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Abstract

In this paper, we consider tests of correlation when the sample size is much
lower than the dimension. We propose a new estimation methodology called
the extended cross-data-matrix methodology. By applying the method, we
give a new test statistic for high-dimensional correlations. We show that
the test statistic is asymptotically normal when p → ∞ and n → ∞. We
propose a test procedure along with sample size determination to assure both
prespecified size and power for testing high-dimensional correlations. We
further develop a multiple testing procedure to control both family wise error
rate and power. Finally, we demonstrate how the test procedures perform in
actual data analyses by using two microarray data sets.

Keywords: Cross-data-matrix methodology; Graphical modeling; HDLSS;
High-dimensional regression; Pathway analysis; Two-stage procedure.

1. Introduction

A common feature of high-dimensional data is that the data dimension
is high, however, the sample size is relatively small. This is the so-called
“HDLSS” or “large p, small n” data situation where p/n → ∞; here p
is the data dimension and n is the sample size. The asymptotic studies
of this type of data are becoming increasingly relevant. In recent years,
substantial work had been done on the asymptotic behavior of eigenvalues
of the sample covariance matrix in the limit as p → ∞, see Johnstone [19]
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and Paul [22] for Gaussian assumptions and Baik and Silverstein [6] for non-
Gaussian but i.i.d. assumptions. Those literatures handled the cases when p
and n increase at the same rate, i.e. p/n→ c > 0. The asymptotic behaviors
of high-dimensional, low-sample-size (HDLSS) data were studied by Ahn et
al. [1], Hall et al. [16], and Yata and Aoshima [31] when p → ∞ while n is
fixed. They explored conditions to give a geometric representation of HDLSS
data. The HDLSS asymptotic study usually assumes either the normality as
the population distribution or a ρ-mixing condition as the dependency of
random variables in a sphered data matrix. See Jung and Marron [20]. Yata
and Aoshima [29] succeeded in investigating the consistency properties of
both eigenvalues and eigenvectors of the sample covariance matrix in more
general settings including the case that all eigenvalues are in the range of
sphericity. In addition, Yata and Aoshima [30] created the cross-data-matrix
(CDM) methodology that provides effective inference on the eigenspace for
HDLSS data. Recently, Chen and Qin [9] gave a two-sample test for high-
dimensional data. Aoshima and Yata [2, 3] developed a variety of high-
dimensional statistical inference based on the geometric representations and
gave sample size determination to assure prespecified accuracy. In this paper,
we consider tests of correlation coefficients for high-dimensional data and give
sample size determination to assure prespecified accuracy.

Let x1(∗),x2(∗), ... be a sequence of i.i.d. p+1-variate data vectors, where
xj(∗) = (xT

j , xj(∗))
T with xj = (x1j, ..., xpj)

T . Having recorded x1(∗), ...,xn(∗).
We assume n ≥ 4. Here, xj has unknown mean vector, µ, and unknown
covariance matrix, Σ (≥ O), and xj(∗) has unknown mean vector, µ∗, and
unknown variance, σ2

∗ ∈ (0,∞). Let θ = (µ∗, σ
2
∗,µ,Σ). We denote the

covariance vector between xj and xj(∗) by Covθ(xj, xj(∗)) = σ. We denote
the correlation coefficient vector between xj and xj(∗) by Corrθ(xj, xj(∗)) = ρ.
We consider testing the correlation between xj and xj(∗) by

H0 : ρ = 0 vs. H1 : ρ ̸= 0. (1)

The test of the correlation is a very important tool of pathway analysis or
graphical modeling for high-dimensional data. For example, Drton and Perl-
man [11] and Wille et al. [27] considered pathway analysis or graphical mod-
eling of microarray data by testing an individual correlation coefficient. On
the other hand, Hero and Rajaratnam [17] considered correlation screening
procedures for high-dimensional data by using a test of correlations. Zhong
and Chen [32] considered tests of a regression coefficient vector on linear
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regression models. Aoshima and Yata [2] created a test statistic for (1) by
using the CDM methodology.

Let Σ = HΛHT , where Λ is a diagonal matrix of eigenvalues, λ1 ≥ · · · ≥
λp ≥ 0, and H is an orthogonal matrix of corresponding eigenvectors. We
assume that lim supp→∞ tr(Σ)/p < ∞. Let xj = HΛ1/2zj + µ, j = 1, ..., n.
Then, E(zj) = 0 and Var(zj) = Ip, where Ip denotes the identity matrix of
dimension p. In this paper, we assume the following model:

xj = Γwj + µ, (2)

where Γ = (γ1, ...,γr) is a p× r matrix for some r > 0 such that ΓΓT = Σ,
and wj, j = 1, ..., n, are i.i.d. random vectors having E(wj) = 0 and
Var(wj) = Ir. See also Bai and Saranadasa [5] and Chen and Qin [9]. Note
that the model (2) includes the case that Γ = HΛ1/2 and wj = zj. As for
wj = (w1j, ..., wrj)

T , we assume that

(A-i) The fourth moments of wijs are uniformly bounded, and wij, i =
1, ..., r, are independent.

We assume the following assumption for Σ as necessary:

(A-ii)
tr(Σ4)

tr(Σ2)2
→ 0 as p→ ∞.

Remark 1. If all λis are bounded, (A-ii) is trivially true. For a spiked
model such as λi = aip

αi (i = 1, ...,m) and λi = ci (i = m + 1, ..., p) with
positive constants ais, cis and αis, (A-ii) is true under the conditions that
αi < 1/2, i = 1, ...,m and m <∞. See Yata and Aoshima [30] for the details
of a spiked model. For Σ = c(ρ|i−j|q) with c (> 0), q (> 0) and ρ ∈ (0, 1),
(A-ii) holds. In addition, for the above cases, it holds that tr(Σ2) = O(p).

Let

xj(∗) = c∗wj∗ +
r∑

i=1

ciwij + µ∗, (3)

where c∗ and cis are constants such that c2∗ +
∑r

i=1 c
2
i = σ2

∗, and wj∗ is a
random variable such that E(wj∗) = 0, E(w2

j∗) = 1, and E(wijwj∗) = 0 for
i = 1, ..., r. Note that

∑r
i=1 ciγi = σ and

∑r
i,i′ cici′γ

T
i γi′ = ||σ||2, where

|| · || denotes the Euclidean norm. Then, xj and xj(∗) (j = 1, ..., n) are
uncorrelated when

∑r
i=1 ciγi = 0. In this paper, we assume the following

assumption for wj∗ as necessary:
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(A-iii) The fourth moment of wj∗ is bounded, and wj∗ and wj are inde-
pendent.

If xj(∗) is Gaussian, (A-i) and (A-iii) hold.

Remark 2. Let wr+1j = wj∗ for each j. We consider the following as-
sumption: The fourth moments of wij, i = 1, ..., r + 1, are bounded, and
E(wα1

l1j
wα2

l2j
· · ·wαq

lqj
) = E(wα1

l1j
)E(wα2

l2j
) · · ·E(wαq

lqj
) for all l1 ̸= l2 ̸= · · · ̸= lq ∈

[1, r + 1], where αis are integers within [0, 4] such that
∑q

i=1 αi ≤ 8. See
Chen and Qin [9] and Zhong and Chen [32] for the assumption. Then, we
can claim all the results in this paper under the assumption instead of (A-i)
and (A-iii).

Throughout this paper, we write that

Sn =
n∑

j=1

(xj − xn)(xj − xn)
T

n− 1
, Sn(∗) =

n∑
j=1

(xj(∗) − xn(∗))
2

n− 1

and sn(∗) =
n∑

j=1

(xj(∗) − xn(∗))(xj − xn)

n− 1
, (4)

where xn = n−1
∑n

j=1 xj and xn(∗) = n−1
∑n

j=1 xj(∗). When n > p, one may

consider a multiple correlation coefficient by ρ = (σTΣ−1σ/σ2
∗)

1/2. Then, a
test statistic of (1) is given by ρ̂ = (sTn(∗)S

−1
n sn(∗)/Sn(∗))

1/2. When xj(∗) is
Gaussian, a certain transformation of ρ̂ is distributed as an F-distribution.
See, for example, Chapter 4 in Fujikoshi et al. [13]. However, in the HDLSS
context where p > n, ρ̂ does not work since the inverse matrix of Sn does not
exist. Several authors considered substituting some estimators such as the
Moore-Penrose inverse matrix for S−1

n . See Srivastave [25] for example. Yata
and Aoshima [31] applied a method called the noise-reduction methodology
to estimating Σ−1 and compared performance of estimators of Σ−1. Refer to
Sections 7 and 8 of Yata and Aoshima [31]. As for a test of independence for
high-dimensional data, one may refer to Székely et al. [26] about distance
correlation.

In this paper, we provide test procedures for correlations appeared in
HDLSS data. In Section 2, we propose a new estimation method called the
extended cross-data-matrix methodology. By applying the method, we give a
new test statistic for high-dimensional correlations. We show that the test
statistic is asymptotically normal when p → ∞ and n → ∞. In Section 3,
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we propose a test procedure along with sample size determination to assure
both prespecified size and power for testing high-dimensional correlations.
In Section 4, we develop a multiple testing procedure to control both family
wise error rate and power. Finally, in Section 5, we demonstrate how the
test procedures perform in actual data analyses by using two microarray
data sets.

2. Test of high-dimensional correlations

Throughout this paper, we consider applying the following new estimation
method called the extended cross-data-matrix (ECDM) methodology. The
ECDM methodology is considered as an extension of the CDM methodology
developed by Yata and Aoshima [30].

