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Log-amplitude statistics for Beck-Cohen superstatistics
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As a possible generalization of Beck-Cohen superstatistical processes, we study non-Gaussian processes with
temporal heterogeneity of local variance. To characterize the variance heterogeneity, we define log-amplitude
cumulants and log-amplitude autocovariance and derive closed-form expressions of the log-amplitude cumulants
for χ 2, inverse χ 2, and log-normal superstatistical distributions. Furthermore, we show that χ2 and inverse χ 2

superstatistics with degree 2 are closely related to an extreme value distribution, called the Gumbel distribution.
In these cases, the corresponding superstatistical distributions result in the q-Gaussian distribution with q = 5/3
and the bilateral exponential distribution, respectively. Thus, our finding provides a hypothesis that the asymptotic
appearance of these two special distributions may be explained by a link with the asymptotic limit distributions
involving extreme values. In addition, as an application of our approach, we demonstrated that non-Gaussian
fluctuations observed in a stock index futures market can be well approximated by the χ2 superstatistical
distribution with degree 2.
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I. INTRODUCTION

Non-Gaussian fluctuations observed in complex systems
have attracted a wide interest in statistical physics [1,2]. The
importance of understanding such non-Gaussian phenomena
is underscored by studies demonstrating that the non-Gaussian
properties were associated with crisis or catastrophic events,
such as higher mortality [3,4], stock market crashes [5,6],
and major earthquakes [7,8]. To gain helpful and insightful
information about these systems, a widely applicable method
for characterizing non-Gaussian time series is required.

Complex nonequilibrium systems are often effectively
described by a superposition of different statistical models
[9]. Based on this paradigm, Beck and Cohen proposed
superstatistics [10,11] in which superposition of different
dynamics on different time scales is assumed. The stationary
distributions of such superstatistical models typically exhibit
non-Gaussian probability density functions (PDFs) with fat
tails and have been successful in describing non-Gaussian
fluctuations observed in a wide variety of real-world signals
[2,11]. In addition, from the viewpoint of a maximum
entropy principle, the theoretical framework of superstatistical
processes has been developed [12–14].

As a simple dynamical realization of superstatistics, Beck
introduced a nonequilibrium process described by stochastic
differential equations with fluctuating parameters [15]. To
explain this idea, let us consider a Langevin equation for a
variable u:

du

dt
= γF (u) + σ̂L(t), (1)

where L(t) is Gaussian white noise, γ is a positive friction
constant, σ̂ describes the strength of the noise, and F (u) =
−(∂/∂u)V (u) is a drift force. If γ and σ̂ are constant, the
equilibrium distribution of u is described by

p(u|β) = 1

Z(β)
e−βV (u), (2)

where an intensive parameter is defined as β = 2γ /σ̂ 2 as in
Brownian motion of a particle with unit mass and Z(β) is a
normalization constant. In the framework of superstatistics,
the intensive parameter β is not constant but stochastically
fluctuates so that β has the probability density function f (β).
The parameter fluctuations are assumed to be on a long
time scale so that the system can temporarily reach local
equilibrium. In this case, the marginal probability p(u) is
described by

p(u) =
∫ ∞

0
p(u|β) f (β) dβ. (3)

In this paper, we will consider only the case of linear
drift force F (u) = −u. In this case, the local equilibrium
distribution p(u|β) is restricted to a Gaussian:

p(u|β) =
√

β

2π
exp

(
−β

2
u2

)
. (4)

For practical applications of superstatistical distributions
[Eq. (3)], Beck et al. reported that many experimental data
fall into three different classes [11]: χ2 superstatistics, inverse
χ2 superstatistics, and log-normal superstatistics (as shown
in Fig. 1). In the χ2 superstatistics (also called gamma
superstatistics), the intensity parameter β is χ2 distributed
with degree n:

f (β) = 1

�
(

n
2

) (
n

2β0

) n
2

β
n
2 −1 e

− nβ

2β0 , (5)

where n takes a positive real number, β0 is the mean of β,
and �(x) is the Gamma function. Equation (5) has the same
functional form as the gamma distribution [2], because n is not
restricted to the integer value, and β0 corresponds to a scale
parameter of the gamma distribution. In this case, the marginal
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FIG. 1. (Color online) Examples of superstatistical distributions in (a, b) χ2 superstatistics, (c, d) inverse χ 2 superstatistics, and
(e, f) log-normal superstatistics. For (a–d) χ 2 and inverse χ 2 superstatistics, n = 2, 3, 5, 10, and 100 from top to bottom. For log-normal
superstatistics, s = 1.2, 1.0, 0.8, 0.5, and 0.1 from top to bottom. For comparison, the dashed lines indicate a Gaussian distribution.

