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Abstract. In this paper, we assume that dimensions mean the large inductive di-
mension Ind and the covering dimension dim. It is well-known that Ind X = dimX for
each metric space X. In [7], J. Kulesza proved the theorem that every compact metric n-
dimensional dynamical system with zero-dimensional set of periodic points can be covered
by a compact metric zero-dimensional dynamical system via an at most (n + 1)n-to-one
map. In this paper, we generalize Kulesza’s theorem above to the case of arbitrary metric
spaces, and improve the theorem. In fact, we prove that every metric n-dimensional dy-
namical system with zero-dimensional set of periodic points can be covered by a metric
zero-dimensional dynamical system via an at most 2n-to-one closed map. Moreover, we
also study periodic dynamical systems. We show that each finite-dimensional periodic
dynamical system can be covered by a zero-dimensional periodic dynamical system via a
finite-to-one closed onto map.

1 Introduction

In this paper, we assume that all spaces are metric spaces and dimensions mean the
large inductive dimension Ind and the covering dimension dim. It is well-known that
Ind X = dimX for each metric space X (see [3, The Katětov-Morita Theorem 4.1.3]).
Note that in this paper we do not use the small inductive dimension ind. We know that
if X is a separable metric space, then Ind X = dimX = ind X (see [3]). A pair (X, f)
is called a dynamical system if X is a metric space and f is a homeomorphism of X onto
itself. A dynamical system (Y, g) covers (X, f) via an onto map p : Y → X provided that
p◦g = f ◦p. There is a classical theorem by W. Hurewicz [4] that a compact metric space
X is at most n-dimensional if and only if there is a compact metric zero-dimensional space
Z with an onto map p : Z → X whose fibers have cardinality at most n + 1. Moreover,
K. Kuratowski [8] and K. Morita [12] generalized this theorem to the case of arbitrary
metric spaces. In the theory of dynamical systems, there is a related problem: Is every
finite-dimensional dynamical system covered by a zero-dimensional dynamical system via
a finite-to-one closed map? It is well known that for any compact metric dynamical system
(X, f), there is a compact zero-dimensional dynamical system covering (X, f) via an onto
map. In [7], J. Kulesza proved the following theorem: For each compact n-dimensional
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dynamical system (X, f) with zero-dimensional set of periodic points, there is a compact
zero-dimensional dynamical system covering (X, f) via an at most (n+1)n-to-one map. He
also showed that there is a compact one-dimensional dynamical system which can not be
covered by a compact zero-dimensional dynamical system via a finite-to-one map (see [7]).
Moreover, he [7] announced in his paper without proof that there is a zero-dimensional
compact dynamical system covering (X, f) via an at most (n+ 1)-to-one map. However,
we could not find any articles about this fact. Covers of dynamical systems are also
related to the theory of colorings. Many mathematicians have investigated the theory of
colorings (e.g., see [1], [5], [9] and [11]).

In this paper, we generalize Kulesza’s theorem to the case of (nonseparable) metric
spaces, and improve the theorem. In fact, we prove that every metric n-dimensional
dynamical system with zero-dimensional set of periodic points can be covered by a metric
zero-dimensional dynamical system via an at most 2n-to-one closed map. In Lemmas 3.3,
3.4 and 3.5 of this paper, we are bit more careful in choosing locally finite open covers
C(j) compared with the methods of Kulesza [7, Lemmas 3.5 and 3.7]. Also, in this paper
we study periodic dynamical systems.

Recall that dimX denotes the covering dimension of a space X and Ind X = dimX
for each metric space X (see [3], [11] and [13]). For the theory of dimention for arbitrary
metric spaces, see [3] and [13]. Let N be the set of all natural numbers, i.e. N =
{1, 2, 3, . . . }, and let Z be the set of all integers, i.e. Z = {. . . ,−2,−1, 0, 1, 2, . . . }. For
each map f : X → X, let P (f) be the set of all periodic points of f , i.e.

P (f) = {x ∈ X | f j(x) = x for some j ∈ N}.

If K is a subset of X, then cl(K), bd(K) and int(K) denote the closure, the boundary and
the interior of K in X, respectively. For a collection C of subsets of X, C|K = {C ∩K |
C ∈ C} and ord(C) = sup{ordxC | x ∈ X}, where ordxC is the number of members of C
which contains x.

Moreover, we need the following notions. A closed set K in X is regular closed in X
if cl(int(K)) = K. A collection C of regular closed sets in X is called a regular closed
partition of X provided that

∪
C = X and C ∩ C ′ = bd(C) ∩ bd(C ′) for each C,C ′ ∈ C

with C 6= C ′. For regular closed partitions A and B of X, A@B denotes the regular closed
partition

{cl(int(A) ∩ int(B)) | A ∈ A and B ∈ B}
of X. It is clear that ord(A@B) ≤ ord(A) · ord(B). A collection {Aλ}λ∈Λ of subsets of
X is called a swelling of a collection {Bλ}λ∈Λ of subsets of X provided that Bλ ⊂ Aλ for
each λ ∈ Λ, and if m ∈ N and λ1, . . . , λm ∈ Λ, then

m∩
i=1

Aλi
6= ∅ if and only if

m∩
i=1

Bλi
6= ∅.

Conversely, a cover {Bλ}λ∈Λ of X is called a shrinking of a cover {Aλ}λ∈Λ of X if Bλ ⊂ Aλ

for each λ ∈ Λ.
In [7], J. Kulesza proved the following theorem.
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Theorem 1.1. ([7, Theorem 3.1]) If (X, f) is a compact dynamical system such that
dimX = n < ∞ and dimP (f) ≤ 0, then (X, f) can be covered by a compact zero-
dimensional dynamical system via an at most (n+ 1)n-to-one map.