2.1. Extended cross-data-matrix (ECDM) methodology

Let n(1) = ⌈n/2⌉ and n(2) = n − n(1), where ⌈x⌉ denotes the smallest
integer ≥ x. Now, we consider two sets V n(1)(k) and V n(2)(k) (k = 3, ..., 2n−1)
such that #(V n(l)(k)) = n(l), l = 1, 2, V n(1)(k) ∩ V n(2)(k) = ∅, V n(1)(k) ∪
V n(2)(k) = {1, ..., n} and

i ∈ V n(1)(i+j) and j ∈ V n(2)(i+j) for i < j (≤ n), (5)

where #(S) denotes the number of elements in a set S. Then, we find the
two sets as follows:

V n(1)(k) =

{{
⌊k/2⌋ − n(1) + 1, ..., ⌊k/2⌋

}
if ⌊k/2⌋ ≥ n(1),{

1, ..., ⌊k/2⌋
}
∪
{
⌊k/2⌋+ n(2) + 1, ..., n

}
otherwise

and

V n(2)(k) =

{{
⌊k/2⌋+ 1, ..., ⌊k/2⌋+ n(2)

}
if ⌊k/2⌋ ≤ n(1),{

1, ..., ⌊k/2⌋ − n(1)

}
∪
{
⌊k/2⌋+ 1, ..., n

}
otherwise

for k = 3, ..., 2n− 1, where ⌊x⌋ denotes the largest integer ≤ x. The ECDM
methodology is a method to provide an unbiased estimator by using V n(1)(i+j)

and V n(2)(i+j).
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Let

xn(1)(k) = n−1
(1)

∑
j∈V n(1)(k)

xj, xn(2)(k) = n−1
(2)

∑
j∈V n(2)(k)

xj,

xn(1∗)(k) = n−1
(1)

∑
j∈V n(1)(k)

xj(∗), and xn(2∗)(k) = n−1
(2)

∑
j∈V n(2)(k)

xj(∗)

for k = 3, ..., 2n − 1. Note that Eθ{(xi(∗) − xn(1∗)(i+j))(xi − xn(1)(i+j))} =
n−1
(1)(n(1) − 1)σ and Eθ{(xj(∗) − xn(2∗)(i+j))(xj −xn(2)(i+j))} = n−1

(2)(n(2) − 1)σ

for i < j(≤ n). From (5), we emphasize the following facts:

(i) xi − xn(1)(i+j) and xj − xn(2)(i+j) are independent;

(ii) xi(∗) − xn(1∗)(i+j) and xj(∗) − xn(2∗)(i+j) are independent

for i < j (≤ n). We propose an estimator of ||σ||2 by

T̂n,σ =
2un

n(n− 1)

n∑
i<j

(xi − xn(1)(i+j))
T (xj − xn(2)(i+j))

× (xi(∗) − xn(1∗)(i+j))(xj(∗) − xn(2∗)(i+j)), (6)

where un = n(1)n(2)/{(n(1) − 1)(n(2) − 1)}. Then, we note that Eθ(T̂n,σ) =
||σ||2. Let Var(w2

ij) =Mi, i = 1, ..., r. Let σ4
∗ = (σ2

∗)
2. Under (A-i) to (A-iii),

from Lemma A.1 in Appendix, we have as p→ ∞ and n→ ∞ that

Varθ(T̂n,σ) =
{2σ4

∗tr(Σ
2)

n2
+

4

n

(
σ2
∗σ

TΣσ + ||σ||4

+
r∑

i=1

(Mi − 2)c2i (σ
Tγi)

2
)}

{1 + o(1)}. (7)

Remark 3. Another unbiased estimator of ||σ||2 is

T̂n,σ(AY ) =
1

(n(1) − 1)(n(2) − 1)

n(1)∑
i=1

n∑
j=n(1)+1

(xi − xn(1)(n+1))
T (xj − xn(2)(n+1))

× (xi(∗) − xn(1∗)(n+1))(xj(∗) − xn(2∗)(n+1))

that was given by Aoshima and Yata [2] when applying the CDM methodol-

ogy. Then it holds as p→ ∞ and n→ ∞ that Varθ(T̂n,σ(AY )) = [4σ4
∗tr(Σ

2)

6



/n2 +4{σ2
∗σ

TΣσ+ ||σ||4 +
∑r

i=1(Mi − 2)c2i (σ
Tγi)

2}/n]{1+ o(1)} under (A-

i) to (A-iii). Thus the asymptotic variance of T̂n,σ is smaller than that of

T̂n,σ(AY ). The ECDM methodology is not a resampling-based extension of
the CDM methodology. The ECDM methodology considers the combination
of cross data matrices so as to construct an unbiased estimator efficiently
and enjoy desirable properties in non-Gaussian situations. See Section 2.5
for the details. As for a resampling-based extension, see Aoshima and Yata
[4].

Remark 4. One can save the computational cost of T̂n,σ by substituting
previously calculated xn(i)(k)s and xn(i∗)(k)s in (6). Then, the computational

cost of T̂n,σ is written by the order, O(n2p).

2.2. Asymptotic distribution of T̂n,σ

We assume the following extra assumption:

(A-iv) lim inf
σ2
∗

√
tr(Σ2)

n||σ||2
> 0 as p→ ∞ and n→ ∞ when ||σ||2 ̸= 0.

Then, we have the following theorem.

Theorem 2.1. Assume (A-i) to (A-iv). It holds as p→ ∞ and n→ ∞ that

T̂n,σ − ||σ||2√
Varθ(T̂n,σ)

⇒ N(0, 1), (8)

where “⇒” denotes the convergence in distribution and N(0, 1) denotes a
random variable distributed as the standard normal distribution.

If one cannot assume (A-iv), we have the following result.

Corollary 2.1. Assume (A-i) and (A-iii). Assume σ2
∗

√
tr(Σ2)/(n||σ||2) =

o(1). Then, it holds as p→ ∞ and n→ ∞ that

T̂n,σ
||σ||2

= 1 + op(1).

7



We emphasize that the assertion in Theorem 2.1 is still claimed under
the HDLSS setting where p/n → ∞. From the facts that

∑r
i=1 c

2
i (σ

Tγi)
2 ≤

σ2
∗σ

TΣσ ≤ σ2
∗||σ||2λ1 ≤ σ2

∗||σ||2tr(Σ4)1/4 and lim supn||σ||2/{σ2
∗tr(Σ

2)1/2}
< ∞ under (A-iv), we note that Varθ(T̂n,σ)/{2σ4

∗tr(Σ
2)/n2} = 1 + o(1) as

p→ ∞ and n→ ∞ under (A-i) to (A-iv). Since Σ and σ2
∗ are unknown, it is

necessary to estimate tr(Σ2) and σ2
∗. By applying the ECDM methodology,

we propose an estimator of tr(Σ2) by

Wn =
2un

n(n− 1)

n∑
i<j

{(xi − xn(1)(i+j))
T (xj − xn(2)(i+j))}2. (9)

We note that Eθ(Wn) = tr(Σ2). As for the variance of Wn, see Section 2.5.
Then, we have the following result.

Corollary 2.2. Assume (A-i) to (A-iv). It holds as p → ∞ and n → ∞
that

T̂n,σ − ||σ||2

Sn(∗)
√
2Wn/n

⇒ N(0, 1).

Remark 5. From (7), under (A-i) to (A-iv), it holds as p→ ∞ and n→ ∞
that

Varθ(T̂n,σ)

2σ4
∗tr(Σ

2)/n2

= 1 +
2n

{
σ2
∗σ

TΣσ + ||σ||4 +
∑r

i=1(Mi − 2)c2i (σ
Tγi)

2
}

σ4
∗tr(Σ

2)
+ o(1) = 1 + o(1).

Thus one may write (8) as

T̂n,σ − ||σ||2

σ2
∗

√
2tr(Σ2)(1 + u)/n

⇒ N(0, 1),

where u = 2n{σ2
∗σ

TΣσ + ||σ||4 +
∑r

i=1(Mi − 2)c2i (σ
Tγi)

2}/{σ4
∗tr(Σ

2)}.

Let us observe Corollary 2.2 in view of Remark 5. Now, we considered an
easy example such as µ = 0, Σ = (0.3|i−j|1/3), µ∗ = 0, σ2

∗ = 1, Γ = HΛ1/2

and ρ = 0 (c1 = · · · = cr = 0, c∗ = 1) or ρ ̸= 0 (||σ||2 =
∑10

i=1 λi/20;

c1 = · · · = c10 =
√

1/20, c∗ =
√
1/2 and the other cis are 0). Note that
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(a) p = 20, n = 10 (b) p = 100, n = 20

(c) p = 500, n = 40 (d) p = 2500, n = 80

Figure 1: The solid lines are probability densities of A : N(0, 1) and B : N(ω, 1 + u). The

histograms of T̂n,σ/{Sn(∗)
√
2Wn/n} for both the cases of ρ = 0 and ρ ̸= 0 fit the solid

lines with increasing dimension and sample size: (a) (p, n) = (20, 10), (b) (p, n) = (100, 20),
(c) (p, n) = (500, 40), and (d) (p, n) = (2500, 80).

r = p and ||σ||2 =
∑p

i=1 c
2
iλi from Γ = HΛ1/2. We considered four cases:

(a) p = 20, n = 10, (b) p = 100, n = 20, (c) p = 500, n = 40, and
(d) p = 2500, n = 80. Fig.1 (a), (b), (c) and (d) give the histograms

of 2000 independent outcomes of T̂n,σ/{Sn(∗)
√
2Wn/n} both when ρ = 0

and ρ ̸= 0. Here, xj, j = 1, ..., n, were generated independently from a
pseudorandom normal distribution with mean vector zero and covariance
matrixΣ for each case of (p, n) = (20, 10), (100, 20), (500, 40) and (2500, 80).
Note that Mi = 2, i = 1, ..., p. Independent of xj, wj∗, j = 1, ..., n, were
generated independently from a pseudorandom standard normal distribution.
Let ω = ||σ||2/(σ2

∗

√
2tr(Σ2)/n). From Corollary 2.2 in view of Remark 5,

we expected that T̂n,σ/(Sn(∗)
√
2Wn/n) is close to N(0, 1) when ρ = 0 and

T̂n,σ/(Sn(∗)
√
2Wn/n) is close to N(ω, 1 + u) when ρ ̸= 0. When p = 20

and p = 100, the histograms appear different from the probability densities
especially when ρ ̸= 0. However, as expected, the histograms fit well the
probability densities as p and n increase.
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2.3. Test of correlations

We are interested in designing a test of (1) having size α, where α ∈
(0, 1/2) is a prespecified constant. We test the hypothesis (1) by

rejecting H0 ⇐⇒ T̂n,σ

Sn(∗)
√
2Wn/n

> zα, (10)

where zα is a constant such that P{N(0, 1) > zα} = α. Then, we have the
following theorem.