probability p(u) [Eq. (3)] results in

p(u) =
√

β0 �
(

n+1
2

)
√

π n �
(

n
2

) (
1 + β0

n
u2

)− n+1
2

, (6)

which is the same form as the q-Gaussian distribution with q =
(n + 3)/(n + 1), also called the Student t distribution. This
superstatistical distribution [Eq. (6)] appears in the framework
of Tsallis statistics [16]. As a characteristic feature of this
class, the superstatistical distributions exhibit power-law tails
for large |u|:

p(u) ∼ |u|−(n+1). (7)

On the other hand, in the inverse χ2 superstatistics (also
called inverse gamma superstatistics), β−1 rather than β is χ2

distributed with degree n. That is, f (β) is given by the inverse

χ2 distribution [17]:

f (β) = 1

�
(

n
2

) (
nβ0

2

) n
2

β− n
2 −1 e

− nβ0
2β , (8)

where n takes real positive values, β0 is a scale parameter,
and this equation has the same functional form as the inverse
gamma distribution [2]. In this case, the marginal probability
p(u) [Eq. (3)] results in

p(u) = (nβ0)
n+1

4

√
π �

(
n
2

) ( |u|
2

) n−1
2

Kn−1
2

(
√

nβ0 |u|), (9)

where Kα(u) is the modified Bessel function of the second
kind [18]. In the special case of n = 2, p(u) results in the
bilateral exponential distribution, also known as the Laplace
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distribution:

p(u) =
√

β0

2
e−√

2β0|u|. (10)

In the log-normal superstatistics, β is log-normally dis-
tributed:

f (β) = 1√
2πsβ

exp

{
− ln2 (β/m)

2s2

}
, (11)

where m and s2 are suitable mean and variance parameters,
respectively. In this case, the marginal probability p(u)
[Eq. (3)] is given by

p(u) = 1

2πs

∫ ∞

0
β−1/2 exp

{
−β

2
u2 − ln2 (β/m)

2s2

}
dβ, (12)

which does not have a closed form. This distribution [Eq. (12)]
has the same form as the multiplicative log-normal distribution
[19,20].

In this paper, as a possible generalization of the above
superstatistical processes, we study non-Gaussian processes
with variance heterogeneity. Our approach is closely related
with Castaing’s formulation of a PDF observed in turbu-
lencelike fluctuations [19–21]. In the study of the velocity
difference between two points in fully developed turbulent
flows, Castaing et al. [19] introduced the following equation:

p(u) =
∫ ∞

0

1

σ
PL

(
u

σ

)
G(ln σ ) d(ln σ ), (13)

where PL describes velocity fluctuations at integral scale L and
G describes the nature of the fluctuating energy dissipation.
Under Kolmogorov’s refined similarity hypothesis [22], G is
assumed to be an infinitely divisible distribution, such as a
Gaussian distribution. In this framework, if we consider the
PDF observed at a fixed scale, Castaing’s equation [Eq. (13)]
can be seen as another form of superstatistics. That is, Eq. (13)
can be recast as

p(u) =
∫ ∞

0
p(u|σ ) g(σ ) dσ, (14)

where p(u|σ ) = PL(u/σ ) /σ and g(σ ) = G(ln σ )/σ . In this
case, if PL(u) in Eq. (13) is assumed to be the standard
Gaussian distribution, p(u|σ ) is described by

p(u|σ ) = 1√
2πσ

exp

(
− u2

2σ 2

)
, (15)

and the fluctuation of the standard deviation σ is described
by g(σ ). In the framework of superstatistics, if the noise
strength σ̂ , instead of β, fluctuates so that σ = σ̂ /

√
2γ has

the probability density function g(σ ), the marginal probability
p(u) is described by Eq. (14).

In the next section, to characterize superstatistical distribu-
tions, we will introduce log-amplitude cumulants, defined as
cumulants of G in Eq. (13). As we will see in Sec. III, the
advantage of our approach is that the log-amplitude cumulants
can provide closed-form expressions for all of the log-
amplitude cumulants of the above-mentioned superstatistical
distributions. Because the log-amplitude cumulants can be
directly estimated from the observed time series, they are
applicable to parameter estimation and model selection for
superstatistical distributions. Furthermore, we will show that

χ2 and inverse χ2 superstatistics with n = 2 have an intriguing
relation with an extreme value distribution known as the
Gumbel distribution. In these cases, the marginal probabilities
result in the Student t distribution with degree 2, which is
the same as the q-Gaussian distribution with q = 5/3 and
the bilateral exponential distribution, respectively. Thus, our
finding suggests that the extreme value distribution could
be involved in the appearance of two special non-Gaussian
distributions.