J. Kulesza [7] needed the following theorem to prove Theorem 1.1.

Theorem 1.2. ([7, Theorem 3.2]) Suppose that (X, f) is a compact dynamical system
with dimX = n < ∞, and {Ci | i = 0, 1, 2, . . . } is a sequence of regular closed partitions
of X such that
(i) there is m ∈ N such that ord(Ci) ≤ m for each i = 0, 1, 2, . . . ,
(ii) Ci+1 refines f−1(Ci)@Ci@f(Ci),
(iii) if i > 0, then mesh(Ci) < 1/i.
Then there is a compact zero-dimensional dynamical system (C, h) and an at most m-to-
one map g : C → X such that g ◦ h = f ◦ g.

On the other hand, for the case of arbitrary metric spaces, we know the following
theorem which characterizes dimension, by use of closed coverings. The theorem is due
to K. Morita [12].

Theorem 1.3. ([13, Theorem III.9]) A metric space X is at most n-dimensional (i.e.
dimX ≤ n) if and only if there is a sequence {Fi | i ∈ N} of locally finite closed coverings
of X such that
(i) for each x ∈ X and for each neighborhood U(x) of x in X, there is i ∈ N satisfying
St(x,Fi) ⊂ U(x), where St(x,Fi) =

∪
{F ∈ Fi | x ∈ F},

(ii) Fi = {F (α1, . . . , αi) | αk ∈ Ω and k = 1, . . . , i}, where F (α1, . . . , αi) may be empty,
(iii) F (α1, . . . , αi−1) =

∪
{F (α1, . . . , αi−1, β) | β ∈ Ω},

(iv) ord(Fi) ≤ n+ 1.

2 Periodic dynamical systems and zero-dimensional

covers

In this section, we study the relation between periodic dynamical systems and zero-
dimensional covers. We need the following lemma which is a generalization of Theorem
1.2 to the case of arbitrary metric spaces. The proof is a modification of the proof of [7,
Theorem 3.2]. For completeness, we give the proof.

Lemma 2.1. (cf. [7, Theorem 3.2]) Let (X, f) be a dynamical system of a metric space
X, and suppose that {C(j) | j ∈ N} is a sequence of locally finite regular closed partitions
of X such that
(i) there is m ∈ N such that ord(C(j)) ≤ m for each j ∈ N,
(ii) C(j + 1) refines f−1(C(j))@C(j)@f(C(j)),
(iii) for each x ∈ X and for each neighborhood U(x) of x in X, there is j ∈ N satisfying
St(x, C(j)) ⊂ U(x).
Then there is a dynamical system (C, f̃) of a zero-dimensional metric space C (i.e.
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dimC = 0) and an at most m-to-one closed onto map p : C → X such that p ◦ f̃ = f ◦ p.
Moreover, if X is a compact (resp.separable) metric space, then C can be taken as a
compact (resp.separable) metric space.

Proof. Without loss of generality, we may assume that each element of each C(j) is
nonempty. Put

C = {(c1, c2, . . . ) ∈
∏
j∈N

C(j) | c1 ⊃ c2 ⊃ · · · and
∩
j∈N

cj 6= ∅}

and suppose that each C(j) is a discrete (metric) space, i.e., {c} is open in C(j) for each
c ∈ C(j). By (iii), note that

∩
j∈N cj is a one point set for each (c1, c2, . . . ) ∈ C. Since the

product space
∏

j∈N C(j) is a zero-dimenisonal metric space, so is C. Moreover, if X is
a compact (resp. separable) metric space, we can take C(j) as a finite (resp. countable)
collection and hence C(j) is a compact (resp. separable) metric space. In particular, C is
the limit of the inverse sequence (C(1) ← C(2) ← C(3) ← · · · ), if each C(j) is a compact
metric space. Then C is also a compact (resp. separable) metric space.

Define p : C → X by p(c1, c2, . . . ) =
∩

j∈N cj. It is easy to see that p is a continuous
onto map.

First, we will show that p is at most m-to-one. Suppose, on the contrary, that there
is x ∈ X and pairwise distinct m+ 1 elements

(c(1)1, c(1)2, . . . ), (c(2)1, c(2)2, . . . ), . . . , (c(m+ 1)1, c(m+ 1)2, . . . )

of C such that ∩
j∈N

c(1)j = · · · =
∩
j∈N

c(m+ 1)j = {x}.

For each 1 ≤ i < i′ ≤ m+1, let ri,i′ = min{j ∈ N | c(i)j 6= c(i′)j}. Note that c(i)j 6= c(i′)j
for each j ≥ ri,i′ . Put

r = max{ri,i′ | 1 ≤ i < i′ ≤ m+ 1}.

Then c(1)r, . . . , c(m+1)r are pairwise distinct elements of C(r) satisfying x ∈ c(1)r∩· · ·∩
c(m+ 1)r. Thus, ord(C(r)) ≥ m+ 1. This is a contradiction.

Next, we will show that p is a closed map. For each n ∈ N and (c1, c2, . . . ) ∈ C, let

On(c1, c2, . . . ) = {(c′1, c′2, . . . ) ∈ C | c′n = cn}.

