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We construct energy-independent but nonlocal potentials above inelastic thresholds, in terms of

Nambu-Bethe-Salpeter wave functions defined in quantum field theories such as QCD. As an explicit

example, we consider NN ! NN þ n� scattering processes for n ¼ 0; 1; 2; . . . . We show the existence of

energy-independent coupled channel potentials with a nonrelativistic approximation, where momenta of

all particles are small compared with their own masses. In the case of two-body inelastic scatterings such

as �� ! ��, N�, ��, on the other hand, we show that energy-independent potentials can be

constructed without relying on nonrelativistic approximations. We also propose a method to extract these

potentials using time dependence of general correlation functions.
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I. INTRODUCTION

It is important to understand hadronic interactions
such as nuclear forces from the point of view of their
constituents, quarks and gluons, whose dynamics is de-
scribed by quantum chromodynamics (QCD). Since the
running coupling constant in QCD becomes large at the
hadronic scale, however, nonperturbative methods such
as lattice QCD combined with numerical simulations
must be employed to investigate this problem systemati-
cally. Conventionally, the finite size method [1] has been
employed to extract the scattering phase shift, but the
method is applicable only below the inelastic (particle
production) threshold. See Refs. [2,3] for an extension of
this method to multichannel systems.

Recently, an alternative method was proposed to inves-
tigate hadronic interactions, and it has been successfully
employed to extract the potential between nucleons below
inelastic thresholds [4–6]. Since then, this method has been
applied to other more general hadronic interactions such as
baryon-baryon interactions [7–11], meson-baryon interac-
tions [12,13], and three-nucleon forces [14,15]. See
Refs. [16,17] for reviews of recent activities.

In the method, called the HAL QCD method, a potential
between composite particles is defined in quantum field
theories such as QCD. There are two important properties
to be proven in quantum field theories, in order to define
the potential, which is a quantummechanical object. Let us
explain the HAL QCD method and these two important
properties, by considering the NN potential as an example.
We first introduce the equal-time Nambu-Bethe-Salpeter
(NBS) wave function [18] in the center of mass system
defined by

’W;c0ðxÞ ¼ h0jTfNðr; 0ÞNðrþ x; 0ÞgjNN;W; c0iin; (1)

where h0j ¼ outh0j ¼ inh0j is the QCD vacuum (bra) state,

jNN;W; c0iin is the two-nucleon asymptotic in-state at the

total energy W ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

N

q
with the nucleon mass mN

and the relative momentum k, c0 represent quantum num-
bers other than W such as helicity of nucleons and the
direction of k, T represents the time-ordered product, and
NðxÞ with x ¼ ðx; tÞ is the nucleon operator defined by
NðxÞ ¼ "abcðuaðxÞTC�5dbðxÞÞqcðxÞ with the charge con-
jugation matrix C and qðxÞ ¼ ðuðxÞ; dðxÞÞT . Note that a
different choice for NðxÞ is possible as long as NðxÞ can
annihilate the 1-particle nucleon state and the difference
leads to a difference in NBS wave functions defined from
them. Note also that NðxÞ and ’ðxÞ implicitly have spinor
and flavor indices.
An important property of the NBS wave function for the

definition of the potential is that, as the distance between
two nucleon operators, x ¼ jxj, becomes large, the NBS
wave function satisfies the free Schrödinger (or equiva-
lently the free Klein-Gordon) equation,

ðEW �H0Þ’W;c0ðxÞ ’ 0; EW ¼ k2

2�
; H0 ¼�r2

2�
;

(2)

where � ¼ mN=2 is the reduced mass. In addition, the
asymptotic behavior of the NBS wave function is described
in terms of the phase � determined by the unitarity of the
Smatrix, S ¼ e2i�, in QCD (or the corresponding quantum
field theory). This has been shown originally for the
elastic �� scattering [19,20], where the partial wave of
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NBS wave function for the orbital angular momentum L
becomes

’L
W ’ AL

sin ðkx� L�=2þ �LðWÞÞ
kx

(3)

as x ! 1 at W <Wth ¼ 4m� (the lowest inelastic thresh-
old). The asymptotic behavior of the NBS wave function
for the elastic NN scattering has been derived in Ref. [21].
The asymptotic behavior of the NBS wave function such as
Eq. (3) is the first important property that motivates the
definition of the potential in QCD.

The (nonlocal) potential between two nucleons below
the inelastic threshold is defined by the equation that

ðEW �H0Þ’W;c0ðxÞ ¼
Z

d3yUðx; yÞ’W;c0ðyÞ (4)

at W <Wth ¼ 2mN þm�. In general, the nonlocal
potential Uðx; yÞ could depend on the energy W [1]. As
we will show, however, an energy-independent potential
Uðx; yÞ such that Eq. (4) is satisfied for allW <Wth can be
constructed. Therefore, if we solve the Schrödinger
equation with this potential in the infinite volume, its
solutions automatically provide correct phase shifts in
QCD at all W <Wth by construction. The existence of
the W-independent potential U is the second important
property to define the potential in the HAL QCD method.

