exponential family of distributions 

Suppose that Xl,' ", X m , Yl , ... , Yn are independent and identically distributed ran­

dom variables ·according to a on.e-parameter exponential type clistribution with a proba­

bility mass function (or p.m.f. for short) 

J(x; B) = c(B)h(x) exp{-l](B)t(x)} 

for x = 0,1,2" .. 1 BEe = R\ where c(e) and h(x) are nonnegative real-valued functions 

of f) and x, respectively, and 7}(e) and t(x) are real-valued functions of e and x, respectively. 

Then the joint p.m.f. of Xl)' ") X m ) Y1,"', Yn is given 
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m n 

cm+n (8) IT h(Xi) II h(Yj) 
1=1 j=l 

Letting T := L::1 t(Xi) + :L7=1 t(Yj), T is a complete and sufficient statistic for 8, hence 

the conditional p.m.f. of Xl, ... , X m1 Yi, ... ,Yn given T is independent of O. So, using 

the conditional distribution of Y := ~;=l t(Yj) given the sufficient statistic T, we can 

construct a prediction interval which is independent of unknown parameter 8. Actually, 

we construct a prediction interval of Y according to the following procedures (i) to (iii). 

(i) Let !Y1T(·!t) be a conditional p.m.f. of Y given T = t. Since T is sufficient for B, it 

follows that !YIT(·!t) is independent of B. Using !YITClt), we obtain the conditional mean 

/-Lt := E[yIT = t], the conditional variance a-; := Var(YIT = t) and the conditional thlrd 

cumulant K3,t := K3(YIT = t) = E[(Y - J.Lt)3IT = t] of Y given T = t. 

(ii) Using the Cornish-Fisher expansion with /-Lt, a-; and "'3,t in (i), we asymptotically get 

]L(t) , yet) such that 

P{H,(t) ~ Y ~ y(t)IT = t} = 1 - a 

for any a (O < a < 1) and any t E R 1. 

(iii) From (2), we have for any 8 E e 

Pe{H,(T) ~ Y ~ y(T)} = 1 - 0:. 

(2) 

Since T := 2::1 t(Xi ) + Lj=l t(lj) = 2::1 t(Xi ) + Y is complete and sufficient, we 
asymptotically obtain a( . ), b(.) such that 

Pe{a(X) ~ Y ~ b(X)} = 1- a. 

Then the interval [a(X), b(X)] is a prediction interval of Y at confidence coefficient 1-a. 

2.1. Binomial case 
Suppose that X is an observable random variable, Y is a random variable to be 

observed in future, and X and Y are independent. Further, assume that X is distributed 

according to the binomial distribution B (m, p) whose p.m.f. 

fx(x;p) = ( : ) p'qm-x (x = 01 1) ... ,m; 0 < p < 1 and q = 1 - p), 
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and Y is distributed according to the binomial distribution B(n,p), where m and n are 

known natural numbers, and p is unknown. Then we construct a prediction interval of Y 
based on X at confidence coefficient 1 - a. Since the joint p.m.f. of (X, Y) is given by 

(x=O,l, ... ,m; y=O,l, ... ,n; O<p<l,.q=l-p), 

it follows that the statistic T := X + Y is sufficient for p, and T is distributed according 

to the binomial distribution B (m + n, p). Then the condition~ p.m.f. of Y given T = t is 

(max(O, t - m) ::; Y ::; min(t, n)), 

which is independent of p. This means that the prediction interval of Y based on the 

sufficient statistic T is constructed independently of p. The distribution with the above 

p.rnJ. fYIT(Ylt) is called the hypergeometric distribution H(t, n, m + n). When T = t 
is given, the conditional mean Jit, the conditional variance o-i and the conditional third 

cumulant f\,3,t of Yare given by 

K.3,t 

respectively. 

tn 
E[Y\T = t] = --., 

m+n 

tmn(m+n - t) 
Var(YIT = t) = ()2( )' m+n m+n-l 

(YIT 
_ ) _ tmn(m - n)(m + n - t)(m + n - 2t) 

~ -t- , 
(m + n)3(m + n -l)(m + n - 2) 