Note that {On(c1, c2, . . . ) | n ∈ N} is a neighborhood base at (c1, c2, . . . ) and p(On(c1, c2, . . . )) =
cn. Now let K be closed in C and x ∈ X − p(K). Then K and the finite set p−1(x) are
disjoint closed sets in C. Put On(K) =

∪
{On(c1, c2, . . . ) | (c1, c2, . . . ) ∈ K} ⊂ C. Then

we can take j ∈ N with p−1(x) ∩Oj(K) = ∅ and put Hj =
∪
{cj | (c1, c2, . . . ) ∈ K} ⊂ X.

Note that x /∈ p(Oj(K))) = Hj ⊃ p(K). Since C(j) is locally finite, Hj is a closed set in
X. Put U = X − Hj. Then U is an open neighborhood of x in X with U ∩ p(K) = ∅.
This implies that p(K) is closed in X.
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Next, we will construct a desired homeomorphism f̃ : C → C. By (ii), note that
both f(C(j + 1)) and f−1(C(j + 1)) are refinements of C(j). Thus, by regular closedness
there are unique maps f̃j, g̃j : C(j + 1) → C(j) given by f̃j(cj+1) = cj,f if f(cj+1) ⊂ cj,f ,
and g̃j(cj+1) = cj,f−1 if f−1(cj+1) ⊂ cj,f−1 . Now define f̃ , g̃ : C → C by f̃(c1, c2, . . . ) =

(f̃1(c2), f̃2(c3), . . . ) and g̃(c1, c2, . . . ) = (g̃1(c2), g̃2(c3), . . . ). We show that the following
conditions (a), (b), (c) and (d) are satisfied.

(a) f̃ is continuous.
This is obvious since each f̃j is continuous.

(b) f̃ is bijective.
Let (c1, c2, . . . ) ∈ C. Then,

f̃j ◦ g̃j+1(cj+2) ⊃ f ◦ f−1(cj+2) = cj+2

g̃j ◦ f̃j+1(cj+2) ⊃ f−1 ◦ f(cj+2) = cj+2.

Note that f̃j ◦ g̃j+1(cj+2) = g̃j ◦ f̃j+1(cj+2) = cj. Then, f̃ ◦ g̃ = g̃ ◦ f̃ = idC . Therefore f̃ is
bijective and f̃−1 = g̃.

(c) f̃−1 is continuous.
This is obvious since each g̃j is continuous.

(d) p ◦ f̃ = f ◦ p.
Let (c1, c2, . . . ) ∈ C. Then

p ◦ f̃(c1, c2, . . . ) = p(f̃1(c2), f̃2(c3), . . . ) =
∩
j∈N

f̃j(cj+1) ⊃
∩
j∈N

f(cj+1),

f ◦ p(c1, c2, . . . ) = f(
∩
j∈N

cj) =
∩
j∈N

f(cj) =
∩
j∈N

f(cj+1).

Therefore, p◦f̃(c1, c2, . . . ) ⊃ f◦p(c1, c2, . . . ). Note that p◦f̃(c1, c2, . . . ) and f◦p(c1, c2, . . . )
are one point sets in X. Thus p ◦ f̃ = f ◦ p.

In general, we have the following proposition. The proposition in the case of compact
spaces is well known.

Proposition 2.2. Let (X, f) be a dynamical system of a metric space X. Then there is
a dynamical system (C, f̃) of a zero-dimensional metric space C and a closed onto map
p : C → X such that p ◦ f̃ = f ◦ p. Moreover, if X is a compact (resp. separable) space,
then C can be taken as a compact (resp. separable) space.

Proof. It is easy to see that we have a sequence {C(j) | j ∈ N} of locally finite regular
closed partitions of X satisfying the conditions (ii) and (iii) as in Lemma 2.1. By Lemma
2.1, we have the desired homeomorphism f̃ : C → C of a zero-dimensional metric space
C and a closed onto map p : C → X.

A homeomorphism f : X → X of a space X is periodic if fk = idX for some k ∈ N.
The following theorem says that each finite-dimensional periodic dynamical system can be
covered by a zero-dimensional periodic dynamical system via a finite-to-one closed onto
map. The case of k = 1 implies the above theorem of Hurewicz.
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Theorem 2.3. Let (X, f) be a dynamical system of a metric space X such that dimX =
n <∞ and fk = idX for some k ∈ N. Then there is a dynamical system (C, f̃) of a zero-
dimensional metric space C with f̃k = idC and an at most (n + 1)k-to-one closed onto
map p : C → X such that p ◦ f̃ = f ◦ p. Moreover, if X is a compact (resp. separable)
metric space, then C can be taken as a compact (resp. separable) metric space.

Proof. By Theorem 1.3, there is a sequence {Fi | i ∈ N} of locally finite regular closed
partitions of X such that
(i) for each x ∈ X and for each neighborhood U(p) of x in X there is i ∈ N satisfying
St(x,Fi) ⊂ U(x),
(ii) Fi = {F (α1, . . . , αi) | αk ∈ Ω and k = 1, . . . , i}, where F (α1, . . . , αi) may be empty,
(iii) F (α1, . . . , αi−1) =

∪
{F (α1, . . . , αi−1, β) | β ∈ Ω},

(iv) ord(Fi) ≤ n+ 1.
Note that Fi+1 refines Fi. Put Ci = @k−1

j=0f
j(Fi). Since fk = idX , we see that

Ci = @i
p=1@

k−1
j=−(k−1)f

j(Fp).