Using the inner product ðf; gÞ ¼ R
d3xfðxÞgðxÞ, where

�f is the complex conjugate of f, we introduce a norm
kernel defined by N W1c0;W2d0 ¼ ð’W1;c0 ; ’W2;d0Þ. Since

NBS wave functions at W <Wth are in general linearly
independent,1 an inverse N �1 exists and it satisfies2 for
W1, W2 <WthX
W<Wth;c0

N �1
W1d0;Wc0

N Wc0;W2e0

¼ X
W<Wth;c0

N W1d0;Wc0N
�1
Wc0;W2e0

¼ �W1;W2
�d0;e0 : (5)

Using the inverse norm kernel, we define a ket vector
j’W;c0i as hxj’W;c0i � ’W;c0ðxÞ and its conjugate bra

vector hcW;c0 j as
hcW;c0 jxi �

X
W1<Wth;d0

N �1
Wc0;W1d0

’W1;d0ðxÞ;

hcW1;c0 j’W2;d0i ¼ �W1;W2
�c0;d0 ;

(6)

so that the nonlocal potential can be constructed as [6]

U ¼ X
W<Wth;c0

ðEW �H0Þj’W;c0ihcW;c0 j; (7)

since it is easy to see that it satisfies the Schrödinger
equation (4) as

Uj’W;c0i ¼
X

W1<Wth;d0

ðEW1
�H0Þj’W1;d0ihcW1;d0 j’W;c0i

¼ ðEW �H0Þj’W;c0i (8)

as long as W <Wth. It should be noted that the nonlocal
potential which satisfies Eq. (4) at W <Wth is not unique.
For example, we may add an arbitrary term proportional
to ð1� PÞ to the nonlocal potential U without affect-
ing Eq. (4), where the projection is defined by P ¼P

W<Wth;c0
j’W:c0ihcW;c0 j.

The purpose of this paper is to construct an energy-
independent (nonlocal) potential which satisfies an appro-
priate Schrödinger equation at low energy but above
inelastic thresholds in quantum field theories. To make
our argument more concrete, we mainly consider the NN
scattering in this paper.
In Sec. II, we demonstrate that energy-independent

potentials can be constructed above inelastic thresholds if
the total energy is small enough that the nonrelativistic
approximation is applicable. In Sec. II A, we consider
NN ! NN, NN� scattering as a simplest case, where
the total energy W is above 2mN þm� but below 2mN þ
2m�. In Sec. II B, we generalize our construction to a larger
value of W where the NN ! NN þ n� scattering for a
higher integer n can occur. In this case, momenta of all
particles must be still nonrelativistic. In Sec. II C, we treat a
special case of inelastic scattering such as AB ! AB, CD,
where nonrelativistic approximation is not required to
construct energy-independent coupled channel potentials.
In Sec. III, using results obtained in the previous section,
we generalize the time-dependent method for the extraction
of the potential [22] to the case atW � Wth, in order to treat
inelastic processes. Conclusions and discussions are given
in Sec. IV. In the Appendix, we compare the construction of
the energy-independent potential above inelastic threshold
given in the main text with other possible variations.

II. CONSTRUCTION OF ENERGY-INDEPENDENT
POTENTIALS ABOVE INELASTIC THRESHOLDS

We here construct energy-independent (nonlocal) poten-
tials even above inelastic thresholds for the NN scattering
in the center of mass system. In this paper, we consider
only pion productions whose nth threshold energy is given
by Wn

th ¼ 2mN þ n�m� with m� being the pion mass.

Extensions to other particle productions such as N �N or
K �K, etc., are straightforward.
We introduce energy intervals defined by �n ¼

½Wn
th; W

nþ1
th Þ for n ¼ 0; 1; 2; . . . . Given the total energy

W, the kinetic energy of the NN þ n� system is denoted
by En

W , which is given by

1This holds at least for ðW1; c0Þ � ðW2; d0Þ in the sufficiently
large volume. Even if some wave functions accidentally become
linearly dependent in small volume, we can remove them, so that
our construction of the energy-independent potential remains the
same.