Theorem 2.2. Under (A-i) to (A-iv), the test by (10) has that

size = α + o(1) and power = Φ
( n||σ||2

σ2
∗

√
2tr(Σ2)

− zα

)
+ o(1) (11)

as p→ ∞ and n→ ∞, where Φ(·) denotes the c.d.f. of N(0, 1).

When (A-iv) is not met, we have the following result.

Corollary 2.3. Assume (A-i) to (A-iii). Assume σ2
∗

√
tr(Σ2)/(n||σ||2) =

o(1) when ρ ̸= 0. Then, the test by (10) has that

size = α + o(1) and power = 1 + o(1)

as p→ ∞ and n→ ∞.

Remark 6. From Remark 5, one may write the power in (11) as

power = Φ
( n||σ||2

σ2
∗

√
2tr(Σ2)(1 + u)

− zα√
1 + u

)
+ o(1),

where u = 2n{σ2
∗σ

TΣσ + ||σ||4 +
∑r

i=1(Mi − 2)c2i (σ
Tγi)

2}/{σ4
∗tr(Σ

2)}.

2.4. Moderate sample performances

In order to study the performance of the test by (10), we used computer
simulations. We set α = 0.05. We generated xjs independently from a
pseudorandom normal distribution with mean vector zero and covariance
matrix Σ. Independent of xjs, we generated wj∗s independently from a
pseudorandom normal distribution with zero mean and unit variance. We
considered σ2

∗ = 1, Σ = (0.3|i−j|1/3) and Γ = HΛ1/2. Note that r = p
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Figure 2: When p = 1000 and n = 20(20)120, the size α = 0.05 (broken line) and α (solid
line) are displayed in the left panel. The power Φ[{2σ4

∗tr(Σ
2)(1 + u)}−1/2n||σ||2 − (1 +

u)−1/2zα] (broken line) and 1− β (solid line) are displayed in the right panel.

Figure 3: When p = 2s (s = 5, ..., 11) and n = 2⌈p1/2⌉, the size α = 0.05 (broken line) and
α (solid line) are displayed in the left panel. The power Φ[{2σ4

∗tr(Σ
2)(1+u)}−1/2n||σ||2−

(1 + u)−1/2zα] (broken line) and 1− β (solid line) are displayed in the right panel.

and ||σ||2 =
∑p

i=1 c
2
iλi from Γ = HΛ1/2. We considered two cases: (i)

ρ = 0 (c1 = · · · = cp = 0, c∗ = 1) and (ii) ρ ̸= 0 (||σ||2 = λ5/2; c5 =√
1/2, c∗ =

√
1/2 and the other cis are 0). In Fig. 2, we set p = 1000 and

n = 20(20)120. In Fig. 3, we set p = 2s (s = 5, ..., 11) and n = 2⌈p1/2⌉.
The findings were obtained by averaging the outcomes from 4000 (= R, say)
replications, where the first 2000 replications were generated for (i), and the
last 2000 replications were generated for (ii).

Under a fixed scenario, suppose that the rth replication ends with a test
result given by (10). We defined Pr = 1 (or 0) accordingly as H0 : ρ = 0
was falsely rejected (or not) and H1 : ρ ̸= 0 was falsely rejected (or not).

We defined α = (R/2)−1
∑R/2

r=1 Pr to estimate the size and 1 − β = 1 −
(R/2)−1

∑R
r=R/2+1 Pr to estimate the power. Note that the standard error
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of the simulation study was no more than 0.0112. Throughout, we observed
that the test by (10) showed good performances as described in Theorem 2.2
(or Remark 6) as p and n increase.

2.5. Comparison of estimators for tr(Σ2)

From Lemma A.2 in Appendix, we have as p→ ∞ and n→ ∞ that

Varθ

( Wn

tr(Σ2)

)
=

( 4

n2
+

8tr(Σ4) + 4
∑r

i=1(Mi − 2)(γT
i Σγi)

2

tr(Σ2)2n

)
{1 + o(1)}

under (A-i). Further, if xj is Gaussian, we have as p → ∞ and n →
∞ that Varθ{Wn/tr(Σ

2)} = [4/n2 + 8tr(Σ4)/{tr(Σ2)2n}]{1 + o(1)}. Yata
[28] applied the CDM methodology due to Yata and Aoshima [30] to ob-
taining an unbiased estimator of tr(Σ2) by tr(Sn(1)Sn(2)), where Sn(1) =

(n(1) − 1)−1
∑n(1)

j=1(xj − xn(1)(n+1))(xj − xn(1)(n+1))
T and Sn(2) = (n(2) −

1)−1
∑n

j=n(1)+1(xj −xn(2)(n+1))(xj−xn(2)(n+1))
T . Note that Eθ{tr(Sn(1)Sn(2))}

= tr(Σ2). Then, it holds as p→ ∞ and n→ ∞ that

Varθ

(tr(Sn(1)Sn(2))

tr(Σ2)

)
=

( 8

n2
+

8tr(Σ4) + 4
∑r

i=1(Mi − 2)(γT
i Σγi)

2

tr(Σ2)2n

)
{1 + o(1)}

under (A-i). Thus the asymptotic variance of Wn is smaller than that of
tr(Sn(1)Sn(2)). On the other hand, Bai and Saranadasa [5] and Srivastava [24]
considered an estimator of tr(Σ2) byWn(BS) = c−1

n {tr(S2
n)−tr(Sn)

2/(n−1)}
with cn = (n − 2)(n + 1)/(n − 1)2 under the Gaussian assumption. They
showed that, when xj is Gaussian, it holds that Eθ(Wn(BS)) = tr(Σ2) and

Varθ

(Wn(BS)

tr(Σ2)

)
=

( 4

n2
+

8tr(Σ4)

tr(Σ2)2n

)
{1 + o(1)}.

Thus the ECDM methodology is desirable in the sense that the asymp-
totic variance of Wn is equivalent to that of Wn(BS) which specializes the
Gaussian case. It should be noted that Wn(BS) is biased unless xj is Gaus-
sian. In addition, one cannot claim Varθ{Wn(BS)/tr(Σ

2)} < ∞ unless the
eighth moments of each variable in wj are uniformly bounded. Contrary
to that, the proposed estimator, Wn, is robust in non-Gaussian situations.

12



On the other hand, Zhong and Chen [32] considered an unbiased estima-
tor of tr(Σ2) by Wn(Z) = {n(n − 1)}−1

∑n
i̸=j(x

T
i xj)

2 − 2{n(n − 1)(n −
2)}−1

∑n
i̸=j ̸=k x

T
i xjx

T
j xk + {n(n − 1)(n − 2)(n − 3)}−1

∑n
i̸=j ̸=k ̸=l x

T
i xjx

T
kxl.

Note that the asymptotic variance ofWn(Z) is equivalent to that ofWn under
(A-i). However, the computational cost of Wn(Z) is written by the order,
O(n4p). Contrary to that, the computational cost of Wn is O(n2p) by sub-
stituting previously calculated xn(i)(k)s in (9). In conclusion, the ECDM
methodology is an efficient method to construct an unbiased estimator in
non-Gaussian situations.

3. Sample size determination to control both size and power

We are interested in designing a test of (1) having size α and power no
less than 1−β when ||σ||2/{σ2

∗tr(Σ)} ≥ ∆L, where α ∈ (0, 1/2), β ∈ (0, 1/2)
and ∆L (> 0) are prespecified constants. We note that ||σ||2/{σ2

∗tr(Σ)} ∈
[0, 1]. We emphasize that ||σ||2/{σ2

∗tr(Σ)} represents a contribution of xj(∗)
to xj. See Remark 8. We assume that ∆L = o{

√
tr(Σ2)/tr(Σ)} and

lim infp→∞ p∆L > 0.

3.1. Sample size determination

We consider n satisfying√
Varθ(T̂n,σ) ≤ σ2

∗tr(Σ)∆L

zα + zβ
when

||σ||2

σ2
∗tr(Σ)

≤ ∆L

under (A-i) to (A-iii). Then, one would find the sample size such as

n ≥ (zα + zβ)

∆Ltr(Σ)

√
2tr(Σ2)+

2(zα + zβ)
2

σ4
∗∆

2
Ltr(Σ)2

(
σ2
∗σ

TΣσ + ||σ||4

+
r∑

i=1

(Mi − 2)c2i (σ
Tγi)

2
)

(= C, say). (12)

We consider testing the hypothesis (1) by

rejecting H0 ⇐⇒ T̂n,σ >
Sn(∗)tr(Sn)∆Lzα

zα + zβ
. (13)

Note that C → ∞, namely, n → ∞ as p → ∞ from the fact that ∆L =
o{
√
tr(Σ2)/tr(Σ)} as p→ ∞. Then, we have the following theorem.

13



Theorem 3.1. Under (A-i) to (A-iii), the test by (12)-(13) has that

lim sup
p→∞

size ≤ α and lim inf
p→∞

power ≥ 1− β when
||σ||2

σ2
∗tr(Σ)

≥ ∆L.

Remark 7. Note that (A-ii) implies
√

tr(Σ2)/tr(Σ) → 0 as p → ∞
from (A.5) in Appendix. Then, it holds as p → ∞ that C/p → 0 under
lim supp→∞ ||σ||2/{σ2

∗∆Ltr(Σ)} <∞ and lim infp→∞ p∆L > 0.

Remark 8. We consider a multivariate linear regression model such as

Y = XΥ+E.

Here, Y = [x1, ...,xn]
T is an n×p response matrix, X = [1, (x1(∗), ..., xn(∗))

T ]
is an n × 2 fixed design matrix having 1 = (1, ..., 1)T , and Υ is a 2 × p
parameter matrix. The n rows of E are independent and identically dis-
tributed as a p-variate distribution with mean vector zero and covariance
matrix Σ. We assume that the fourth moments of each variable in E are
uniformly bounded. A squared multiple correlation coefficient is given by
R2 = ||sn(∗)||2/{Sn(∗)tr(Sn)}, where sn(∗), Sn(∗) and Sn are defined in (4).
We assume that Sn(∗) → σ2

∗ and sn(∗) → σ in probability as n → ∞. Note
that tr(Sn) → tr(Σ) in probability as n→ ∞. Then, it holds as n→ ∞ that
R2 → ||σ||2/{σ2

∗tr(Σ)} in probability. Thus one can apply the correlation
test procedure to a test whether R2 = 0 or R2 ̸= 0.