Then

ord(Ci) ≤
k−1∏
j=0

ord(f j(Fi)) ≤ (n+ 1)k,

and Ci+1 refines f−1(Ci)@Ci@f(Ci) = Ci. Therefore, applying Lemma 2.1, we obtain a
desired homeomorphism f̃ : C → C of a zero-dimensional metric space C and a desired
closed map p : C → X. Finally, we will show that f̃k = idC . For each (c1, c2, . . . ) ∈ C,

f̃i ◦ · · · ◦ f̃i+(k−1)(ci+k) ⊃ fk(ci+k) = ci+k,

where f̃i is the map as in the proof of Lemma 2.1. Note that f̃i ◦ · · · ◦ f̃i+(k−1)(ci+k) = ci.
Then

f̃k(c1, c2, . . . ) = (f̃1 ◦ · · · ◦ f̃k(ck+1), f̃2 ◦ · · · ◦ f̃k+1(ck+2), . . . ) = (c1, c2, . . . ).

Therefore, f̃k = idC .

3 Dynamical systems with zero-dimensional sets of

periodic points

In this section, we generalize Theorem 1.1 to the case of any metric spaces, and improve
the theorem. The following is the main theorem in this paper.

Theorem 3.1. Let (X, f) be a dynamical system of a metric space X such that dimX =
n <∞ and dimP (f) ≤ 0. Then there is a dynamical system (C, f̃) of a zero-dimensional
metric space C and an at most 2n-to-one closed onto map p : C → X such that p◦f̃ = f◦p.
Moreover, if X is a compact (resp. separable) metric space, then C can be taken as a
compact (resp. separable) metric space.

6



Remark 1. J. Kulesza [7] showed that if we do not assume dimP (f) ≤ 0, there is a
compact one-dimensional dynamical system which can not be covered by a compact zero-
dimensional dynamical system via a finite-to-one closed map (see [7, Example 2.2]).

We say a collection G of subsets of a metric space X with dimX = n <∞ is in general
position provided that if S ⊂ G and 1 ≤ |S| ≤ n+1, then dim(

∩
S) ≤ n− |S|, where |S|

denotes the cardinality of S. To get the degree of the (dynamical system) cover to be an
improvement to 2n from (n+1)n, we need the next lemmas 3.2, 3.3, 3.4 and 3.5 which are
the key lemmas. In [7, Lemma 3.7], Kulesza made the collection {fk(bCi)| k ∈ Z, i ∈ N}
having order at most n (see [7] for the definition of bCi). In this paper, we are able to get
more sets {f p(bd(C(j)α)| α < τ, j ∈ N, p ∈ Z} to have order at most n (see Lemma 3.5 of
this paper). The next lemmas are modifications of [7, Lemmas 3.5 and 3.7] in the case of
nonseparable metric spaces, but we need more precise and general arguments.

Lemma 3.2. Let X be a metric space with dimX = n <∞, and for any j ∈ N, suppose
that G(j) is a locally finite collection of closed subsets of X. If each G(j) is in general
position, then there is a zero-dimensional Fσ-set Z of X such that if A is a subset of X
with A ∩ Z = ∅, then G(j) ∪ {A} is in general position for each j ∈ N.

Proof. Let j ∈ N. Note that {
∩
S | S ⊂ G(j) and

∩
S 6= ∅} is a locally finite collection

such that each element is a closed set in X. First, we choose a zero-dimensional Fσ-set
Z ′ of X such that dim(X − Z ′) ≤ n− 1 (see [2, Proposition 3]). Also, for each S ⊂ G(j)
with

∩
S 6= ∅, we can choose a zero-dimensional Fσ-set ZS of

∩
S such that

dim(
∩
S − ZS) ≤ dim(

∩
S)− 1.

Note that {ZS | S ⊂ G(j) and
∩
S 6= ∅} is a locally finite collection of zero-dimensional

Fσ-sets of X. Then

Z =
∪
{ZS | j ∈ N, S ⊂ G(j) and

∩
S 6= ∅} ∪ Z ′

is also a zero-dimensional Fσ-set of X. We will show that Z is a desired set. Now suppose
A ⊂ X with A∩Z = ∅. Let S ⊂ G(j)∪ {A} such that 1 ≤ |S| ≤ n+ 1 and

∩
S 6= ∅. We

may assume that A ∈ S. If |S| = 1, then

dim(
∩
S) = dimA ≤ dim(X − Z ′) ≤ n− 1.

On the other hand, suppose 2 ≤ |S| ≤ n+1. Since S−{A} ⊂ G(j) and 1 ≤ |S−{A}| ≤ n
and

∩
(S − {A}) 6= ∅, we see that

dim(
∩
S) = dim[

∩
(S − {A}) ∩ A] ≤ dim[

∩
(S − {A})− Z(S−{A})]

≤ dim[
∩

(S − {A})]− 1 ≤ (n− |S − {A}|)− 1

= n− (|S| − 1)− 1 = n− |S|.

Therefore G(j) ∪ {A} is in general position for any j ∈ N.
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From now on, we assume that τ and γ are ordinal numbers. Also, we assume that 0
is the smallest ordinal number.

Lemma 3.3. (cf. [5, Lemma 2.1]) Let C = {Cα | α < τ} be a locally finite open cover of
a metric space X with dimX = n < ∞, and let B = {Bα | α < τ} be a closed shrinking
of C. Suppose that O is an open set of X, Z is an at most zero-dimensional Fσ-set of O,
and for each j ∈ N, G(j) is a locally finite collection of closed subsets of O. If each G(j)
is in general position, then there is an open shrinking C ′ = {C ′

α | α < τ} of C such that
for each α < τ ,
(1) Bα ⊂ C ′

α ⊂ Cα,
(2) C ′

α = Cα if bd(Cα) ∩O = ∅,
(3) C ′

α −O = Cα −O,
(4) bd(C ′

α)−O ⊂ bd(Cα)−O,
(5) bd(C ′

α) ∩ Z = ∅,
(6) G(j) ∪ {bd(C ′

α) ∩O | α < τ} is in general position for any j ∈ N.