In addition, it is also important to note that superstatistics
assumes the time-scale separation between fast relaxation of
the local dynamics and slow driving of the intensity parameter.
Hence, to study the superstatistical processes, a method to
estimate the time scale characteristic of the intensity parameter
fluctuations is required. To this end, we will introduce the
log-amplitude autocovariance and characterize superstatistical
processes in Sec. IV. As an application of our approach, we
will study non-Gaussian fluctuations observed in a stock index
futures market.

II. DEFINITION OF LOG-AMPLITUDE CUMULANTS

In this section, we define log-amplitude cumulants to
characterize non-Gaussian distributions. By the change of the
variable y = ln σ in Eq. (13), the marginal probability p(u) is
expressed by

p(u) =
∫ ∞

−∞
p (u|y) G(y) dy, (16)

where p(u|y) = PL

(
u e−y

)
e−y , and y is referred to as the

log amplitude [21]. In this framework, we define the kth log-
amplitude cumulant Ck as the kth cumulant of Y , where Y is
a random variable following the distribution G(y). The log-
amplitude cumulants Ck are given by the cumulant-generating
function:


G(q) = ln〈eqY 〉 = ln

{∫ ∞

−∞
eqy G(y) dy

}
, (17)

where 〈 · 〉 denotes the expectation value. Using 
G(q), Ck can
be extracted as

Ck = dk
(q)

dqk

∣∣∣∣
q=0

. (18)

For instance, from a formal power series of 
G(q),

ln〈eqY 〉 = −
∞∑
i=1

(1 − 〈eqY 〉)i
i

= −
∞∑
i=1

1

i

⎛
⎝−

∞∑
j=1

〈Y j 〉q
j

j !

⎞
⎠

i

= 〈Y 〉q + (〈Y 2〉 − 〈Y 〉2)
q2

2!
+ · · · , (19)

the first three log-amplitude cumulants can be expressed by

C1 = 〈Y 〉, (20)

C2 = 〈Y 2〉 − 〈Y 〉2, (21)

C3 = 〈Y 3〉 − 3〈Y 2〉〈Y 〉 + 2〈Y 〉3. (22)
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Note that C2 and C3 are equal to, respectively, the second and
third central moments of Y .

If we assume G(y) = δ(y − ln σ0), p(u) is described by a
Gaussian distribution with variance σ 2

0 . In this case, the Ck are
given by

C1 = ln σ0, (23)

Ck = 0 for k � 2. (24)

Therefore, nonzero values of Ck for k � 2 can characterize
systematic deviations from a Gaussian shape.

It is important to point out that the log-amplitude cumulants
Ck can be directly estimated from the observed time series {ui}.
To explain this, we assume a multiplicative stochastic process
{U1,U2, . . . ,Ui, . . .} as described by

Ui = Wi exp Yi, (25)

where Wi and Yi are random variables independent of each
other and obey p(u|y = 1) and G(y), respectively, in Eq. (16).
In this process, the PDF of Ui is given by Eq. (16). If we
assume that Wi is a standard Gaussian random variable with
zero mean and unit variance, it is possible to derive the
relation between logarithmic absolute moments of Ui and
log-amplitude cumulants Ck [21]. For instance, the first three
log-amplitude cumulants are given by

C1 = 〈ln |Ui |〉 + ln 2 + γ

2
, (26)

C2 = 〈(ln |Ui | − 〈ln |Ui |〉)2〉 − π2

8
, (27)

C3 = 〈(ln |Ui | − 〈ln |Ui |〉)3〉 + 7

4
ζ (3), (28)

where γ ≈ 0.57721566 is the Euler-Mascheroni constant and
ζ (n) is the Riemann zeta function [ζ (3) ≈ 1.2020569]. Thus,
using Eqs. (26)–(28), we can estimate Ck from an observed
time series {ui}, where ui is a realization of Ui .