3.2. Two-stage procedure

Since C includes unknown parameters, it is necessary to estimate C in
(12) with some pilot samples. However, it is very difficult to estimate σTΣσ
and

∑r
i=1(Mi − 1)c2i (σ

Tγi)
2. Hence, from the fact that∑r

i=1 c
2
i (σ

Tγi)
2

σ4
∗tr(Σ)

≤ σTΣσ

σ2
∗tr(Σ)

≤ λ1∆L ≤ tr(Σ4)1/4∆L = o{tr(Σ2)1/2∆L}

when ||σ||2/{σ2
∗tr(Σ)} ≤ ∆L under (A-ii), we modify C as follows:

C =
(zα + zβ)

∆Ltr(Σ)

√
2tr(Σ2){1 + o(1)}+ 2(zα + zβ)

2 ||σ||4

σ4
∗∆

2
Ltr(Σ)2

(14)

≈ (zα + zβ)

∆Ltr(Σ)

√
2tr(Σ2) + 2η(zα + zβ)

2 (= C⋆, say), (15)

14



where η ∈ [0, 1] is a chosen constant. See Remark 9 for a choice of η.
Note that C⋆/C → 1 as p → ∞ when ||σ||2/{σ2

∗tr(Σ)} ≤ ∆L under (A-
ii). We propose a two-stage test procedure in order to estimate C⋆ assuring
the prespecified accuracy. We proceed with the following two steps:

1. Choose m (≥ 4) such as

m

C⋆

≤ 1,
C⋆

m2
→ 0 and

C⋆

m

tr(Σ4)

tr(Σ2)2
→ 0 as p→ ∞. (16)

Note that m satisfying m/C⋆ → c ∈ (0, 1) as p → ∞ holds (16) under (A-
ii). Also, note that Varθ{tr(Sm)/tr(Σ)} = o(C−1

⋆ ) and Varθ{Wm/tr(Σ
2)} =

o(C−1
⋆ ) under (A-i)-(A-ii) and (16). Take pilot samples, xj(∗) = (xT

j , xj(∗))
T ,

j = 1, ...,m. Then, calculate Sm and Wm according to (4) and (9). Define
the total sample size by

N = max
{
m,

⌈ (zα + zβ)

∆Ltr(Sm)

√
2Wm + 2η(zα + zβ)

2
⌉}
. (17)

2. If N = m, do not take any additional samples. If N > m, take
additional samples, xj(∗), j = m+1, ..., N . By combining the initial samples

and the additional samples, calculate SN(∗), SN and T̂N,σ according to (4)
and (6). Under (A-i)-(A-iii), from the fact that C = C⋆ − 2η(zα + zβ)

2 when
ρ = 0, it holds that√

Varθ(T̂C(⋆),σ) =
{1− 2η(zα + zβ)

2/C(⋆)}σ2
∗tr(Σ)∆L

zα + zβ
{1 + o(1)}

when ρ = 0, where C(⋆) = ⌈C⋆⌉. Then, test the hypothesis (1) by

rejecting H0 ⇐⇒ T̂N,σ >
{1− 2η(zα + zβ)

2/N}SN(∗)tr(SN)∆Lzα
zα + zβ

. (18)

We have the following theorem.

Theorem 3.2. Under (A-i) to (A-iii), the test by (18) with (16)-(17) has
that

lim
p→∞

size = α and lim inf
p→∞

power ≥ 1− β when
||σ||2

σ2
∗tr(Σ)

≥ ∆L.
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Remark 9. When the lower bound is attained, namely ||σ||2 = σ2
∗tr(Σ)∆L,

we claim from (14) that {σ2
∗tr(Σ)∆L /(zα + zβ)}/{Varθ(T̂C(⋆),σ)}1/2 = {1 +

o(1)}C(⋆)/C = {1 + o(1)}/{1 + 2(1− η)(zα + zβ)
2/C(⋆)} → 1 under (A-i) to

(A-iii). Let ζ = 2(zα + zβ)
2/C(⋆). Then, from Theorem 2.1 and (18), it holds

that

{1− ηζ}σ2
∗tr(Σ)∆Lzα

(zα + zβ){Varθ(T̂C(⋆),σ)}1/2
− ||σ||2

{Varθ(T̂C(⋆),σ)}1/2

=
{1− ηζ}zα − zα − zβ

1 + (1− η)ζ
{1 + o(1)} =

−zβ(1 + ηζzα/zβ)

1 + (1− η)ζ
{1 + o(1)} → −zβ

when ||σ||2 = σ2
∗tr(Σ)∆L. Thus one may choose η such that 1 + ηζzα/zβ =

1 + (1− η)ζ, that is η = zβ/(zα + zβ).

Remark 10. It holds as p→ ∞ that N/C⋆ = 1+ op(1) and C⋆/p→ 0; that
is in the HDLSS situation in the sense that N/p = op(1).

Remark 11. One can claim that
√

tr(Σ2)/tr(Σ) ≥ p−1/2, where the equality
holds only when λ1 = · · · = λp. For the cases in Remark 1, it holds that√

tr(Σ2)/tr(Σ) = O(p−1/2). Thus for those cases, one may choose a pilot
sample size by

m = max
{
4,

⌈(zα + zβ)
√
2

∆L
√
p

+ 2η(zα + zβ)
2
⌉}
.

Then, (16) holds under (A-ii).

Remark 12. One may choose m (≥ 4) such as m/C⋆ > 1. Then, the asser-
tion in Theorem 3.2 is still claimed. However, it may cause over-sampling in
the sense that N/C⋆ > 1 w.p.1.

3.3. Moderate sample performances

In order to study the performance of the two-stage test procedure given
by (18) with (16)-(17), we used computer simulations. We fixed ∆L = 5/p.
Our goal was to construct a test having size α = 0.05 and power no less than
1−β = 0.9 when ||σ||2/{σ2

∗tr(Σ)} ≥ ∆L. We considered a non-Gaussian case
by setting r = p, Γ = HΛ1/2 and wij = (8/10)1/2vij in (2), where vij, i =
1, ..., p (j = 1, 2, ...) are independently distributed as t-distribution with 10
degrees of freedom. Note that E(wij) = 0, E(w2

ij) = 1, and (A-i) holds.
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Independent of vijs, we generated vj∗s independently from the pseudorandom
t-distribution with 10 degrees of freedom. We set wj∗ = (8/10)1/2vj∗ (j =

1, 2, ...) so as to satisfy (A-iii). We considered σ2
∗ = 1 and Σ = B(ρ|i−j|1/3)B

having ρ ∈ (0, 1) and

B = diag(
√
0.5 + 1/(p+ 1),

√
0.5 + 2/(p+ 1), ...,

√
0.5 + p/(p+ 1)).

Note that tr(Σ) = p. We set m = ⌈C⋆/2⌉. We considered two choices of η
as η = zβ/(zα + zβ) from Remark 9 and η = 1. We considered the following
four cases when p = 500 and 1000: (a) ρ = 0.3 and η = zβ/(zα + zβ); (b)
ρ = 0.3 and η = 1; (c) ρ = 0.5 and η = zβ/(zα + zβ); and (d) ρ = 0.5 and
η = 1.

In Table 1, we summarized the findings obtained by averaging the out-
comes from 4000 (= R, say) replications, where the first 2000 replications
were generated for ρ = 0 by setting as c1 = · · · = cp = 0 and c∗ = 1 in
(3), and the last 2000 replications were generated for ρ ̸= 0 by setting as
cg =

√
5/λg, c∗ =

√
1− c2g and the other cis are 0 (i.e., ||σ||2 = c2gλg = 5 and

||σ||2/{σ2
∗tr(Σ)} = 5/p) in (3). Here, we set g = 5 for ρ = 0.3 and g = 10 for

ρ = 0.5. Under a fixed scenario, suppose that the rth replication ends with
N = nr observations given by (17) and the test result given by (18). We de-
fined Pr = 1 (or 0) accordingly asH0 : ρ = 0 was falsely rejected (or not) and

H1 : ρ ̸= 0 was falsely rejected (or not). We defined α = (R/2)−1
∑R/2

r=1 Pr to

estimate the size and 1−β = 1− (R/2)−1
∑R

r=R/2+1 Pr to estimate the power

when ||σ||2/{σ2
∗tr(Σ)} = ∆L, while their estimated standard errors, s(α) and

s(β), were given by s2(α) = (R/2)−1α(1− α) and s2(β) = (R/2)−1β(1− β).
We also defined n = R−1

∑R
r=1 nr and Var(n) = (R− 1)−1

∑R
r=1(nr − n)2.

When ρ = 0.3, we observed that the test by (18) with (16)-(17) pro-
vides good performances. Especially, the test having η = zβ/(zα + zβ) gave
adequate performances about the target rates, α = 0.05 and β = 0.1. On
the other hand, the test having η = 1 satisfied the target rates excessively
by taking samples more than needs. When ρ = 0.5, we observed that the
test having η = zβ/(zα + zβ) gave error rates a little upper than the target
rates. Note that, for p = 1000, tr(Σ4)/tr(Σ2)2 = 0.094 when ρ = 0.5, while
tr(Σ4)/tr(Σ2)2 = 0.011 when ρ = 0.3. The slightly low accuracy may be
attributed to a slow convergence in (A-ii) when ρ = 0.5. On the other hand,
the test having η = 1 gave good performances even when ρ = 0.5.
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Table 1: Required sample size, and the size and power by (18) with (16)-(17).