Proof. Without loss of generality, we may assume that B0 = C0 = X (α = 0). We
will construct C ′

α by transfinite induction on the ordinal α. For the case α = 0, we put
C ′

0 = X. Next we assume that there is {C ′
β | β < α} (α < τ) satisfying the conditions

(1)–(5) and
G(j) ∪ {bd(C ′

β) ∩O | β < α}
is in general position for each j ∈ N. We will construct C ′

α as follows. By Lemma 3.2,
there is a zero-dimensional Fσ-set Zα of O such that if A ⊂ O and A ∩ Zα = ∅, then
G(j) ∪ {bd(C ′

β) ∩ O | β < α} ∪ {A} is in general position for each j ∈ N. Consider the
following open subspace of X:

Yα = X − [bd(Cα)−O]

Also consider the following closed set of Yα:

B′
α = [Bα ∪ (cl(Cα)−O)] ∩ Yα = Bα ∪ (Cα −O)

Since dim(Zα ∪ Z) ≤ 0, we can choose an open set C ′
α of Yα such that B′

α ⊂ C ′
α ⊂

clYα(C
′
α) ⊂ Cα and bdYα(C

′
α) ∩ (Zα ∪ Z) = ∅ (see [3, p.221, Theorem 4.1.13]). Then C ′

α

is an open set of X. Note that bdYα(C
′
α) ⊂ O and bd(C ′

α) ⊂ bdYα(C
′
α) ∪ (bd(Cα) − O).

Note that
C ′

α −O = B′
α −O = Cα −O,

bd(C ′
α)−O ⊂ bd(Cα)−O,

bd(C ′
α) ∩O ⊂ bdYα(C

′
α) ∩O.

Hence (bd(C ′
α) ∩ O) ∩ (Zα ∪ Z) = ∅. By the construction, we see that C ′

α satisfies the
conditions (1)–(5), and G(j)∪{bd(C ′

β)∩O | β ≤ α} is in general position for each j ∈ N.
By transfinite induction on the ordinal α, we obtain the desired open shrinking C ′ =

{C ′
α | α < τ} of C.
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Lemma 3.4. (cf. [5, Lemma 2.2]) Let (X, f) be a dynamical system of a metric space
X such that dimX = n < ∞ and dimP (f) ≤ 0. Let C = {Cα | α < τ} be a locally
finite open cover of X and let B = {Bα | α < τ} be a closed shrinking of C. Then for
each k = 0, 1, 2, . . . , there is an open shrinking C ′ = {C ′

α | α < τ} of C such that for each
α < τ ,
(1) Bα ⊂ C ′

α ⊂ Cα,
(2) {f j(bd(C ′

α)) | α < τ and |j| ≤ k} is in general position,
(3) bd(C ′

α) ∩ P (f) = ∅.

Proof. We proceed by induction on k. In the case k = 0, if we put O = X and Z = P (f),
by Lemma 3.3 there is an open shrinking C ′ = {C ′

α | α < τ} of C such that (1)-(3).
Next we suppose the result holds for k − 1. Then there is an open shrinking D =

{Dα | α < τ} of C such that for each α < τ ,
(1’) Bα ⊂ Dα ⊂ Cα,
(2’) {f j(bd(Dα)) | α < τ and |j| ≤ k − 1} is in general position,
(3’) bd(Dα) ∩ P (f) = ∅.

Put
F =

∪
α<τ

bd(Dα).

Since F contains no periodic points, we can choose a locally finite open (in X) cover
O = {Oβ | β < γ} of F such that

{f−2k(Oβ), . . . , Oβ, . . . , f
2k(Oβ)}

is pairwise disjoint for each β < γ. We may assume that O0 = ∅. By transfinite induction
on β, we will construct an ordered collection {D(β) | β < γ} of open shrinkings of C such
that for each β < γ,
(a) D(0) = D,
(b) D(β) = {D(β)α | α < τ},
(c) Bα ⊂ D(β)α ⊂

∩
β′<β D(β′)α,

(d)
∩

β′<β D(β′)α ∩ (X −Oβ) = D(β)α ∩ (X −Oβ),
bd(

∩
β′<β D(β′)α) ∩ (X −Oβ) ⊃ bd(D(β)α) ∩ (X −Oβ), and

if bd(
∩

β′<β D(β′)α) ∩Oβ = ∅, then
∩

β′<β D(β′)α = D(β)α,
(e) G(β) = {fp(bd(D(β)α)) | |p| ≤ k − 1 and α < τ} ∪ {fp(bd(D(β)α) ∩ (

∪
β′≤β Oβ′)) |

|p| = k and α < τ} is in general position,
(f) bd(D(β)α) ∩ P (f) = ∅.

We construct D(β) by transfinite induction on β < γ. For β = 0, we have D(0) = D.
Suppose that we have {D(β′) | β′ < β} satisfying the desired conditions. To construct
D(β), we consider the collection E = {Eα | α < τ}, where Eα =

∩
β′<β D(β′)α. Note

that by (d) and local finiteness of O, for each x ∈ X there is an open neighborhood U(x)
of x in X and βx < β such that Eα ∩ U(x) = D(βx)α ∩ U(x) and bd(Eα) ∩ U(x) =
bd(D(βx)α) ∩ U(x).
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Claim 1. E is an open shrinking of C such that Bα ⊂ Eα ⊂ Cα and bd(Eα)∩P (f) = ∅.