When m and n are large, using the Cornish-Fisher expansion we asymptotically obtain 

the upper 100(a/2) percentile Ycx/2(t) of the hypergeometric distribution H(t, n, m + n) 
such that 

P{min(t,n) - Ya!2(t) ::; Y S Ycx!2(t)!T = t} = 1- a. (3) 

First, by the Cornish-Fisher expansion we have 

Ya!? (t) - I-tt + ~ K.3,t 2 
----'---O--t---=- = U cx/2 + -6u-l Ucr./2 + ... , 
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that is, 

1 K:3 t 2 
lit - - + o-tU /2 + -' u / + ... r 2 0 60-2 0 2 

t 

tn 1 
----+u '2 
m + n 2 01 ( t) mn t 1---

, m+n (m+n)(m+n-l) 

+ 1--- u + ... m - n ( 2t)'2 
6(m + n - 2) m + n 0./2 I 

(4) 

where Uo./2 is the upper lOO(a/2) percentile of the standard normal distribution N(Q, 1). 
Letting y:= Yo/2(t), a:= n/(m+n), b:= mn/{(m+n)(m+n-l)}, c:= (m-n)/(m+ 
n - 2), U = Uo./2 and t := x + y, then we obtain from (4) 

Y ~ a(x + y) - -21 + u (x + .y) (1 - x + y ) b + :. (1 _ 2(x + y)) u2 , (5) 
m+n 6 m+n 

which implies that 

Hence we have 

cu 2 cu 2 c- 4 1 
{ 

2}2 { 2}2_2 
l-a+ 3(m+n) y + a- 3(m+n) x +36u +4 

-2 1- a + a - x { cu
2

} { cu
2

} 
3(m+n) 3(m+n) y 

+{~u2-1}{a- cu
2 

}x-{~U2-1}{1-a+ cu
2 

}Y 
3 3 (m + n) 3 3 (m + n) 

b(X+y)2 c 
-b(x + y)u2 + u2 

- -u2 = 0, 
m+n 6 
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which implies that 

l-a+ + 2 
[{ 

CU
2

}2 bu
2

] 

3(m+n) m+n Y 

-2 1- a + a - - -- x 
[{ 

CU

2

} { CU

2

} bu
2

] 
3(m+n) 3(m+n) m+n Y 

[{ C 2 } { cu
2

} 1 c? 1 c + -3 u - 1 a - ( - bu2 
X + _u4 + - - _u2 = O. 

3 m+n) 36 4 6 
(6) 

Putting 

{ 
CU2 }2 002 

A:= l-a+ +--
3(m+n) m+n! 

{ 
CU

2
}2 bu

2 

C:= a- 3(m+n) + m+n 1 

2D:={~U2-1}{1-a+ CU

2 }+bu2 

3 3(m+n) 1 

2E:={~u2-1}{a- cu
2 }_bu2 

3 3(m+n) 1 

we have from (6) 

Ay2 - 2(Bx + D)y + Cx2 + 2Ex + F = 0 

-56-



PREDICTION INTERVALS FOR DISCRETE EXPONENTIAL FAMILY 

whose solution is given by 

y = * {Ex + D ± j(Ex + D)2 - A(CX2 + 2Ex + F)}. 

frOID (3), we asymptotically get a prediction interval [a(X), b(X)) of Y at confidence 

coefficient 1 - a such that 

for 0 < P < 1. Then a(X) and b(X) are given by 

a(X) = ~ {Ex + D - J(Ex + D)2 - A(CX2 + 2Ex +F)}, 

b(X) = ~ {Ex + D + J(Bx + D)2 - A(CX2 + 2Ex + F)}. 