C⋆ n n− C⋆ Var(n) α s(α) 1− β s(β)

When p = 500

(a) ρ = 0.3 and η = zβ/(zα + zβ): m=16

31.72 32.11 0.39 4.59 0.056 0.00514 0.903 0.00663

(b) ρ = 0.3 and η = 1: m=21

41.35 41.76 0.42 2.69 0.052 0.00494 0.982 0.00301

(c) ρ = 0.5 and η = zβ/(zα + zβ): m=25

49.74 49.64 -0.1 23.64 0.064 0.00547 0.898 0.00678

(d) ρ = 0.5 and η = 1: m=30

59.37 59.45 0.08 19.46 0.061 0.00535 0.955 0.00466

When p = 1000

(a) ρ = 0.3 and η = zβ/(zα + zβ): m=21

41.8 42.37 0.57 4.67 0.059 0.00527 0.894 0.00688

(b) ρ = 0.3 and η = 1: m=26

51.43 52.03 0.6 3.16 0.057 0.00518 0.957 0.00454

(c) ρ = 0.5 and η = zβ/(zα + zβ): m=34

67.93 68.02 0.09 23.0 0.06 0.00531 0.869 0.00754

(d) ρ = 0.5 and η = 1: m=39

77.56 77.57 0.01 18.54 0.059 0.00527 0.916 0.0062
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4. Multiple testing procedures

In this section, we propose multiple testing procedures for high-dimensional
data. Suppose we have i.i.d. p+K-variate data vectors, xj(∗) = (xT

j , x1j(∗), ...
, xKj(∗))

T , j = 1, ..., n, where xj is defined in Section 1 and K is an integer ≥
2. Here, xij(∗) has unknown mean, µi∗, and unknown variance, σ2

i∗ ∈ (0,∞),
for each i (= 1, ..., K). Let θK = (µ1∗, ..., µK∗, σ

2
1∗, ..., σ

2
K∗,µ,Σ). We de-

note the covariance vector between xj and xij(∗) by CovθK
(xj, xij(∗)) = σi

(i = 1, ..., K). We denote the correlation coefficient vector between xj and
xij(∗) by CorrθK

(xj, xij(∗)) = ρi (i = 1, ..., K).
Let

xij(∗) = ci∗wij∗ +
r∑

i′=1

cii′wi′j + µi∗, i = 1, ..., K, (19)

where wi′js are defined in (3), and wij∗ (i = 1, ..., K) is a random variable
such that E(wij∗) = 0, E(w2

ij∗) = 1 and E(wi′jwij∗) = 0 for i′ = 1, ..., r.
Here, ci∗ and cii′s are constants such that c2i∗ +

∑r
i′=1 c

2
ii′ = σ2

i∗. Note that∑r
i′=1 cii′γi′ = σi. We assume the following assumption for wij∗ as necessary:

(A-v) The fourth moment of wij∗ is bounded, and wij∗ and wj are inde-
pendent for i = 1, ..., K.

We consider a multiple test of the correlation between xj and xij(∗)s by

H0i : ρi = 0 vs. H1i : ρi ̸= 0 for i = 1, ..., K. (20)

Our interest is to select a set of significant correlated variables such as D =
{i| i ∈ {1, ..., K} such that ρi ̸= 0}. We apply the proposed correlation

testing procedure to the multiple test. A test procedure D̂ maps the data
into subsets of {1, ..., K}.

4.1. Multiple test of correlations to control family-wise error rate

We are interested in designing D̂ such that the family-wise error rate
(FWER) is ≤ α, i.e.

PθK
(Dc ∩ D̂ ̸= ∅) ≤ α.
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Let

T̂n,σ(i) =
2un

n(n− 1)

n∑
j<l

(xj − xn(1)(j+l))
T (xl − xn(2)(j+l))

× (xij(∗) − xin(1∗)(j+l))(xil(∗) − xin(2∗)(j+l)) (21)

and Sin(∗) =

∑n
j=1(xij(∗) − xin(∗))

2

n− 1
, i = 1, ..., K,

where xin(1∗)(k) =
∑

j∈V n(1)(k)
xij(∗)/n(1), xin(2∗)(k) =

∑
j∈V n(2)(k)

xij(∗)/n(2),

k = 3, ..., 2n−1, and xin(∗) =
∑n

j=1 xij(∗)/n. Then, from Corollary 2.2, under
(A-i), (A-ii) and (A-v), it holds as p→ ∞ and n→ ∞ that

T̂n,σ(i)

Sin(∗)
√
2Wn/n

⇒ N(0, 1) for i ∈ Dc.

Here, from Bonferroni’s method, we test the hypotheses (20) by

rejecting H0i ⇐⇒
T̂n,σ(i)

Sin(∗)
√
2Wn/n

> zα/K . (22)

Let D̂ = {i| i ∈ {1, ..., K} rejecting H0i}. Then, we have as p → ∞ and
n→ ∞ that

lim supPθK
(Dc ∩ D̂ ̸= ∅) ≤ α

under (A-i), (A-ii) and (A-v).

Remark 13. By using the asymptotic p-value given by

Pi = 1− Φ

(
T̂n,σ(i)

Sin(∗)
√
2Wn/n

)
, i = 1, ..., K,

one may apply the Bonferroni-Holm method given by Holm [18] or the false
discovery rate (FDR) controlling procedure given by Benjamini and Hochberg
[7] and Benjamini and Yekutieli [8].

4.2. Multiple test of correlations to control both FWER and power

We consider a test of (20) having FWER ≤ α and power

PθK
(D ⊆ D̂) ≥ 1− β when min

i∈D

||σi||2

σ2
i∗tr(Σ)

≥ ∆L,
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where α ∈ (0, 1/2), β ∈ (0, 1/2) and ∆L (> 0) are prespecified constants.

We assume ∆L = o{
√
tr(Σ2)/tr(Σ)} and lim infp→∞ p∆L > 0. Then, we

propose a two-stage test procedure based on the following two steps:

1. Choosem(≥ 4) satisfying (16). Take pilot samples xj(∗) = (xT
j , x1j(∗), ...

, xKj(∗))
T , j = 1, ...,m. Then, calculate Sm and Wm according to (4) and

(9). Define the total sample size by

N = max
{
m,

⌈(zα/K + zβ/K)

∆Ltr(Sm)

√
2Wm + 2η(zα/K + zβ/K)

2
⌉}
, (23)

where η ∈ [0, 1] is a chosen constant. See Remark 14 for a choice of η.

2. If N = m, do not take any additional samples. If N > m, take
additional samples, xj(∗), j = m+1, ..., N . By combining the initial samples

and the additional samples, calculate SN , SiN(∗) and T̂N,σ(i), i = 1, ..., K,
according to (4) and (21). Then, test the hypotheses (20) by

rejecting H0i ⇐⇒ T̂N,σ(i) >
{1− 2η(zα/K + zβ/K)

2/N}SiN(∗)tr(SN)∆Lzα/K
zα/K + zβ/K

.

(24)
Then, we have the following theorem.

Theorem 4.1. Under (A-i), (A-ii) and (A-v), the test by (24) with (23) has
that

(i) lim sup
p→∞

PθK
(Dc ∩ D̂ ̸= ∅) ≤ α;

(ii) lim inf
p→∞

PθK
(D ⊆ D̂) ≥ 1− β when min

i∈D

||σi||2

σ2
i∗tr(Σ)

≥ ∆L.

Remark 14. Note that N/p = op(1) under (A-i) and (A-ii) from the facts
that lim infp→∞ p∆L > 0 and (A.5) in Appendix. From Remark 9, one may
define η as η = zβ/K/(zα/K + zβ/K).

5. Data analysis

In this section, we demonstrate how the test procedures perform in actual
data analyses by using two microarray data sets.
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5.1. T-cell acute lymphoblastic leukemia

We analyzed gene expression data of T-cell acute lymphoblastic leukemia
(T-ALL) given by Chiaretti et al. [10] in which the data set consists of
12625 genes and 33 (= n) samples. Note that the expression measures were
obtained by using the three-step robust multichip average (RMA) prepro-
cessing method. Refer to Pollard et al. [23] as well for the details.

Chiaretti et al. [10] identified 3 predictive genes, TTK, AHNAK and
CD2, to distinguish the patients according to disease outcomes. On the other
hand, Gottardo et al. [15] identified 3 predictive genes, NOTCH2, BTG3 and
CFLAR. We denoted these 6 predictive genes, (TTK,AHNAK,CD2,
NOTCH2, BTG3, CFLAR), by xij(∗), i = 1, ..., K(= 6). We denoted the
remaining 12619 (= p) genes by xj. We considered a multiple testing to see
whether the predictive genes have a significant influence of the other genes’
expression or not. Let α = 0.05. Our goal was to find variables i’s having
ρi ̸= 0 with respect to FWER given by

PθK
(Dc ∩ D̂ ̸= ∅) ≤ 0.05.

We applied the multiple test given by (22). According to (21), we cal-

culated T̂n,σ(1) = 170.92 (TTK), T̂n,σ(2) = 60.33 (AHNAK), T̂n,σ(3) =

44.74 (CD2), T̂n,σ(4) = 1.03 (NOTCH2), T̂n,σ(5) = 14.24 (BTG3) and

T̂n,σ(6) = 5.24 (CFLAR) by using the data set with n = 33. With the help
of the multiple test given by (22) with zα/K = 2.394, we selected a set of
significant genes by

D̂ = {1, 2, 3, 6},

guaranteeing the FWER. The selected 4 genes were (TTK,AHNAK,CD2,
CFLAR). We observed that three predictive genes given by Chiaretti et al.
[10] and one predictive gene given by Gottardo et al. [15] have a significant
influence of the other genes’ expression. On the other hand, the remaining
two predictive genes given by Gottardo et al. were considered to be unrelated
to the other genes’ expression. Those 2 predictive genes, (NOTCH2, BTG3),
may distinguish the patients according to disease outcomes without a influ-
ence of the other genes’ expression.

5.2. Arabidopsis thaliana

We analyzed gene expression data of Arabidopsis thaliana given by Wille
et al. [27] in which the data set consists of 118 samples having 39 (= K)
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isoprenoid genes and 795 (= p) additional genes. All data were logarithmic
transformed and denoted by xij(∗), i = 1, ..., K, for the isoprenoid genes and
by xj for the additional genes. Wille et al. [27] considered a genetic network
between the two gene sets. We considered a multiple testing to select a
significant set of associated genes from among isoprenoid genes. Specifically,
we were interested in finding the interplay between xj and each xij(∗). Let
α = 0.05, β = 0.1 and ∆L = 0.1. Our goal was to find variables i’s having
ρi ̸= 0 with FWER given by PθK

(Dc ∩ D̂ ̸= ∅) ≤ 0.05 and power given by

PθK
(D ⊆ D̂) ≥ 0.9 when min

i∈D ||σi||2/{σ2
i∗tr(Σ)} ≥ 0.1. We applied the

two-stage test procedure given by (24) with (23) to the inference. We set
η = zβ/39/(zα/39 + zβ/39) from Remark 14. From Remark 11, we calculated
the pilot sample size as

m = max
{
4,

⌈(zα/39 + zβ/39)
√
2

0.1
√
p

+ 2zβ/39(zα/39 + zβ/39)
⌉}

= 36.