Proof. Since

Eα =
∪
x∈X

(D(βx)α ∩ U(x)) ⊃
∪
x∈X

(Bα ∩ U(x)) = Bα,

it follows that Eα is open in X and contains Bα. On the other hand, since

bd(Eα) =
∪
x∈X

(bd(D(βx)α) ∩ U(x)) and bd(D(βx)α) ∩ P (f) = ∅,

it follows that bd(Eα) ∩ P (f) = ∅. ♦

Claim 2. F = {f p(bd(Eα)) | |p| ≤ k−1 and α < τ}∪{f p(bd(Eα)∩ (
∪

β′<β Oβ′)) | |p| =
k and α < τ} is in general position.

Proof. Note that by (d) and local finiteness of
∪

|p|≤k f
p(O), for each x ∈ X there is an

open neighborhood V (x) of x in X and γx < β such that

f p(bd(Eα)) ∩ V (x) = f p(bd(D(γx)α)) ∩ V (x)

for each p. Choose a locally finite open refinement W of {V (x) | x ∈ X}. For each
W ∈ W , we take x ∈ X with W ⊂ V (x). Then

fp(bd(Eα)) ∩W = f p(bd(D(γx)α)) ∩W,

fp(bd(Eα) ∩ (
∪
β′<β

Oβ′)) ∩W = f p(bd(D(γx)α) ∩ (
∪

β′≤γx

Oβ′)) ∩W.

By (e), F|W = G(γx)|W is in general position. Now we will show that F is in general
position. Let S ⊂ F such that 1 ≤ |S| ≤ n+ 1 and

∩
S 6= ∅. Note that (

∩
S) ∩W is an

at most (n− |S|)-dimensional Fσ-set of X. By local finiteness of W ,∩
S =

∪
W∈W

((
∩
S) ∩W )

is also an at most (n− |S|)-dimensional. ♦

Then for each |q| ≤ k,

Sq = {f p(bd(Eα)) ∩ f q(Oβ) | |p| ≤ k − 1 and α < τ}

∪ {f p(bd(Eα) ∩
∪
β′<β

Oβ′) ∩ f q(Oβ) | |p| = k and α < τ}

is also in general position in f q(Oβ). Thus, f−q(Sq) is also in general position in Oβ.
By Lemma 3.3 and Claim 1, there is an open shrinking D(β) of {Eα | α < τ}(=
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{
∩

β′<β D(β′)α | α < τ}) such that
(1’) Bα ⊂ D(β)α ⊂

∩
β′<β D(β′)α(= Eα),

(2’) D(β)α =
∩

β′<β D(β′)α if bd
∩

β′<β(D(β′)α) ∩Oβ = ∅,
(3’) D(β)α −Oβ =

∩
β′<β D(β′)α −Oβ,

(4’) bd(D(β)α)−Oβ ⊂ bd(
∩

β′<β D(β′)α)−Oβ,
(5’) bd(D(β)α) ∩ P (f) = ∅
(6’) f−q(Sq) ∪ {bd(D(β)α) ∩Oβ | α < τ} is in general position for each |q| ≤ k.

By the similar arguments to the proof of [7, Lemma 3.5], we can check (e). By (4’) and
Claim 2, it suffices to show that G(β)|fq(Oβ) is in general position for each q. Note that
by (6’), for |p| ≤ k,

Sq ∪ {f q(bd(D(β)α) ∩ f q(Oβ)) | α < τ}

is in general position in f q(Oβ). Our goal is to see that all elements of G(β)|fq(Oβ) are
contained in distinct elements of Sq ∪ {f q(bd(D(β)α) ∩ f q(Oβ)) | α < τ}. It suffices to
prove the following claim.

Claim 3. Let α < τ and |p| ≤ k with p 6= q.
(i) If |p| ≤ k − 1, then

f p(bd(D(β)α)) ∩ f q(Oβ) ⊂ fp(bd(
∩
β′<β

D(β′)α)) ∩ f q(Oβ).

(ii) If |p| = k, then

fp(bd(D(β)α) ∩
∪
β′≤β

Oβ′) ∩ f q(Oβ) ⊂ fp(bd(
∩
β′<β

D(β′)α) ∩
∪
β′<β

Oβ′) ∩ f q(Oβ).

Proof. Note that f q(Oβ) ∩ f p(Oβ) = ∅. If |p| ≤ k − 1, then

f p(bd(D(β)α)) ∩ f q(Oβ) = f p(bd(D(β)α)−Oβ) ∩ f q(Oβ)

⊂ f p(bd(
∩
β′<β

D(β′)α)−Oβ) ∩ f q(Oβ)

= f p(bd(
∩
β′<β

D(β′)α)) ∩ f q(Oβ),

On the other hand, if |p| = k, then

f p(bd(D(β)α) ∩
∪
β′≤β

Oβ′) ∩ f q(Oβ) = f p(bd(D(β)α) ∩ [
∪
β′≤β

Oβ′ −Oβ]) ∩ f q(Oβ)

⊂ f p(bd(
∩
β′<β

D(β′)α) ∩ [
∪
β′<β

Oβ′ −Oβ]) ∩ f q(Oβ)

= f p(bd(
∩
β′<β

D(β′)α) ∩
∪
β′<β

Oβ′) ∩ f q(Oβ)
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Therefore, by induction on β we obtain the desired collection {D(β) | β < γ} of open
shrinkings of C. ♦

Finally, we put C ′
α =

∩
β<γ D(β)α for each α < τ . By the arguments of Claim 1 and

2, we see that C ′ = {C ′
α | α < τ} is an open shrinking of C satisfying the conditions

(1)–(3).