Drawing the curves Y = a(X) and Y = b(X)) i.e. the prediction curves of Y, we can get 

the prediction interval of Y in Figures 2 and 3. 

y 

Figure 2: Prediction curves Y = a( X) and Y = b( X) for Y at confidence coefficient 
1 - a for m = n = 25 

1 - a. : ---- 99%) - - - - 95%, -----90% 
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Figure 3: Prediction curves Y = a(X) and Y = b(X) for Y at confidence coefficient 
1 - a for m = 30 and n = 50 

1 - a. : ----- 99%, - - - - 95% , -----90% 

2.2. Poisson case 
Suppose X is an observable random variable, Y is a random variable to be unobserved, 

and X and Y are independent. Further, we assume that X is distributed according to 

the Poisson distribution Po(mA) whose p.m.f. 

e-m>'(mA)X 
fx(x) = , 

x. 
(x = 0,1,2" .. ; A > 0), 

and Y is distributed according to the Poisson Po(n>"), when m and n are known natural 

numbers, and A is unknown. Then we construct a prediction interval of Y based on X. 
Since the joint p.m.f. of (X, Y) is given by 

(x = 0,1,.2, ... ; Y = 0, 1,2, ... ; m, n = 1,2, ... ; A > 0), 

it follows that the statistic T := X + Y is sufficient for A, and T is distributed according 

to the Poisson distribution Po((m+n)\). Then the conditional p.m.f. -of Y give;n T = t is 

the binomial distribution B(t, n/(m+n)) which is independent of \. This means that the 

prediction interval of Y based on the sufficient statistic T is construct.ed independently 

of unknown parameter A. Wilen T = t is given, the conditional mean fJt, ~he conditional 

variance 0-; and the conditional third cumulant K3,t of Yare given by 
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f.Jt 

(j2 
t 

K..3,t = 

en 
E[YIT = t] = --, 

m+n 

tmn 
Var(YIT = t) = ( )2 l 

m+n 

(YIT = ) = tmn(m - n) 
K..3 t ( )3 1 m+n 

respectively. When m and n are very large, in a similar way to (3) using the Cornish­

Fisher expansion we asymptotically obtain the upper lOO(a/2) percentile Ya./2(t) of the 

binomial distribution B(t, n/(m + n)) such that 

P{ t - Ya./2(t) :::; Y :::; YO:/2(t)\T = t} = 1 - a. (7) 

By the Cornish-Fisher expansion we have 

that is, 

nt 1 mnt m - n 2 
-- - - + U /2 + U /2 +... (8) 
m + n 2 a. (m + n)2 6(m + n) 0: ) 

where UO:/2 is the upper lOO(a/2) percentile of the standard normal distribution N(O, 1). 
Letting Y := Yo:j2(t), a := n/(m + n), b:= mn/(m + n)2, c:= (m - n)/{6(m + n)}, 
U = Ua./2 and t := x + y, then we obtain from (8) 

1 
Y ~ a(x + y) - "2 + uJb(x + y) + cu2

, (9) 

which implies that 

{ y _ a( x + y) _ cu' + ~ } , '" b( x + y)u" 

Hence we have 

(1- a)'y' + 2{ (a' - a)x+ acu' - cu' - ~bu' + ~ - ~}y 

+ a2x2 + 2 (acu2 
- ~bu2 - 5:) x + C2

U
4 + ~. - cu2 = O. (10) 

2 2 4 
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Putting A := (1-a)2, B:= a-a2 , C:= a2 , D := - {acu2 - cu2 - (bu2/2) - 1/2 + a/2}, 

E := acu2 
- (bu 2/2) - a/2, F:= c2u4 + 1/4 - cu2, we have from (10) 

Ay2 - 2(Bx + D)y + Cx2 + 2Ex + F = 0 

whose solution is given by 

y = ~ {Ex + D ± J(Bx + D)2 - A(CX2 + 2Ex + F)} . 

From (7), we asymptotically get a prediction interval [a(X), b(X)] of Y at confidence 
coefficient 1 - On such that 

P,\{a(X) ~ y ~ b(X)} ~ 1- a 

for A > O. Then a(X) and b(X) are given by 

a(X) = ~ {Bx + D - J(Bx + D)2 - A(CX2 + 2Ex + F)}, 

b(X) = ~ {Ex + D + J(Bx + D)2 - A(CX2 + 2Ex + F)}. 