So, we took the first 36 samples as a pilot sample. We calculated tr(Sm) =
440 andWm = 13935 according to (4) and (9), respectively. Then, from (23),
we had the total sample size as

N = max
{
m,

⌈(zα/39 + zβ/39)
√
2

0.1× 440

√
13935 + 2zβ/39(zα/39 + zβ/39)

⌉}
= 55.

Thus we took the next 19 (= 55− 36) samples. Then, we calculated T̂N,σ(i),
SN and SiN(∗), i = 1, ..., 39, according to (4) and (21). By using the multiple
test given by (24), we selected a set of significant genes by

D̂ = {1, ..., 39} \ {6, 7, 13, 14, 15, 16, 17, 20},

guaranteeing both the FWER and the power. Thus we selected 31 isoprenoid
genes. We considered a high-dimensional linear regression model:

Y = XΥ+E,

where Y is an n × p response matrix, X is an n ×K ′ fixed design matrix,
and Υ is a K ′ × p parameter matrix. The n rows of E are independent
and identically distributed as a p-variate distribution with mean vector zero.
When K ′ = 2, see Remark 8. Let xj(1∗), ..., xj(31∗), be the jth sample of

the 31 selected isoprenoid genes in D̂. Let x(j) = (1, xj(1∗), ..., xj(31∗))
T ,
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j = 1, ..., n. We set Y = [x1, ...,xn]
T and X = [x(1), ...,x(n)]

T with K ′ = 32.
We noted that the standard elements of Υ are path coefficients from the
isoprenoid genes to the additional genes. By using the observed samples of
size n = 55 as a training data set, we obtained the least squared estimator
of Υ by Υ̂ = (XTX)−1XTY . We investigated prediction accuracy of the

regression with Υ̂ by using the remaining samples of size 63 (= 118− 55) as
a test data set. We denoted the test samples by xj(i∗) (i = 1, ..., 31) and xj,
j = 56, ..., 118. We considered the prediction mean squared error (PMSE)

by E(||xj − Υ̂
T
x(j)||2|Υ̂). By using the test samples xj(i∗) (i = 1, ..., 31)

and xj, j = 56, ..., 118, we applied the bias-corrected and accelerated (BCa)
bootstrap by Efron [12]. Then, we constructed 95% confidence interval (CI)
of the PMSE by [704.2, 955.5] from 10000 replications. We also calculated
the sample mean of the PMSE by 809.5.

On the other hand, we considered the PMSE for the full isoprenoid

genes by E(||xj − Υ̂
T

f xf(j)||2|Υ̂f ), where Υ̂f = (XT
f Xf )

−1XT
f Y with Xf =

[xf(1), ...,xf(55)]
T and xf(j) = (1, x1j(∗), ..., x39j(∗))

T , j = 1, ..., 55. Then, sim-
ilarly to above, we constructed 95% CI of the PMSE by [897.9, 1217.8]. We
also calculated the sample mean of the PMSE by 1033.4. The PMSE of
the selected isoprenoid genes in D̂ is probably smaller than that of the full
isoprenoid genes. We conclude that the multiple test procedure effectively
works for selecting a set of significant genes.

Appendix A.

Throughout, we write that x0j = xj − µ, x0j(∗) = xj(∗) − µ∗, y0j =∑r
i ̸=i′ ciγi′wijwi′j + c∗

∑r
i=1 γiwijwj∗ for each j, κ = σ2

∗tr(Σ)∆L and A =

σ2
∗Σ + σσT − 2

∑r
i=1 c

2
iγiγ

T
i . Note that Varθ(y0j) = A under (A-i) and

(A-iii).

Lemma A.1. Assume (A-i) to (A-iii). Then, we have as p → ∞ and
n→ ∞ that

Varθ(T̂n,σ)

=
(2σ4

∗tr(Σ
2)

n2
+

4

n

{
σ2
∗σ

TΣσ + ||σ||4 +
r∑

i=1

(Mi − 2)c2i (σ
Tγi)

2
})

{1 + o(1)};

T̂n,σ − ||σ||2 = 2

n(n− 1)

n∑
i<j

yT
0iy0j + op

{
Varθ(T̂n,σ)1/2

}
under (A-iv).
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Proof of Lemma A.1. We have that x0jx0j(∗)−σ = y0j +
∑r

i=1 ciγi(w
2
ij −1).

Here, we note that
∑r

i,j c
2
i c

2
j(γ

T
i γj)

2 ≤ σ2
∗
∑r

i=1 c
2
iγ

T
i Σγi ≤ σ2

∗(
∑r

i=1 c
4
i )

1/2

×(
∑r

i=1 γ
T
i Σγiγ

T
i Σγi)

1/2 ≤ σ4
∗tr(Σ

4)1/2 from the facts that
∑r

i=1 c
4
i ≤ σ4

∗
and

∑r
i=1 γ

T
i Σγiγ

T
i Σγi ≤

∑r
i=1 γ

T
i Σ

3γi = tr(Σ4). Then, it holds under
(A-i) and (A-iii) that

Varθ
{∑r

i=1 ciγ
T
i (w

2
ij − 1)(x0j′x0j′(∗) − σ)

}
= O{

∑r
i=1 c

2
iγ

T
i (σ

2
∗Σ+ σσT )γi} = o{σ4

∗tr(Σ
2)}+O{σ2

∗σ
TΣσ} (A.1)

for j ̸= j′. Let y1i(j) = (xi(∗)−xn(1∗)(i+j))(xi−xn(1)(i+j))−n−1
(1)(n(1)−1)σ and

y2j(i) = (xj(∗) − xn(2∗)(i+j))(xj − xn(2)(i+j))− n−1
(2)(n(2) − 1)σ for i < j (≤ n).

Then, we can write that

T̂n,σ − ||σ||2 =2un{n(n− 1)}−1
∑n

i<j

[
yT
1i(j)y2j(i)

+ σT{y1i(j)(n(2) − 1)/n(2) + y2j(i)(n(1) − 1)/n(1)}
]
. (A.2)

Here, it holds from (A.1) that

Varθ(y
T
1i(j)y2j(i)) = tr(A2){1 + o(1)}

= σ4
∗tr(Σ

2){1 + o(1)}+O(σ2
∗σ

TΣσ + ||σ||4);
Varθ(uny

T
1i(j)y2j(i) − yT

0iy0j) = o{tr(A2)};
Varθ(σ

Ty1i(j)) = {σ2
∗σ

TΣσ + ||σ||4 +
∑r

i=1(Mi − 2)c2i (σ
Tγi)

2}{1 + o(1)}

for i < j. Then, from (A.1)-(A.2), we have that

Varθ(T̂n,σ) =
[
2n−2σ4

∗tr(Σ
2) + 4n−1{σ2

∗σ
TΣσ

+ ||σ||4 +
∑r

i=1(Mi − 2)c2i (σ
Tγi)

2}
]
{1 + o(1)}

under (A-i) to (A-iii), and

T̂n,σ − ||σ||2 = 2{n(n− 1)}−1
∑n

i<j y
T
0iy0j + op

{
Varθ(T̂n,σ)1/2

}
under (A-i) to (A-iv). It concludes the results.

Lemma A.2. Under (A-i), we have as p→ ∞ and n→ ∞ that Varθ(Wn) =
[4n−2tr(Σ2)2 + 8n−1{tr(Σ4) +

∑r
i=1(Mi − 2)(γT

i Σγi)
2/2}]{1 + o(1)}.
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Proof of Lemma A.2. By noting that
∑r

i,j(γ
T
i γjγ

T
j γi)

2 ≤
∑r

i=1(γ
T
i Σγi)

2 ≤
tr(Σ4), we have that Varθ{tr({(xi−µ)(xi−µ)−Σ}{(xj−µ)(xj−µ)−Σ})} =
2tr(Σ2)2 + O{tr(Σ4)} (i ̸= j) and Varθ{tr({(xi − µ)(xi − µ) − Σ}Σ)} =
2tr(Σ4) +

∑r
i=1(Mi − 2)(γT

i Σ
2γi)

2. Thus in a way similar to the proof of
Lemma A.1, we can conclude the result.

Lemma A.3. Under (A-i) to (A-iv), we have as p → ∞ and n → ∞ that
Eθ{(yT

0iy0j)
2(yT

0i′y0j)
2} = O{tr(σ4

∗Σ
2)2} for i, i′ ̸= j.

Proof of Lemma A.3. Let B = σ2
∗Σ + σσT . Let cr+1 = c∗ and wr+1j = wj∗

for each j. We first consider the case when i = i′ ̸= j. Then, we write that

(yT
0iy0j)

2 =
∑r

k,k′(
∑r+1

l=1( ̸=k) clwli)(
∑r+1

s=1(̸=k′) cswsi)γ
T
k y0jy

T
0jγk′wkiwk′i.