III. LOG-AMPLITUDE CUMULANTS OF
SUPERSTATISTICAL DISTRIBUTIONS

In this section, we study the relation between super-
statistical distributions [Eq. (3)] and the Castaing-type de-
scription [Eq. (16)] and provide closed-form expressions
of log-amplitude cumulants for superstatistical distributions
[Eqs. (6), (9), and (12)].

From the comparison between Eqs. (3) and (16), the f (β)
can be transformed into the G(y) as

G(y) = 2e−2y f (e−2y). (29)

Using this relation, we can obtain the Castaing-type descrip-
tion of a superstatistical distribution.

In the case of χ2 superstatistics [Eq. (5)], the corresponding
G(y) is given by

G(y) = 2

�
(

n
2

) exp

{
−

y − 1
2 ln n

2β0

1/n
− exp

(
−

y − 1
2 ln n

2β0

1/2

)}
,

(30)

and its cumulant-generating function is given by


G(q) = 1

�
(

n
2

) (
n

2β0

)q/2

�

(
n − q

2

)
. (31)

From this, we can obtain all of the log-amplitude cumulants
Ck as

C1 = 1

2

{
ln

(
n

2β0

)
− ψ (0)

(n

2

)}
, (32)

Ck = 1

(−2)k
ψ (k−1)

(
n

2

)
for k � 2, (33)

where ψ (m)(x) is the polygamma function of order m, defined
as the (m + 1)th derivative of the logarithm of the gamma
function.

Intriguingly, when n = 2, Eq. (30) is coincident with
the Gumbel distribution for the maximum extreme [23]. In
extreme value statistics, the Gumbel distribution is known
as one of the extreme value distributions [24] which are
the limiting distributions for the maximum or the minimum
among a large number of independent identically distributed
random variables [23]. As Gaussian and stable distribu-
tions are natural limit distributions when considering linear
combinations such as sums of independent variables [25],
extreme value distributions are natural limit distributions when
considering min and max operations of independent variables.
They naturally emerge in contexts related to reliability and
risk assessments where one needs to consider extreme events
such as floods, hurricanes, and earthquakes. Using extreme
value distributions, it is possible to assess the occurrence
probability of such extreme events. In the χ2 superstatistics
when n = 2, the marginal probability p(u) results in the
Student t distribution with degree 2, which exhibits power-law
tails, asymptotically as |u|−3. This distribution is also known
as the q-Gaussian distribution with q = 5/3. Hence, the
appearance of this distribution may indicate the existence of
the max operation in the system.

In the case of inverse χ2 superstatistics [Eq. (8)], the
corresponding G(y) is given by

G(y) = 2

�
(

n
2

) exp

{
y + 1

2 ln n
2β0

1/n
− exp

(
y + 1

2 ln n
2β0

1/2

) }
,

(34)

and its cumulant-generating function is given by


G(q) = 1

�
(

n
2

) (
2

nβ0

)q/2

�

(
n + q

2

)
. (35)

From this, we can obtain the log-amplitude cumulants Ck as

C1 = 1

2

{
ln

(
2

nβ0

)
+ ψ (0)

(n

2

)}
, (36)

Ck = 1

2k
ψ (k−1)

(
n

2

)
for k � 2. (37)

When n = 2, Eq. (34) is coincident with the Gumbel distri-
bution for the minimum extreme, which is again an extreme
value distribution. In this case, the marginal probability p(u)
results in the bilateral exponential distribution [Eq. (10)].
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In the case of log-normal superstatistics [Eq. (11)], the
corresponding G(y) is given by

G(y) = 1√
2π (s/2)

exp

{
−

(
y + 1

2 ln m
)2

2(s/2)2

}
, (38)

and its cumulant-generating function is given by


G(q) = m− q

2 e
q2s2

8 . (39)

From this, we can obtain the log-amplitude cumulants Ck as

C1 = − ln m

2
, (40)

C2 = s2

4
, (41)

Ck = 0 for k � 3. (42)

From the viewpoint of log-amplitude cumulants, the log-
normal superstatistical distribution plays a central role in
non-Gaussian distribution families, analogous to a Gaussian
distribution in which all of the cumulants beyond the second
cumulant are zero. When we consider the fluctuation of the
standard deviation σ , a log-normally distributed σ can be
derived from the maximum entropy principle [26]. Because of
σ > 0, we can infer that at least the mean and variance
of ln σ are fixed throughout time. Under these constraints,
the log-normal distribution can be obtained as the maximum
entropy distribution of σ . Therefore, the normally distributed
log amplitude [Eq. (38)] may emerge naturally.