Drawing the curves Y = a(X) and Y = b(X), i.e. the prediction curves for Y, we can 
get the prediction interval of Y in Figures 4 and 5. 

y 
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II 
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1/ 
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;/ 
10 ;/ 

1/ 
I 

Figure 4: Prediction curves Y = a(X) and Y = b(X) for Y at confidence coefficient 
1 - n for m = n = 25 

1 - a : ----- 99% , - - 95% , ----- 90% 
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Figure 5: Prediction curves Y = a(X) and Y = b(X) for Y at confidence coefficient 
1 - a for m = 30 and n = 50 

1 - a : ----- 99%, - - - - 95% , ----90% 

2.3. Randomized prediction function 
In the previous sections, we consider a non-randomized prediction interval, but we 

need to take a randomized prediction interval to attain the confidence coefficient 1 - a 
(Takeuchi, 1975). 

If for any a(O < Q < 1) there exists an interval [a(X), b(X)] such that 

Pe{a(X) ~ Y ~ b(X)} ~ 1- Q, (11) 

for all () E e, then the interval is called. a prediction interval of Y at confidence coefficient 

1 - a. We also define a randomized prediction function ¢ at confidence coefficient 1 - a 
as 

4>(x, y) = { ~ for a(x, y) ~ y S b(x, y), 
for y < a(x, y), y > b(x, y), 

where a( x, y) and b( X, y) are functions satisfying 

Ee[</>(X, Y)] ~ 1 - Q. (12) 

for all () E e. Let ¢(x, y) be a randomized prediction function at confidence level 1- a, 

and x be any fixed. Then there exists y1o(X) such that ¢(x, y) is monotone increasing in y 
for 0 ~ y s y*(x), monotone decreasing in y for y*(x) S y. Then the set {yl¢(x,y) ~ u} 
also becomes an interval [c(x, u), d(x, u)] for all u(O Sus 1) when x is arbitrarily fixed. 

So, letting U be a uniformly distributed random variable over the interval (0, 11, then 
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Pe{c(X, U) ~ Y ~ d(X, U)} = Ee(¢(X, Y)l 

for all e E e and, if we take ¢ such that 

Ee[¢(X, Y)] == 1 - <l, (13) 

then we obtain a similar randomized prediction function ¢ at confidence coefficient 1 - a. 

We aJso get a randomized prediction inter~al 

{YI¢(X, Y) 2: U} = (c(X, U), d(X, U)] 

at confidence coefficient 1 - <l, based to X. Since", in a discrete exponential family of 

distributions with a parameter e) a complete and sufficient statistic T = T(X) for () 

exists, hence a necessary and sufficient condition for (13) to hold is 

E[4>(X, Y)IT] = 1 - a. (14) 

Now, we consider the binomial case in Section 2.1 as a concrete example. Suppose 

that X is an observable random variable, Y is a random variable to be observed in future, 

and X and Y are independent. Further, assume that X is distributed according to the 
binomial distribution B (m, p) and Y is distributed according to the binomial distribution 

B(n,p), where m and n are known natural numbers, and p is unknown. The statistic 

T := X + Y is sufficient for p, and T is distributed according to the binomial distribution 

B(m + n, p). For each t = 0,1, ... 1 m + n we take a" randomized prediction function 4>t(Y) 
such that 

¢ (y) = I ~o(t) 
t "1'1 (t) 

1 

for Y < Yo(t), Y > Yl(t), 
for y = yo(t), 
for y = Yl(t), 
for yo(t) < Y < Yl(t), 

where ~ntegers Yo(t), Yl(t) (0 ~ yo(t) ~ Yl(t) ~ n)and lo(t), ll(t) (0 ~ lO(t) < 1,0 < 
I'l(t) ~ 1) are determined by (14). But, the way of the construction of a randomized 

prediction function ¢t (y) is not unique. Here, we choose Yo (t), Yl (t), 1'0 (t) and '1'1 (t) such 
that 

a 
P{Y < yo(t)\T = t} + (1 -lo(t))P{Y = Yo(t)!T = t} = 2' 

a 
P{Y > Yl(t)!T = t} + (1 -ll(t))P{Y =Yl(t)IT = t} = 2' 

Indeed, we consider the case when a = 0.05, 0.10 for m = n = 20. Since, in the case, 

the conditional joint distribution of Y given T = t is symmetric with respect to m e.nd 
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n, x ana ~v - X, Y ana lU - y, l"C 1S enougn "GO cons mer omy 'Lne case U 2::: j; ::::: L:U. In w.e 

case, io(t) == 11(t) and the values of Yo(t), Yl(t), lo(t) are given by Tables 1 and 2. From 

'Tables 1 and 2, using a uniformly distributed random number over the interval [0,1], we 

obtain a randomized prediction interval 

{YI¢x+y(Y) 2:: U} = [c(X, U), d(X, U)J 

at confidence coefficient 1 - a. As a result, the difference between the non-randomized 

prediction interval and the randomized one seems to be small (see Figures 6 and 7). It is 

also easier to construct a non-randomized prediction interval (curve) in a way in Section 

2.1 than to do a randomized prediction one. 