Let E(w3
ij) =M3i for i = 1, ..., r+1. Note that |M3i| ≤ {E(w4

ij)E(w
2
ij)}1/2 <

∞ under (A-i) and (A-iii) from Schwarz’s inequality. Also note that∑r
k,l |ckclγT

k y0jy
T
0jγ l| ≤ {

∑r
k,l c

2
kc

2
l }1/2{

∑r
k,l(γ

T
k y0j)

2(yT
0jγ l)

2}1/2 ≤ yT
0jBy0j;√

σ2
∗
∑r

k=1 |ckγT
k y0jy

T
0jγk′| ≤ {yT

0jBy0jσ
2
∗(y

T
0jγk′)

2}1/2 ≤ yT
0jBy0j;

|γT
k y0jy

T
0jγk′| ≤ γT

k y0jy
T
0jγk + γT

k′y0jy
T
0jγk′

w.p.1 and
∑r+1

l=1 |c3l | ≤ (σ2
∗)

3/2. Then, we can evaluate that∑r+1
l=1

∑r
k=1(̸=l)

∑r
k′=1(̸=k,l) c

2
l c

2
k′|γT

k′y0jy
T
0jγkγ

T
k y0jy

T
0jγkE(w

3
kj)E(w

3
k′j)|

≤ κ1/2
∑r

k=1(y
T
0jBy0j + σ2

∗γ
T
k y0jy

T
0jγk)σ

2
∗γ

T
k y0jy

T
0jγk ≤ κ1(y

T
0jBy0j)

2;∑r+1
l=1

∑r
k=1(̸=l)

∑r
k′=1(̸=k,l) |c3l ckγT

k y0jy
T
0jγk′γ

T
k′y0jy

T
0jγk′E(w

3
k′j)E(w

3
lj)|

≤ κ2y
T
0jBy0j

∑r
k′=1 σ

2
∗γ

T
k′y0jy

T
0jγk′ ≤ κ2(y

T
0jBy0j)

2;∑r
l=1

∑r
k=1( ̸=l)

∑r
k′=1( ̸=k,l) |clc2kck′γT

k y0jy
T
0jγlγ

T
k′y0jy

T
0jγk′E(w

3
kj)E(w

3
k′j)|

≤ κ3y
T
0jBy0j

∑r
k′=1 σ

2
∗γ

T
k′y0jy

T
0jγk′ ≤ κ3(y

T
0jBy0j)

2

w.p.1 for some positive constants κ1, κ2 and κ3. Then, it holds that

Eθ{(yT
0iy0j)

4|y0j} ≤ κ(yT
j Byj)

2

w.p.1 for some positive constant κ. Hence, we have that

Eθ{(yT
0iy0j)

4} = Eθ[Eθ{(yT
0iy0j)

4|y0j}] ≤ Eθ{κ(yT
j Byj)

2} = O{tr(B2)2}.
(A.3)
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Next, we consider the case when i ̸= i′ ̸= j. We have from (A.3) that
Eθ{(yT

0iy0j)
2(yT

0i′y0j)
2} ≤ [Eθ{(yT

0iy0j)
4}Eθ{(yT

0i′y0j)
4}]1/2 = O{tr(B2)2}.

Under (A-ii) and (A-iv), it holds that tr(B2)/tr(σ4
∗Σ

2) → 1 as p→ ∞. Thus
it concludes the result.

Proof of Theorem 2.1. Let yjn = 2{n(n − 1)}−1
∑j−1

i=1 y
T
0iy0j for j = 2, ..., n.

Note that
∑n

j=2 yjn = 2
∑n

i<j y
T
0iy0j/{n(n − 1)}. Here, we have for j =

3, ..., n, that Eθ(yjn|yj−1n, ..., y2n) = 0. Then, we consider applying the mar-
tingale central limit theorem given by McLeish [21]. Refer to Section 2.6
in Ghosh et al. [14] for the details of the martingale central limit theo-
rem. Let δ =

∑n
j=2Varθ(yjn) = 2tr(A2)/{n(n − 1)}. Then, it holds that

tr(A2)/{σ4
∗tr(Σ

2)} → 1 and Varθ(T̂n,σ)/δ → 1 as p→ ∞ and n→ ∞ under
(A-i) to (A-iv). Let vj = yjn/δ

1/2, j = 2, ..., n. Let I(·) denote the indicator
function. It is necessary to check the following two conditions to apply the
martingale central limit theorem:

(i)
∑n

j=2Eθ

{
v2j I

(
v2j > τ

)}
→ 0 as p → ∞ and n → ∞ for any τ > 0

(Lindeberg’s condition);

(ii)
∑n

j=2 v
2
j = 1 + op(1) as p→ ∞ and n→ ∞.

As for (i), note that Eθ(v
4
j ) = O{(j − 1)2/n4} from Lemma A.3. Then, by

using Chebyshev’s inequality and Schwarz’s inequality, for any τ > 0, we
have as p→ ∞ and n→ ∞ that∑n

j=2Eθ{v2j I(v2j > τ)} ≤
∑n

j=2

{
Eθ(v

4
j )Pθ

(
v4j > τ 2

)}1/2

≤
∑n

j=2Eθ

(
v4j/τ

)
= O{

∑n
j=2(j − 1)2/n4} → 0.

As for (ii), note that

Eθ

[{
v2i−

2(i− 1)

n(n− 1)

}{
v2j−

2(j − 1)

n(n− 1)

}]
= O

{(i− 1)2tr(A4)

n4tr(A2)2
+
(i− 1)

n4

}
(A.4)

for 2 ≤ i < j ≤ n. Note that tr(A4)/tr(σ2
∗Σ

2)2 → 0 under (A-ii) and (A-iv).
Then, from (A.4) and Eθ(v

4
j ) = O{(j − 1)2/n4}, we have as p → ∞ and

n→ ∞ that

Varθ(
∑n

j=2 v
2
j ) = O(n−1) +O{tr(A4)/tr(A2)2} → 0
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under (A-i) to (A-iv). Now, with the help of the martingale central limit
theorem, under (A-i) to (A-iv), we have from Lemma A.1 that

Varθ(T̂n,σ)−1/2(T̂n,σ − ||σ||2) =
∑n

j=2 vj + op(1) ⇒ N(0, 1)

as p→ ∞ and n→ ∞. It concludes the result.

Proof of Corollary 2.1. We have under σ2
∗tr(Σ

2)1/2/(n||σ||2) → 0 that∑r
i=1 c

2
i (σ

Tγi)
2

n||σ||4
≤ σ2

∗σ
TΣσ

n||σ||4
≤ σ2

∗λ1
n||σ||2

≤ σ2
∗tr(Σ

2)1/2

n||σ||2
= o(1).

Thus by noting tr(Σ4)/tr(Σ2)2 ≤ 1, from the proof of Lemma A.1, we have

that Varθ(T̂n,σ/||σ||2) → 0 under (A-i) and (A-iii) without (A-ii). Hence,
from Chebyshev’s inequality, it concludes the results.

Proof of Corollary 2.2. We have as p→ ∞ and n→ ∞ that

Varθ

( Wn

tr(Σ2)

)
= O(n−2) +O

( tr(Σ4)

tr(Σ2)2n

)
→ 0 and Varθ(Sn(∗)) → 0.

Then, from Chebyshev’s inequality, it holds that Wn/tr(Σ
2) = 1+ op(1) and

Sn(∗) = σ2
∗ + op(1). Hence, from Theorem 2.1, we obtain that

T̂n,σ − ||σ||2

Sn(∗)
√
2Wn/n

=
T̂n,σ − ||σ||2

σ2
∗

√
2tr(Σ2)/n

+ op(1) ⇒ N(0, 1).

It concludes the result.

Proof of Theorem 2.2. We first consider the case when ρ = 0. From Corol-
lary 2.2, we have that size= Pθ{T̂n,σ/(Sn(∗)

√
2Wn/n) > zα} = α + o(1).

Next, we consider the case when ρ ̸= 0. From Corollary 2.2, we have that

power = Pθ

{
N(0, 1) > zα − (Sn(∗)

√
2Wn)

−1n||σ||2
}
+ o(1)

= Φ
{
(σ2

∗{2tr(Σ2)}1/2)−1n||σ||2 − zα
}
+ o(1).

It concludes the results.

Proof of Corollary 2.3. From Corollary 2.1, we have that

power = Pθ

( T̂n,σ
||σ||2

>
zασ

2
∗

√
2tr(Σ2)

n||σ||2
{1 + op(1)}

)
= Pθ{1 > op(1)} → 1.

It concludes the results.
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Proof of Theorem 3.1. We first consider the case when ρ = 0. We have from
(12) that (σ2

∗

√
2tr(Σ2)/n)/{κ/(zα + zβ)} ≤ 1. Then, from the facts that

Sn(∗) = σ2
∗ + op(1) and tr(Sn)/tr(Σ) = 1 + op(1), it holds as p→ ∞ that

size = Pθ

(
T̂n,σ >

Sn(∗)tr(Sn)∆Lzα
zα + zβ

)
≤ Pθ

(
N(0, 1) > zα

)
+ o(1) → α

by using Theorem 2.1. Next, we consider the case when ||σ||2 ≥ κ. By
noting that (A-iv) holds when lim infp→∞ κ/||σ||2 > 0 and lim inf C/n > 0,
from Theorem 2.1, it holds as p→ ∞ that

power = Pθ

(
T̂n,σ >

Sn(∗)tr(Sn)∆Lzα
zα + zβ

)
= Pθ

( T̂n,σ − ||σ||2

Varθ(T̂n,σ)1/2
>
σ2
∗tr(Σ){1 + op(1)}∆Lzα − (zα + zβ)||σ||2

Varθ(T̂n,σ)1/2(zα + zβ)

)
≥ Pθ

(
N(0, 1) > −zβ

)
+ o(1) → 1− β

when lim inf C/n > 0 and lim inf κ/||σ||2 > 0. When C/n→ 0 or κ/||σ||2 →
0 as p→ ∞, from the fact that

Varθ(T̂n,σ) = O{(κC/n)2}+O{||σ||2(κC/n)}+ o(||σ||4) = o(||σ||4),

it holds as p→ ∞ that

power = Pθ

(
T̂n,σ >

Sn(∗)tr(Sn)∆Lzα
zα + zβ

)
= Pθ

( T̂n,σ
||σ||2

>
Sn(∗)tr(Sn)∆Lzα
(zα + zβ)||σ||2

)
≥ Pθ

(
1 + op(1) >

zα
zα + zβ

)
→ 1.

Thus we have that power ≥ 1 − β + o(1) when ||σ||2/{σ2
∗tr(Σ)} ≥ ∆L. It

concludes the results.

Lemma A.4. Let

T̃N,σ =
2

N(N − 1)

N∑
i<j

x0i(∗)x
T
0ix0j(∗)x0j.