IV. PARAMETER ESTIMATION FOR SUPERSTATISTICAL
DISTRIBUTIONS

In the previous section, we derived closed-form expressions
of log-amplitude cumulants Ck for three superstatistical
distributions. As shown in Figs. 2(a) and 2(b), there exists the
one-to-one correspondence between C2 and model parameters.
Furthermore, as shown in Fig. 2(c), the difference among
three superstatistical models can be characterized by C3.
In the (C2,C3) plane shown in Fig. 2(c), we can clearly
see the symmetric structure between χ2 and inverse χ2

superstatistics, where the line of symmetry corresponds to log-
normal superstatistics. Hence, the log-amplitude cumulants
are applicable to parameter estimation and model selection

for superstatistical distributions. In this section, we propose a
parameter estimation method using Ck , and we study numer-
ical and real-world examples involved with superstatistical
distributions.

To explain our approach, let us assume that a sta-
tionary time series {ui}Ni=1 follows a superstatistical dis-
tribution. To estimate the logarithmic absolute moments,〈
(ln |Ui | − 〈ln |Ui |〉)k

〉
, in Eqs. (26)–(28), we employ the

following estimators:

Mk = 1

N

N∑
i=1

(ln |ui | − M1)k (k = 2,3, . . .), (43)

where M1 is the estimator of 〈ln |Ui |〉:

M1 = 1

N

N∑
i=1

ln |ui |. (44)

Using Mk , the parameter n in χ2 [Eq. (5)] and inverse χ2

[Eq. (8)] superstatistics can be estimated from

n = 2�(1)

(
4M2 − π2

2

)
, (45)

where �(m)(x) is the inverse function of the polygamma
function ψ (m)(x). In log-normal superstatistics, the parameter
s2 [Eq. (11)] can be estimated from

s2 = 4M2 − π2

2
. (46)

Except for the case of n � 2 in χ2 superstatistics, the
time series {ui} can be standardized to zero mean and unit
variance. If {ui} is already standardized, the value of a scale
parameter, such as β0 and m, is uniquely determined by the
other parameter value. That is, for the χ2 superstatistical
distribution with n > 2, the β0 is given by

β0 = n

n − 2
, (47)

for the inverse χ2 superstatistical distribution,

β0 = 1, (48)

and for the log-normal superstatistical distribution,

m = e
s2

2 . (49)

FIG. 2. (Color online) Relation between the first three log-amplitude cumulants and parameters in superstatistical distributions. (a) The
second log-amplitude cumulant C2 vs the shape parameter n of χ 2 and inverse χ 2 superstatistical distributions. (b) C2 vs the shape parameter
s of log-normal superstatistical distribution. (c) The third log-amplitude cumulant C3 vs C2 of χ 2, inverse χ 2 (inv-χ 2), and log-normal
superstatistical distributions.
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FIG. 3. (Color online) Numerically generated time series of
superstatistical processes [Eqs. (50) and (51)], where γ = 10 and
T = 5. (a) The χ 2 superstatistical process, where f (β) is Eq. (5)
with n = 2 and β0 = 7. (b) The inverse χ 2 superstatistical process,
where f (β) is Eq. (8) with n = 2 and β0 = 1.

By substitution of those relations into the first log-amplitude
cumulant C1, the value of C1 can be estimated from the
standardized time series. Hence, based on the estimated C1

and C2, it is possible to determine a candidate distribution
for the non-Gaussian time series. Although agreement of
higher-order log-amplitude cumulants is also important for the
model selection, an accurate estimation of such higher-order
statistics requires much larger amounts of data points. Hence,
lower-order statistics, such as C1 and C2, can provide more
accurate estimation.

For the case of χ2 superstatistical distributions with n � 2,
the variance is not finite. Therefore, proper standardization of
the observed time series is impossible, which means that the
time series no longer satisfy Eq. (47). However, all of the log-
amplitude cumulants have finite values. Thus, the estimated
values of C2 and C3 can provide useful information for the
model selection. In addition, C1 can be used for estimation of
the scale parameter β0.