2We first consider the finite volume, so that W1 and W2 take
discrete values. We then take the infinite volume limit, so that
�W1 ;W2

and
P

W should be replaced by �ðW1 �W2Þ and
R
dW,

respectively.
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En
W ¼ p 2

1

2mN

þ p2
2

2mN

þXn
i¼1

k2i
2m�

;

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p2
1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p2
2

q
þXn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ k21

q
;

(9)

where p1 þ p2 þP
n
i¼1 ki ¼ 0. The corresponding free

Hamiltonian is denoted by Hn
0 . Note that En

W cannot be

determined from the total energy W alone, except for the
elastic scattering at n ¼ 0, where E0

W is uniquely deter-
mined from a given value ofW. Since the determination of
En
W from W is important to construct potentials from the

Schrödinger equation and En
W for n � 1 cannot be deter-

mined fromW in general, we restrict our considerations in
this paper to cases where all momenta p1;p2;k1;k2; . . . ; kn
are nonrelativistic, so that we can writeW ’ Wk

th þ Ek
W for

k ¼ 1; 2; . . . ; n at W 2 �n. (We can exclude the k ¼ 0
case, since E0

W can always be determined from W without
nonrelativistic approximation.) This condition is explicitly
written as p2

1 <m2
N for i ¼ 1, 2 and k2i < m2

� for
i ¼ 1; 2; . . . ; n. Unless otherwise stated, we assume this
condition in this paper. We roughly estimate how many
pions can be treated within this approximation. If the
total energy of two nucleons with one pion at rest is equal
to the minimum energy of n-pion production such that

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p2
q

þm� ¼ 2mN þ nm�, the nonrelativistic

condition, say, p2 ’ 0:9�m2
N , leads to n� 1 � mN

m�
�

ð ffiffiffiffiffiffiffi
7:6

p � 2Þ ’ 5. Therefore we may consider up to NN þ
6� with roughly 5% relativistic corrections. Note that
some configurations of momenta may become relativistic
for a given value of W. We exclude such configurations in
our consideration of this paper.

A. Simplest case

To illustrate our strategy to construct energy-
independent potentials, let us consider the simplest case
at W <W2

th ¼ 2mN þ 2m� in this subsection. If W 2 �1

(2mN þm� � W < 2mN þ 2m�), the inelastic scattering
with one-pion production (NN ! NN þ �) becomes pos-
sible. We can define in this case a set of four independent
equal-time NBS wave functions as

ZN’
00
W;c0

ðx0Þ ¼ h0jTfNðx; 0ÞNðxþ x0; 0ÞgjNN;W; c0iin;
(10)

ZNZ
1=2
� ’10

W;c0
ðx0;x1Þ¼ h0jTfNðx;0ÞNðxþx0;0Þ

��ðxþx1;0ÞgjNN;W;c0iin; (11)

ZN’
01
W;c1

ðx0Þ¼ h0jTfNðx;0ÞNðxþx0;0ÞgjNNþ�;W;c1iin;
(12)

ZNZ
1=2
� ’11

W;c1
ðx0;x1Þ¼h0jTfNðx;0ÞNðxþx0;0Þ�ðxþx1;0Þg

�jNNþ�;W;c1iin; (13)

where ZN and Z� are renormalization factors for nucleon

and pion fields, respectively, such that NðxÞ ¼ Z1=2
N NrðxÞ

and �ðxÞ ¼ Z1=2
� �rðxÞ, where NrðxÞ and �rðxÞ are renor-

malized nucleon and pion fields, respectively. We here
consider two asymptotic in-states jNN;W; c0iin and
jNN þ �;W; c1iin corresponding to two nucleons and two
nucleons plus one pion, where c0 and c1 represent quantum
numbers other than the total energy W. In the present
case, ðW; c0Þ and ðW; c1Þ are equivalent to ðs1; s2;p1Þ
and ðs1; s2;p1; k1Þ, where si is the helicity of the ith
nucleon and p2 is not independent due to the momentum
conservation. As mentioned before, W ’ W0 þ E0

W ’
W1 þ E1

W . If distances between all operators become large
(jx0j; jx1j; jx1 � x0j ! 1), we expect (and will indeed
show in a separate paper [23]) that all NBS wave functions
given above satisfy free Schrödinger equations such that

ðE0
W �H0

0Þ’0i
W;c0

’ 0; ðE1
W �H1

0Þ’1i
W;c0

’ 0; i¼ 0;1:

(14)

We consider the coupled channel Schrödinger equations
for NN and NN þ �, which are given by

ðEk
W �Hk

0Þ’ki
W;ci

¼ X
l¼0;1

Z Yl
n¼0

d3ynU
klð½x�k; ½y�lÞ’li

W;ci
ð½y�lÞ; k; i2ð0;1Þ;