Assume (A-i) to (A-iii). Assume also that lim supp→∞ ||σ||2/κ < ∞. For
the two-stage procedure given by (16)-(17), it holds as p→ ∞ that

T̃N,σ − ||σ||2

σ2
∗

√
2tr(Σ2)/N

⇒ N(0, 1).
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Proof of Lemma A.4. By using Chebyshev’s inequality, from Lemma A.2, for
any τ > 0, it holds as p → ∞ that Pθ{|Wm − tr(Σ2)| > τtr(Σ2)/C

1/2
⋆ } → 0

under (A-i)-(A-ii) and (16). Thus we have Wm = tr(Σ2) + op{tr(Σ2)/C
1/2
⋆ }.

Here, by using Hölder’s inequality, we also have that tr(Σ2) =
∑p

i=1 λ
2
i ≤

(
∑p

i=1 λ
4
i )

1/3(
∑p

i=1 λi)
2/3. Then it holds that

tr(Σ2)/tr(Σ)2 ≤ tr(Σ4)/tr(Σ2)2. (A.5)

Thus it follows under (A-i)-(A-ii) and (16) that

Pθ{|tr(Sm)− tr(Σ)| > τtr(Σ)/C1/2
⋆ } = O{(C⋆/m)tr(Σ2)/tr(Σ)2} → 0.

Then, we have tr(Sm) = tr(Σ) + op{tr(Σ)/C
1/2
⋆ }. Let Y = (zα + zβ)

√
2Wm

/{∆Ltr(Sm)} + 2η(zα + zβ)
2. Then, by noting that Y/C⋆ = 1 + op(C

−1/2
⋆ )

and m/C⋆ ≤ 1, we have that |N − C⋆| = op(C
1/2
⋆ ). Then, we write that

|N − C⋆| = Op(ωC
1/2
⋆ ), where ω is a variable such that ω → 0 as p → ∞.

Let CL = ⌊C⋆ − (ωC⋆)
1/2⌋ and CU = ⌈C⋆ + (ωC⋆)

1/2⌉. It holds as p → ∞
that CL < N < CU w.p.1. Let uj = x0j(∗)x0j. Now, we write that

T̃N,σ =

CL∑
i<j

2uT
i uj

N(N − 1)
+

N∑
j=CL+1

CL∑
i=1

2uT
i uj

N(N − 1)
+

N∑
i ̸=j(>CL)

uT
i uj

N(N − 1)
. (A.6)

Note that σTΣσ ≤ ||σ||2λ1 ≤ ||σ||2tr(Σ2)1/2. Then, by using Chebyshev’s
inequality and Schwarz’s inequality, for any τ > 0, we have that

Pθ

(∣∣∑N
j=CL+1

∑CL

i=1(u
T
i uj − ||σ||2)/C2

⋆

∣∣ > τκ
)

≤ Pθ

(∑CU

j=CL+1

∣∣∑CL

i=1(u
T
i uj − ||σ||2)/C2

⋆

∣∣ > τκ
)
+ o(1)

= O
{
ωσ4

∗tr(Σ
2)/(C2

⋆κ
2)
}
+O

{
ω(σ2

∗σ
TΣσ + ||σ||4)/(C2

⋆κ
2)
}
+ o(1) → 0

(A.7)

under (A-i) to (A-iii) and lim supp→∞ ||σ||2/κ < ∞. Thus by noting that
N/C⋆ = 1 + op(1), we obtain that∑N

j=CL+1

∑CL

i=1(u
T
i uj − ||σ||2)/{N(N − 1)} = op(κ).

Similarly to (A.7), for any τ > 0, we obtain that Pθ{|
∑N

i̸=j(>CL)
(uT

i uj −
||σ||2)/C2

⋆ | > τκ} → 0.Hence, we have that
∑N

i̸=j(>CL)
(uT

i uj−||σ||2)/{N(N−
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1)} = op(κ). Note that N/CL = 1 + op(1). Then, from (A.6), it holds as

p → ∞ that T̃N,σ = T̃CL,σ + op(κ). Therefore, similarly to the proof of
Theorems 2.1 and 3.1, under (A-i) to (A-iii), we have that

T̃N,σ − ||σ||2

σ2
∗

√
2tr(Σ2)/N

=
T̃CL,σ − ||σ||2

σ2
∗

√
2tr(Σ2)/CL

+ op(1) ⇒ N(0, 1).

It concludes the result.

Lemma A.5. Assume (A-i) to (A-iii). Assume also that lim supp→∞ ||σ||2
/κ < ∞. For the two-stage procedure given by (16)-(17), it holds as p → ∞
that

T̂N,σ = T̃N,σ + op(κ),

where T̃N,σ is the one given in Lemma A.4.

Proof of Lemma A.5. Let k⋆ = ⌈k/2− 1⌉. We write that

T̂N,σ =
2uN

N(N − 1)

2N−1∑
k=3

k⋆∑
i=max{1,k−N}

(xi − xN(1)(k))
T (xk−i − xN(2)(k))

× (xi(∗) − xN(1∗)(k))(xk−i(∗) − xN(2∗)(k)).

Let WN(l)(k)1 = V CL(l)(k′) \ (V N(l)(k) ∩ V CL(l)(k′)) and WN(l)(k)2 = V N(l)(k) \
(V N(l)(k) ∩ V CL(l)(k′)), where k

′ = min{k, 2CL − 1} and CL is defined in the
proof of Lemma A.4. Note that CL < N < CU w.p.1 as p → ∞, where
CU is defined in the proof of Lemma A.4. Then, it holds for j = 1, 2, that
#(WN(l)(k)j) ≤ CU − CL = o(C

1/2
⋆ ) w.p.1 as p→ ∞. Now, we write that

xN(l)(k) =
∑

j∈V CL(l)(k′)

xj/N(l) −
∑

j∈W N(l)(k)1

xj/N(l) +
∑

j∈W N(l)(k)2

xj/N(l).

Let CL(1) = ⌈CL/2⌉. Let ψijk = C−1
L(1)(xj − µ)T (xk−i−µ)(xi(∗)−µ∗)(xk−i(∗)−

µ∗). Then, in a way similar to (A.7), for any τ > 0, we have for i′ = 1, 2,
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that

Pθ

(
C−2

L

∣∣∣ 2N−1∑
k=3

k⋆∑
i=max{1,k−N}

∑
j∈W N(1)(k)i′

ψijk

∣∣∣ > τκ
)

≤ Pθ

{
C−2

L

2CL−1∑
k=3

∑
j∈W N(1)(k)i′

(∣∣∣ k⋆∑
i=max{1,k−CL}

ψijk

∣∣∣+ max{1,k−CL}−1∑
i=max{1,k−N}

|ψijk|
)
>

τκ

2

}
+ Pθ

(
C−2

L

2N−1∑
k=2CL

∑
j∈W N(1)(k)i′

k⋆∑
i=max{1,k−N}

|ψijk| >
τκ

2

)
→ 0.

Similarly, we have that

Pθ

(
C−2

L

∣∣∣ 2N−1∑
k=3

k⋆∑
i=max{1,k−N}

∑
j∈V CL(1)(k′)

ψijk

∣∣∣ > τκ
)
→ 0.

Then, we obtain that
∑2N−1

k=3

∑k⋆
i=max{1,k−N}(xN(1)(k) −µ)T (xk−i −µ)(xi(∗) −

µ∗)(xk−i(∗) − µ∗)/{N(N − 1)} = op(κ). Similarly, we obtain that

T̂N,σ =
2uN

N(N − 1)

2N−1∑
k=3

k⋆∑
i=max{1,k−N}

(xi − xN(1)(k))
T (xk−i − xN(2)(k))

× (xi(∗) − xN(1∗)(k))(xk−i(∗) − xN(2∗)(k))

= 2
2N−1∑
k=3

k⋆∑
i=max{1,k−N}

(xi(∗) − µ∗)(xi − µ)T (xk−i − µ)(xk−i(∗) − µ∗)

N(N − 1)
+ op(κ)

= T̃N,σ + op(κ).

It concludes the result.

Remark 15. Assume (A-i) to (A-iii) and κ/||σ||2 → 0 as p → ∞. For the
two-stage procedure given by (16)-(17), it holds as p→ ∞ and n→ ∞ that

T̂N,σ/||σ||2 = 1 + op(1).

Proof of Theorem 3.2. When lim supp→∞ ||σ||2/κ < ∞, by combining Lem-

mas A.4 and A.5, we have that (T̂N,σ−||σ||2)/{σ2
∗

√
2tr(Σ2)/N} ⇒ N(0, 1).

In a way similar to (A.7), it holds that SN(∗) = σ2
∗+op(1) and tr(SN)/tr(Σ) =
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1+ op(1). Note that (1− 2η(zα+ zβ)
2/N) = 1+ op(1). Then, similarly to the

proof of Theorem 3.1, the result is obtained. When κ/||σ||2 → 0 as p→ ∞,
with the help of Remark 15, it concludes the result.

Proof of Theorem 4.1. We first consider the subscript i having ρi = 0. We

have from (23) that (
√

2tr(Σ2)/N)/{tr(Σ)∆L/(zα/K + zβ/K)} = 1 + op(1).
From Lemmas A.4 and A.5, under (A-i), (A-ii) and (A-v), we have that

PθK

(
T̂N,σ(i) >

tr(SN)SiN(∗)∆Lzα/K
zα/K + zβ/K

)
≤ PθK

{N(0, 1) > zα/K}+ o(1) → α/K

from the facts that SiN(∗) = σ2
i∗+ op(1) and tr(SN)/tr(Σ) = 1+ op(1). Then,

by using Bonferroni’s inequality, we obtain that

PθK
(Dc ∩ D̂ = ∅) ≥ 1− α+ o(1).

Thus we have that PθK
(Dc ∩ D̂ ̸= ∅) ≤ α+ o(1).

Next, we consider the subscript i having ρi ̸= 0. Similarly to the proofs
of Theorems 3.1 and 3.2, under (A-i), (A-ii) and (A-v), we have that

PθK

(
T̂N,σ(i) >

tr(SN)SiN(∗)∆Lzα/K
zα/K + zβ/K

)
≥ 1−β/K+o(1) when

||σi||2

σ2
i∗tr(Σ)

≥ ∆L.

Thus by using Bonferroni’s inequality, we obtain that PθK
(D ⊆ D̂) ≥ 1 −

β+ o(1) when min
i∈D ||σi||2/{σ2

i∗tr(Σ)} ≥ ∆L. It concludes the results.
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