I t II yo(t) I Yl(t) I lo(t) 
0 0 0 0.975 
1 0 1 0.95 
2 0 2 0.8974 
3 0 3 0.7833 
4 0 4 0.5284 
5 1 4 0.9902 
6 1 5 0.8155 
7 1 6 0.4988 
8 2 6 0.9666 
9 2 7 0.7183 
10 2 8 0.2627 
11 3 8 0.8467 
12 3 9 0.4721 
13 4 9 0.9316 
14 4 10 0.5943 
15 5 10 0.9886 
16 5 11 0.6679 
17 5 12 0.0807 
18 6 12 0.7079 
19 6 13 0.1346 
20 7 13 0.7207 

Table 1: The values of yo(t), Yl(t), lo(t) in the randomized prediction function 

¢t(Y) for a = 0.05 
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y 

20 

15 

Figure 6: The dots representing the randomized prediction interval of Y based on the 
randomized prediction function ¢t at the confidence coefficient (c.c.) 0.95 and the 

non-randomized prediction curves at the c.c. 0.95 given in Section 2.1 

0 0 0 0.95 
1 0 1 0.9 
2 0 2 0.7947 
3 0 3 0.5667 
4 0 4 0.0569 
5 1 4 0.8206 
6 1 5 0.5061 
7 2 5 0.9730 
8 2 6 0.7055 
9 2 7 0.2542 
10 3 7 0.8313 
11 3 8 0.4442 
12 4 8 0.9193 
13 4 9 0.5619 
14 5 9 0.9815 
15 5 10 0.6375 
16 5 11 0.0644 
17 6 11 0.6835 
18 6 12 0.1274 
19 7 12 0.7053 
20 7 13 0.1472 