A. Numerical tests

To test our approach, we carry out numerical experiments.
To generate time series following superstatistical distributions,
we consider a superstatistical process as mentioned in the
Introduction. Here we perform numerical integrations of the
stochastic differential equation:

du(t) = −γ u(t) dt +
√

2γ

β(t)
dW (t), (50)

where γ is a constant and dW (t) is the infinitesimal increment
of a standard Wiener process W (t). In this case, β(t) is assumed
to be a step function with a time-step length T :

β(t) =
∞∑

j=0

Bj χIj
(t), (51)

where Bj is a random variable following f (βj ), Ij =
[jT ,(j + 1)T ) is the interval of time, and χIj

(t) is the indicator
function:

χIj
(t) =

{
1 if t ∈ Ij

0 if t /∈ Ij

. (52)

In superstatistical processes, the time scale T must be larger
than the time scale of the relaxation time 1/γ .

In our numerical study, we chose γ = 10 and assumed
f (βj ) to be a χ2 distribution [Eq. (5)] or inverse χ2 distribution
[Eq. (8)] with n = 2. For the numerical integration, we used the
Euler-Maruyama method with time step � = 0.001. Samples
of the numerically generated time series are shown in Fig. 3.
As shown in Fig. 4, the estimated PDFs (open circles) from
the time series are in good agreement with the theoretical
predictions (dashed lines).

In general, accurate estimation of higher-order cumulants
from the observed time series requires large amounts of data.
To evaluate the accuracy of the estimated Ck , we generated
1000 samples with N data points at sampling intervals at T

and estimated C1, C2, and C3 from these samples. As shown
in Fig. 5, the sample averages were in a good agreement with
the theoretical predictions (dashed lines).

FIG. 4. (Color online) The probability density function (PDF) of superstatistical processes where γ = 10 and T = 5. (a) The χ2

superstatistical process, where f (β) is Eq. (5) with n = 2 and β0 = 7. (b) The inverse χ 2 superstatistical process, where f (β) is Eq. (8)
with n = 2 and β0 = 1. The PDFs (open circles) were estimated from the numerically generated time series (Fig. 3). The dashed lines indicate
the theoretical distributions.
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FIG. 5. (Color online) Estimated values of log-amplitude cumulants Ck from the numerically generated time series (Fig. 3) with number of
data points N . The mean values of 1000 samples of χ 2 and inverse χ 2 superstatistical processes with n = 2 are indicated by triangles (blue)
and circles (red), respectively. The dashed lines correspond to the theoretical values. The error bars denote the 5th and 95th percentiles of the
estimated values.

In the study of superstatistical processes, it is also important
to evaluate the time scale T , because the time-scale separation
between fast relaxation of the local dynamics and slow driving
of the intensity parameter β is essential for the superstatistical
process. To estimate the time scale T in our model, we here
define the log-amplitude autocovariance of a stochastic process
{U (t)} as

Rln |u|(s) = 〈ln |U (t)| ln |U (t + s)|〉 − 〈ln |U (t)|〉2. (53)

By taking the limit 1/γ → 0 in Eq. (50), we obtain

Rln |u|(s) =

⎧⎪⎨
⎪⎩

C2 + π2

8 if s = 0

C2 |T − s| if 0 < s < T

0 if T � s

, (54)

FIG. 6. (Color online) The log-amplitude autocovariance of χ2

superstatistical processes in which n = 2, β0 = 7, and γ = 10.
(a) T = 5. (b) T = 10. The estimates (open circles) from a sample
time series are in good agreement with the theoretical prediction
(dashed lines) of Eq. (54).

where C2 is the second log-amplitude cumulant of {U (t)}.
To derive Eq. (54), a Gaussian white noise process under a
constant βj is assumed. As shown in Fig. 6, the estimated
Rln |u|(s) are in good agreement with the theoretical prediction
of Eq. (54). Hence, the time scale T can be evaluated as
the time lag where Rln |u|(s) reaches zero. On the other
hand, if an observed time series {ui} is a realization of
a stochastic process described by independent identically
distributed random variables, we obtain Rln |u|(s) = 0 for
s 
= 0.

B. Analysis of real-world time series

As an application of our approach, we study non-Gaussian
properties of real-world time series observed in a stock index
futures market. The data are the historical data of Nikkei 225
futures for the 3-yr period from 1 August 2005 to 31 July
2008, with a sampling frequency of 1-min intervals, as shown
in Fig. 7. The Nikkei 225 futures market is a form of futures
contract where the underlying commodity is the Nikkei 225
stock average. In this market, a futures contract is an agreement
to buy or sell a standardized value of the stock index, on a future
date at a specified price. For Nikkei 225 futures, the contract
unit is defined as the value of the Nikkei 225 × 1000 yen.
In addition, the minimum fluctuation has been set to 10 yen,
causing each tick to cause a fluctuation in price of 10 000 yen.