Lemma 3.5. ([7, Lemma 3.7]) Let (X, f) be a dynamical system of a metric space X
such that dimX = n < ∞ and dimP (f) ≤ 0. Then, for each j ∈ N, there is a locally
finite open cover C(j) = {C(j)α | α < τ} of X such that
(1) mesh(C(j)) < 1/j,
(2) ord(G) ≤ n, where G = {fp(bd(C(j)α)) | α < τ, j ∈ N and p ∈ Z}.

Proof. For each j ∈ N, we choose a locally finite open cover D(j) of X such that
mesh(D(j)) < 1/j. For simplicity, we may assume that D(j) = {D(j)α | α < τ} by use
of some sufficiently large ordinal number τ . Note that D(j)α may be an empty set. Take
an open shrinking B(j) = {B(j)α | α < τ} of D(j) such that B(j) = {cl(B(j)α) | α < τ}
is a closed shrinking of D(j). For each j ∈ N and each k ∈ N with k ≥ j, we will find
an open shrinking D(j, k) = {D(j, k)α | α < τ} (k ≥ j) of D(j) and a closed shrinking
B(j, k) = {B(j, k)α | α < τ} (k ≥ j) of D(j, k) such that
(a) D(j, j) = D(j), B(j, j) = B(j),
(b) cl(B(j)α) = B(j, j)α ⊂ B(j, j + 1)α ⊂ · · · ⊂ D(j, j + 1)α ⊂ D(j, j)α = D(j)α,
(c) ord{cl(f p(D(j, k + 1)α −B(j, k + 1)α)) | α < τ, 1 ≤ j ≤ k and |p| ≤ k} ≤ n.

We proceed by induction on k. Suppose that we have

D(1, k), . . . ,D(k − 1, k),D(k, k) = D(k)

and
B(1, k), . . . ,B(k − 1, k),B(k, k) = B(k)

satisfying the desired conditions. We will construct D(1, k + 1), . . . ,D(k, k + 1) and
B(1, k + 1), . . . ,B(k, k + 1). Note that {D(j, k)α | 1 ≤ j ≤ k and α < τ} is a locally
finite open cover of X and {B(j, k)α | 1 ≤ j ≤ k and α < τ} is a closed shrinking
of {D(j, k)α | 1 ≤ j ≤ k and α < τ}. By Lemma 3.4, there is an open shrinking
{D(j, k + 1)α | 1 ≤ j ≤ k and α < τ} of {D(j, k)α | 1 ≤ j ≤ k and α < τ} such that
(1’) B(j, k)α ⊂ D(j, k + 1)α ⊂ D(j, k)α,
(2’) {f p(bd(D(j, k + 1)α)) | α < τ, 1 ≤ j ≤ k and |p| ≤ k} is in general position.
Since

{f p(bd(D(j, k + 1)α)) | α < τ, 1 ≤ j ≤ k and |p| ≤ k}
is a locally finite collection of closed subsets of X with ord ≤ n, there is an open swelling

O(j, k + 1) = {O(j, k + 1)α | α < τ}

of {bd(D(j, k + 1)α) | α < τ} such that
(3’) O(j, k + 1)α ∩B(j, k)α = ∅,
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(4’) ord{fp(cl(O(j, k + 1)α)) | α < τ, 1 ≤ j ≤ k and |p| ≤ k} ≤ n.
For each α < τ and j ∈ N, let

B(j, k + 1)α = cl(D(j, k + 1)α)−O(j, k + 1)α.

Then D(j, k + 1) and B(j, k + 1) satisfy the conditions (a)–(c).
Now put

C(j)α = int[
∞∩
k=j

D(j, k)α] and C(j) = {C(j)α | α < τ}.

Note that B(j)α ⊂ C(j)α ⊂ D(j)α. Since (1) is obvious, we only need to check (2). It
suffices to show that for each k ∈ N,

G(k) = {fp(bd(C(j)α)) | α < τ, 1 ≤ j ≤ k and |p| ≤ k}

is ord ≤ n. However, since

bd(C(j)α) ⊂ cl(D(j, k + 1)α −B(j, k + 1)α) and

ord{cl(f p(D(j, k + 1)α −B(j, k + 1)α)) | α < τ, 1 ≤ j ≤ k and |p| ≤ k} ≤ n,

we see that (2) holds. Consequently, we obtain the desired open cover C(j) = {C(j)α |
α < τ} of X for each j ∈ N.

Lemma 3.6. (cf. [7, Lemma 3.8]) Let (X, f) be a dynamical system of a metric space X
with dimX = n < ∞. Suppose that for each j ∈ N, C(j) = {C(j)α | α < τ} is a locally
finite open cover of X such that mesh(C(j)) < 1/j for each j > 0 and ord(G) ≤ n, where
G = {f p(bd(C(j)α)) | α < τ, j ∈ N and p ∈ Z}. Then, for each j ∈ N there is a locally
finite regular closed partition D(j) of X such that
(1) mesh(D(j)) ≤ 1/j,
(2) ord(D(j)) ≤ 2n,
(3) D(j + 1) is a refinement of f−1(D(j))@D(j)@f(D(j)).