Table 2: The values of yo(t), Yl(t). foCt) in the randomized prediction function 

¢e(Y) for a = 0.10 
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y 

20 

lS 

10 ••••••••• 

~~~-----l~O----~lS-----~---- X 

Figure 7: The dots representing the randomized prediction interval of Y based on the 
randomized prediction function <Pt at the confidence coefficient (c.c.) 0.9 and the 

non-randomized prediction curves at the c.c. 0.9 given in Section 2.1 

3. Applications of the prediction interval 

First, when some professional baseball team had m games and X wins in them, we 

consider a prediction interval for the number Y of wins in n residual games, applying to 

the binomial case. Second, some professional baseball player hited X home runs until 

certain time, we consider a prediction interval for the number Y of home runs in the rest 

of games based on X, applying to the Poisson case. 

Example 1 (Prediction of the number of wins of the Japanese professional 
baseball teams). The day, September 10, 1998 was near to the end of the professional 

baseball-season in Japan. In the Central League consisting of six teams, the team" Giants" 

had the third place but six successive wins up to the day, hence the fans were interested 

in the final result of the seaBon. So, for the three teams "Bay Stars", "Dragons" and 

" Giants") we obtain a prediction interval for the number of wins in the rest of games. 

VVhen each team had Tn games and X wins in them, we obtain a prediction interval of the 

number Y of wins in the n games of the rest for the team, applying to the binomial case. 

Indeed, we get the prediction intervals of Y and prediction curves for Y at confidence 

coefficient 100(1 - a)% including the randomized confidence intervals (see Tables 3 and 

4 and Figures 8 to 13). 
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Team's N as. of finished Nos. of wins N os. of defeats No. of draw N os. of the rest 
name games of games 

Bay Stars 110(109) 65 44 1 26 
Dragons 115(114) 63 51 1 21 
Giants 119 64 55 0 16 

Table 3: The result of the three teams in September 10, 1998. 

In the a.bove table, ( . ) means the number of finished games except for the draw. Here, 

the numbers of the rest of games include those of the draw games, since it is ruled that 

the draw games are played again in the Central League. 

Then we have prediction intervals of the number of wins in the rest of games as follows. 

Confidence coefficient(%) Bay Stars Dragons Giants 
99 [7.435, 21.748] (4.483, 17.256] [2.447, 13.442J 
95 [9.227, 20.199] [6.034, 15.824) [3.769, 12.197] 
90 [10.146, 19.381] . [6.833, 15.074] [4.452, 11.546] 
80 [11.203, 18.419J [7.757, 14.197] [5.243, 10.786J 
70 [11.914, 17.759] [8.381, 13.5971 [5.778, 10.267] 
60 [12.478, 17.229] [8.878, 13.117] [6.203, 9.852J 
50 "[12.960, 16.770] (9.303,· 12.703] (6.568, 9.4941 

The real numbers of wins in 
( . ) games of the rest 14 (26) 12 (21) 9 (16) 

Table 4: The prediction intervals of the number of wins in the rest of games for the 

three teams "Bay Stars" , "Dragons" and "Giants" 

Next, at the end of the time of the first half of the season in 1998, that is, in July 21, 

1998, the rest of games of the upper three teams was following. 

Team's Nos. of finished Nos. of wins Nos. of defeats No. of draw N as. of the rest 
name games of games 

Bay Stars 74 45 28 1 62 
Dragons 77 42 34 1 59 
Giants 79 41 38 0 56 

Table 5: The result of the three teams in July 21, 1998. 

Then we obtain prediction intervals of the number of wins at confidence coefficient 100(1-

a)% in the latter half of the season in 1998 (see Table 6). 
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Figure 8: The prediction curves Y = a(X) and Y = b(X) for" Bay Stars" 

Confidence coefficient: 
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Figure 9: The prediction curves Y = a(X) and Y = b(X) for)) Dragons" 

Confidence coefficient: 
99% ; 95%; - - - - - 90% 

80%; - - - - - - - - 70%; 60% 

- - - -50% 
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Figure 10: The prediction curves Y = a(X) and Y = b(X) for" Giants" 

Confidence coefficient: 
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Figure 11: The dots representing the randomized prediction interval for }l Bay Stars" 
based on the randomized prediction function at the confidence coefficient (c.c.) 0.95 and 

the non-randomized prediction curves at the c.c. 0.95 given Section 2.1 
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Figure 12: The dots representing the randomized prediction interval for" Dragons" 
based on the randomized prediction function at the confidence coefficient (c.c.) 0.95 and 

the non-randomized prediction curves at the c.c. 0.95 given Section 2.1 
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Figure 13: The dots representing the randomized precliction interval for" Giants" based 
on the randomized prediction function at the confidence coefficient (e.c.) 0.95 and the 