In our analysis, we study the price fluctuations {r�t (t)}
defined as the log return:

r�t (t) = ln
y(t + �t)

y(t)
, (55)

FIG. 7. (Color online) Historical data of Nikkei 225 futures for
the 3-yr period, from 1 August 2005 to 31 July 2008.
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FIG. 8. (Color online) (a) Autocovariance Rr (s) [Eq. (56)] and
(b) log-amplitude autocovariance Rln |r|(s) [Eq. (53)] estimated from
{r�t (t)} of Nikkei 225 futures.

where y(t) denotes the price of the Nikkei 225 futures at
time t . The total number of data points is about 2.5 × 105.

As already mentioned, the time-scale separation between
the local equilibrium relaxation and slow driving of the
intensity parameter is assumed in superstatistical processes.
To evaluate the local equilibrium relaxation time scale, we
employ the autocovariance of {U (t)} defined as

Ru(s) = 〈U (t) U (t + s)〉 , (56)

where 〈U (t)〉 = 0 is assumed [11]. In contrast, to evaluate the
driving time scale of log-amplitude fluctuations, we employ
the log-amplitude autocovariance Rln |u|(s) [Eq. (53)].

The estimated Ru(s) and Rln |u|(s) are shown in Fig. 8. In
the case of Nikkei futures {r10min(t)}, the autocovariance Rr (s)
decayed to near zero at s ≈ 10 min [Fig. 8(a)], where the pos-
itive correlation was observed only in the overlapping interval
of the log returns within �t = 10 min. This implies that the
local equilibrium relaxation is much faster than exponential
decay and that its relaxation time scale is shorter than 10 min.
Compared to this time scale, the log-amplitude autocovariance
Rln |r|(s) exhibited long range persistent correlation, shown
in Fig. 8(b). The strong correlations observed in the log-
amplitude fluctuation indicate heterogeneous and clustered
behavior of the variance of the time series {r10min(t)}. Hence,
the presumed main cause for the emergence of non-Gaussian
distributions is the variance heterogeneity.

Based on the decay time observed in Ru(s) [Fig. 8(a)], we
analyzed the log-return time series on scales equal to or larger
than 10 min. Estimated log-amplitude cumulants are shown in
Table I. If we estimate the parameter n for χ2 superstatistical
distributions, the estimated values were close to 2.0, as shown
in Table I. Moreover, as shown in Fig. 9, the observed PDFs
were well approximated by the χ2 superstatistical distribution
with n = 2.

TABLE I. The first three log-amplitude cumulants Ck and shape
parameter n in χ 2 superstatistical distributions estimated from log
returns {r�t (t)} of Nikkei 225 futures, where {r�t (t)} was not
standardized and n was calculated from C2.

�t C1 C2 C3 n

10 min −4.52 0.510 −0.486 1.73
15 min −4.23 0.428 0.076 1.95
20 min −4.03 0.387 0.371 2.09
25 min −3.88 0.363 0.534 2.18
30 min −3.76 0.365 0.557 2.17

As we discussed before, the χ2 and inverse χ2 super-
statistical distributions with n = 2 are special cases where
the log-amplitude fluctuations are subjected to extreme value
distributions. Hence, the appearance of such special PDFs
may be explained by a mechanism involving the asymptotic
limit distribution of extreme values. However, our finding is
not sufficient to confirm this point. Thus, further studies are
required to understand the fundamental mechanism.

V. SUMMARY AND DISCUSSION

We studied superstatistical processes including log-
amplitude fluctuations [Eq. (16)]. Using this framework, we
showed that χ2 and inverse χ2 superstatistics with n = 2 are
closely related to extreme value distributions. In these cases,
the marginal distributions result in the q-Gaussian distribution
with q = 5/3 (also known as the Student t distribution with
degree 2) and the bilateral exponential distribution, respec-
tively. This finding may help us understand the asymptotic
appearance of these superstatistical distributions.