Proof. Put C ′(j)0 = cl(C(j)0) and C ′(j)α = cl(int(C(j)α−(
∪

α′<αC(j)α′))). Then C ′(j) =
{C ′(j)α | α < τ} is a locally finite regular closed partition of X. Let

D(j) = @0≤i≤j,|p|≤jf
p(C ′(i)).

We will show that D(j) is a desired partition. Since (1) and (3) are obvious, we only need
to check (2).

Let x ∈ X. For each j ∈ N and p ∈ Z, put

mj,p = ordfp(x){bd(C(j)α)) | α < τ}.
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Since ordxG ≤ n, we have ∑
j∈N
p∈Z

mj,p ≤ n.

We will show that ordfp(x)C ′(j) ≤ mj,p + 1. Put α0 = min{α < τ | f p(x) ∈ C(j)α}. By
[1, Lemma 13], we can see the following;

ordfp(x)C ′(j) = ordfp(x){C ′(j)α | α < α0} ∪ {C ′(j)α0} ∪ {C ′(j)α | α > α0}
≤ ordfp(x){cl(C(j)α)− C(j)α | α < α0} ∪ {C ′(j)α0}
≤ mj,p + 1.

Note that ord(A@B) ≤ ord(A) · ord(B) for each regular closed partitions A and B of X.
Since m+ 1 ≤ 2m for each m = 0, 1, 2, . . . ,

ordxD(j) = ordx @
0≤i≤j
|p|≤j

f p(C ′(i)) ≤
∏

0≤i≤j
|p|≤j

ordxf
−p(C ′(i)) =

∏
0≤i≤j
|p|≤j

ordfp(x)C ′(i)

≤
∏

0≤i≤j
|p|≤j

(mi,p + 1) ≤
∏

0≤i≤j
|p|≤j

2mi,p = 2
∑

mi,p ≤ 2n.

Therefore, D(j) is a desired partition.

Finally, we prove our main theorem in this paper.

Proof of Theorem 3.1. By Lemma 3.5, we have a sequence of locally finite open covers
of X satisfying the conditions of Lemma 3.6. Applying Lemma 3.6, we have regular
closed partitions satisfying the conditions of Lemma 2.1. Hence, by Lemma 2.1, there
is a homeomorphism f̃ : C → C of a zero-dimensional metric space C and an at most
2n-to-one closed onto map p : C → X such that p ◦ f̃ = f ◦ p.

Remark 2. In the statements of Theorem 3.1, the following are also true:
(1) The 2n-to-one closed onto map p satisfies the condition that |p−1(x)| = 1 for any
x ∈ P (f), i.e. P (f) is naturally embedded in C.
(2) If X is a complete metric space, then C can be taken as a complete metric space
and there is a Gδ−dense set G of X such that |p−1(x)| = 1 for each x ∈ G. In fact, in
the proof of Lemma 3.6, consider the set G = X −

∪
j∈N[

∪
{bd(D)| D ∈ D(j)}]. Then G

satisfies the desired condition.
(3) If X is a perfect space, then C can be taken as a perfect space.

Finally, as a special case we consider the case that f : X → X is an expansive
homeomorphism of a compact metric space X. A homeomorphism f : X → X of a
compact metric space (X, d) is expansive if there is ε > 0 such that for any x, y ∈ X with
x 6= y, there is an integer k ∈ Z such that d(fk(x), fk(y)) ≥ ε. Such an ε > 0 is called an
expansive constant for f . In [10], Mañé proved that if a compact metric space X admits
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an expansive homeomorphism f on X, then dimX < ∞ and every minimal set of f is
zero-dimensional. Moreover, we see that dim I0(f) ≤ 0, where

I0(f) =
∪
{M | M is a zero-dimensional f -invariant closed set of X}

(see [6, Proposition 2.5]). Let Yk = {1, 2, ..., k} (k ∈ N) be the discrete space having
k-elements and let Y Z

k =
∏∞

−∞ Yk be the product space. Then the shift homeomorphism
σ : Y Z

k → Y Z
k is defined by σ((xj)j) = (xj+1)j.

Corollary 3.7. (cf. [7, p. 950]) Let f : X → X be an expansive homeomorphism of a
compact metric space X with dimX = n. Then there exist k ∈ N, a closed σ-invariant set
Σ of σ : Y Z

k → Y Z
k and an at most 2n-to-one onto map p : Σ→ X such that p ◦ σ = f ◦ p

and |p−1(x)| = 1 for any x ∈ I0(f).

Proof. Let ε > 0 be an expansive constant for f . Since dim I0(f) ≤ 0, by Lemma 3.5
there is a finite open cover C(ε) of X such that
(1) mesh(C(ε)) < ε,
(2) ord(G) ≤ n, where G = {f j(bd(C))| C ∈ C(ε), j ∈ Z},
(3) bd(C) ∩ I0(f) = φ for each C ∈ C(ε).

Let C(ε) = {C1, C2, ..., Ck} and put

C ′
1 = cl(C1), C

′
i = cl(Ci − (C1 ∪ C2 ∪ ... ∪ Ci−1)) (i ≥ 2).

Consider the set
Σ = {(ij)j ∈ Y Z

k |
∩
j∈Z

f−j(C ′
ij
) 6= φ}.

Note that
∩

j∈Z f
−j(C ′

ij
) is a one point set for each (ij)j ∈ Σ, because f is expansive.

Also, we see that σ(Σ) = Σ. Define a map p : Σ→ X by

p((ij)j) =
∩
j∈Z

f−j(C ′
ij
).

By the proof of Lemma 3.6, we see that p : Σ→ X is a desired map.
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