non-randomized prediction curves at the c.c. 0.95 given Section 2:1 . 
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Confidence coefficient(%) Bay Stars Dragons Giants 
99 [23.4401, 49.8896] [18.5622, 44.3707] [15.7539, 40.5331J 
95 [26.7683, 47.0776] [21.6591, 41.4794] [18.6568, 37.6838] 
90 [28.4767, 45.5848] [23.2636, 39.9608) [20.1675, 36.1955] 
80 [30.4449, 43.8215] [25.1249, 38.1810] [21.9261, 34.4582] 
70 [31.7693, 42.6079] [26.3854, 36.9646] [23.1207, 33.2751] 
60 (32.8184, 41.6306] (27.3885, 35.99] (24.0737, 32.3295] 
50 [33.7154,40.7836] [28.2495, 35.1489] [24.8932, 31.5152] 

The real numbers of wins in 
the latter half 34 33 32 

Table 6: The prediction intervals of the number of wins for the three teams" Bay Stars" , 

"Dragons" and)) Giants" in the latter half 

We also get the prediction curves of wins of the three teams at confidence coefficient 

100(1 - a)% in the latter half (see Figures 14 to 16): From the above, we see that the 

way of construction of a prediction interval in the binomial case in Section 2.1 seems to 

be reasonable. 

y 
80 

70 

Figure 14: The prediction curves Y = a(X) and Y = b(X) for" Bay Stars" 

Confidence coefiicient:---- 99%; 95%; - - - - - 90% 
---- 80%; - - - - - - - - 70%: 60% 

----50% 
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Figure 15: The prediction curves Y = a(X) and Y = b(X) for " Dragons" 

Confidence coefficient: 
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Figure 16: The prediction curves Y = a(X) and Y = b(X) for "Giants" 

Confidence coefficient: 
99% ; 95%; - - - - - 90% 

80% ; - - - - - - - - 70%; 60% 

----50% 
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Example 2 (Prediction of the number of home runs in the major league). 
In the major league in the United States, Mark McGwire and Sammy Sosa hited 61 and 

58 home runS in September 8, 1998, respectively. When a player hited X home runs in 

the finiBhed games, we obtain a prediction interval of the number Y of home runs in the 

rest of games, applying the Poisson case. Indeed, we get the prediction intervals and the 

prediction curves for Y at confidence coefficient 100(1 - a)% including the randomized 

confidence intervals (see Table 7 an~ Figures 17 and 18). 

Confidence coefficient (%) McGwire Sosa 
99 [1.071, 16.690] (0.868, 16.101] 
95 [2.371, 14.213] (2.122, 13.669] 
90 [3.091, 13.014] [2.819, 12.495] 
80 [3.968, 11.689] [3.669, 11.197] 
70 [4.589, 10.829) [4.271, 10.355) 
60 [5.099, 10.164) [4.767,9.705) 
50 [5.549, 9.607] (5.205, 9.161) 

The real number of home rUllS 
in 19 games of the rest 9 8 

Table 7: The prediction intervals of the number of home runs of 
McGwire and Sosa in 19 games of the rest 

y 
25 

FigUre 17: The prediction curves of the number Y of home runs of 
McGwire and Sosa in 19 ,games of the rest 

---- 99%; 
Confidence coefficient: 

---- 80%; 
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Figure 18: The dots representing the randomized prediction interval for McGwire and 
Sosa based on the randomized prediction function at the confidence coefficient (c.c.) 
0.95 and the non-randomized predictien curves at the c.c. 0.95 given in Section 2.2 

Next, at the time when McGwire played 116 games, he hited 46 home runs and the 

number of his rest of games was 47. On the other hand, at the time when Sosa played 

118 games, he hited 44 home runs and the number of his rest of games was 45. Then we 

get prediction illtervals and prediction curves of Y at confidence coefficient 100(1 - a)% 
(see Table 8, Figures 15 to 16). 

Confidence coefficient(%) McGwire Sosa 
99 [6.69146, 33.1830] [5.57338, 30.5031) 
95 [9.05895~ 29.1299] [7.7759 , 26.6592] 
90 [10.3445, 27.1589] [8.97485, 24.7928] 
80 [11.8914, 24.9703] (10.4201, 22.7229] 
70 [12.9755, 23.5434) [11.4344, 21.3747] 
60 [13.8607, 22.4374] [12.2635, 20.3306] 

The real number of home runs 
in ( . ) games of the rest 24 (47) 22 (45) 

Table 8: The prediction intervals of the number of home runs of 

McGwire and Sosa in games of the rest 

From the above, we see that the way of construction of a prediction interval in the 

Poisson case in Section 2.2 seems to be reasonable. 
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Figure 19: The prediction curves of the number of home runs of McGwire 
in games of the rest 

Confidence coefficient: 
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Figure 20: The prediction curves of the number of home runs of Sosa 
in games of the rest 
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GZET 

X g6z1enen rasgele vector ve Y gelecekde gozlenecek rasgele degi§ken oJsun. X ve 
Y 'nin ortal: dag,bmmm bilinmeyen parametreden bagomh oldugunu varsayabm. Bu 
makalede biz kesikli Ustel dagilimlar ailesi i<;in Y 'nin X'e dayah ong5Ii1 gUven arah~ 
kurmaga <;alJ..§lYoruz. Ozel halde binomial ve Poisson da~hmlan durumunda ongoru 
gUven arahldan kuruluyor ve pratik problemler ilzerinde uygulamalar yapillyor. 
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