In addition, to characterize superstatistical processes, we
proposed log-amplitude cumulants and log-amplitude auto-
covariance. The advantage of the log-amplitude statistics is
that the log-amplitude cumulants can provide closed-form
expressions for χ2, inverse χ2, and log-normal superstatis-
tical distributions. As we demonstrated in numerical and
real-world examples, the log-amplitude cumulants can be

FIG. 9. (Color online) Probability density functions esti-
mated from {r�t (t)} of Nikkei 225 futures, where �t =
10, 15, 20, 25, and 30 min from top to bottom. In (a, b), the χ2

superstatistical distributions with n = 2 are represented by the dashed
lines.
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FIG. 10. (Color online) The (C2, C3) plane for Lévy stable distri-
butions [Eq. (57)], stretched exponential distributions [Eq. (58)], and
superstatistical distributions (dashed lines). The Cauchy distribution
(Cauchy) lies at the intersection of the Lévy stable distribution and
χ 2 superstatistical distribution families. The exponential distribution
(exponential) lies at the intersection of the stretched exponential
distribution and inverse χ 2 superstatistical distribution families.
The origin (C2,C3) = (0,0) corresponds to a Gaussian distribution
(Gaussian).

directly estimated from the observed time series. Beck-Cohen
superstatistics [2,10,11] has been very successful in describing
non-Gaussian fluctuations. Including such examples, our
method can be used to characterize non-Gaussian fluctuations
observed in a wide variety of real-world signals.

While in this paper we focused on superstatistical models,
it is important to note that the log-amplitude cumulants
are applicable to a large class of symmetric non-Gaussian
distributions [21]. To discuss some general features of the
log-amplitude statistics, we consider the symmetric Lévy
stable distribution:

PLévy(x) = 1

π

∫ ∞

0
exp (−ξα qα) cos (qx) dq, (57)

where 0 < α � 2 and ξ > 0, and the two-tailed stretched
exponential distribution:

Pexp(x) = αξ 1/α

2� (1/α)
exp (−ξ |x|α) , (58)

where 0 < α � 2 and ξ > 0. In both cases α is the shape
parameter and ξ is the scale parameter. When α = 2, Eqs. (57)
and (58) coincide with a Gaussian distribution. Note that here
we consider independent and identically distributed random
variables, different from superstatistical models with variance
heterogeneity.

In the case of the Lévy stable distribution [Eq. (57)] with
0 < α < 2, the variance and higher moments are infinite. In
contrast, all of the log-amplitude cumulants are finite and
given by closed-form expressions. For instance, the second and
third log-amplitude cumulants of PLévy(x) are, respectively,

given by

C2 =
(

1

6α2
− 1

24

)
π2, (59)

C3 =
(

2

α3
− 1

4

)
ζ (3). (60)

In the case of the stretched exponential distribution [Eq. (58)],
all of the log-amplitude cumulants are also given by closed-
form expressions, such as

C2 = 1

α2
ψ (1)

(
1

α

)
− π2

8
, (61)

C3 = 1

α3
ψ (2)

(
1

α

)
+ 7

4
ζ (3) . (62)

The relations between C2 and C3 for the above distributions
[Eqs. (57) and (58)], together with superstatistical distribu-
tions, are shown in Fig. 10. Because all of the log-amplitude
cumulants beyond the first one are independent of the scale
parameter ξ , the non-Gaussian properties depending on the
shape parameter α are mainly characterized by C2 and C3.
Namely, in a broad sense the deviation from a Gaussian shape
can be quantified by C2, and the thickness of tails compared
to log-normal superstatistical distributions can be quantified
by C3. In the case of inverse χ2 superstatistical distributions
[Eq. (9)] the asymptotic behavior for large |u| is evaluated as

p(u) ∼ |u|n−2 exp(−|u|). (63)

When n < 2, this decay is faster than that of the stretched
exponential distribution [Eq. (58)], Pexp(x) ∼ exp(−|x|α),
with the same value of C2. Therefore, as shown in Fig. 10,
the smaller values of C3 in the inverse χ2 superstatistics imply
a faster decay in the tails. As we have shown, it is possible
to derive log-amplitude cumulants for a variety of symmetric
non-Gaussian distributions. Hence, the log-amplitude statistics
are applicable to parameter estimation and model selection for
a large class of non-Gaussian distributions.

In our analysis of stock index futures, we demonstrated
that the non-Gaussian distributions of the log-return time
series were well approximated by the χ2 superstatistical
distribution with n = 2 [Fig. 9]. Of particular interest to us
is the appearance of this distribution suggesting a link with
the extreme value distribution for maxima. It is known that a
stop-loss order is one of the most crucial orders in trading. As
a reference for placing a stop loss, traders may use the biggest
change in the high-low range over a fixed period or the lowest
low (or highest high) of the preceding few days. Such trading
strategies may result in the appearance of the extreme value
distribution. However, our analysis is not sufficient to confirm
this point. A detailed discussion of this problem is beyond the
scope of this paper and will be discussed in future work.
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