(15)

where ½x�0 ¼ x0 and ½x�1 ¼ x0; x1. Note that E1
W ’ W �

W1
th < 0 if W 2 �0. Our task is to show that a

W-independent 2� 2 potential matrix Ukl exists.
For this purpose, we define vectors from these NBS

wave functions at W 2 �1 as

’i
W;ci

�
�
’0i

W;ci
ð½x�0Þ; ’1i

W;ci
ð½x�1Þ

�
T
; i ¼ 0; 1; (16)

while at W 2 �0 we take only ’0
W;c0

as

’0
W;c0

�
�
’00

W;c0
ð½x�0Þ; ’10

W;c0
ð½x�1Þ

�
T
; (17)

where the second component ’10
W;c1

ð½x�1Þ vanishes as dis-
tances between all operators go to infinity. (No asymptotic
NN þ � state exists at W < 2mN þm�.) Note that, in-
stead of Eq. (17), we may define

’0
W;c0

� ð’00
W;c0

ð½x�0Þ; 0ÞT (18)

at W 2 �0. Since the definition of ’0
W;c0

at W 2 �0 in

Eq. (17) will be required in Sec. III for the time-dependent
method, we use it in the main text of this paper, and the
construction with Eq. (18) and other variations will be
discussed in the Appendix.
As in the elastic case, we introduce the norm kernel in

the space spanned by ’i
W;ci

as
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N ij
W1ci;W2dj

¼ð’i
W1;ci

;’j
W2;dj

Þ

� X
k¼0;1

Z Yk
l¼0

d3xl’
ki
W1;ci

ð½x�kÞ’kj
W2;dj

ð½x�kÞ: (19)

Here indices i and j run over different ranges depending on
values of W1 and W2 such that i 2 IðW1Þ and j 2 IðW2Þ,
where IðWÞ ¼ f0g forW 2 �0 and IðWÞ ¼ f0; 1g forW 2
�1. Unless otherwise stated, we assume this in this
subsection.

As long as ’i
W;ci

are linearly independent, the Hermitian

operator N has an inverse such that

X
W2�0[�1

X
h2IðWÞ;eh

ðN �1ÞihW1ci;Weh
N hj

Weh;W2dj

¼ �ij�W1;W2
�ci;dj : (20)

Schematically, N has the following structure:

N ¼
N 00ð�0;�0Þ; N 00ð�0;�1Þ; N 01ð�0;�1Þ
N 00ð�1;�0Þ; N 00ð�1;�1Þ; N 01ð�1;�1Þ
N 10ð�1;�0Þ; N 10ð�1;�1Þ; N 11ð�1;�1Þ

0
BB@

1
CCA;

(21)

where N abð�i;�jÞ represents a submatrix whose compo-

nents are given byN ab
Wica;Wjdb

withWi 2 �i andWj 2 �j

for i, j, a, b ¼ 0 or 1 and a � i, b � j. The corresponding
inverse N �1 has, of course, the same structure.

Using this inverse, we define the ket vector j’i
W;ci

i and
the corresponding bra vector hc i

W;ci
j, whose kth compo-

nents are given by

h½x�kj’i
W;ci

i ¼ ’ki
W;ci

ð½x�kÞ; (22)

hc i
W;ci

j½x�ki¼
X

W12�0[�1

X
j2IðW1Þ;dj

ðN �1ÞijWci;W1dj
’kj

W1;dj
ð½x�kÞ

(23)

for k ¼ 0, 1, where dj runs over states which satisfy the

nonrelativistic condition. It is then easy to see that

hc i
W1;ci

j’j
W2;dj

i ¼ X
k¼0;1

Z Yk
l¼0

d3xlhc i
W1;ci

j½x�kih½x�kj’j
W2;dj

i

¼ ðN �1 �N ÞijW1ci;W2dj
¼ �ij�W1;W2

�ci;dj :

(24)

Introducing operators EW , H0, and U such that

h½x�kjðEW �H0Þj½y�li � �klðEk
W �Hk

0Þ
Yk
n¼0

�ð3Þðxn � ynÞ;

(25)

h½x�kjUj½y�li � Uklð½x�k; ½y�lÞ; (26)

the coupled channel Schrödinger equation (15) can be
compactly written as

ðEW �H0Þj’i
W;ci

i ¼ Uj’i
W;ci

i: (27)

Now it is easy to construct U which satisfies the above
equation as3

U ¼ X
W2�0[�1

X
i2IðWÞ

X
ci

ðEW �H0Þj’i
W;ci

ihc i
W;ci

j; (28)

since

Uj’i
W;ci

i
¼ X

W12�0[�1

X
j2IðW1Þ

X
dj

ðEW �H0Þj’j
W1;dj

ihc j
W1;dj

j’i
W;ci

i

¼ ðEW �H0Þj’i
W;ci

i: (29)

An energy-independent potential matrix U indeed exists.
Note that U is not unique since, for example, one can use
Eq. (18) instead of Eq. (17) for ’i

W;ci
, so that the resulting

potential from Eq. (28) differs from the one with Eq. (17).
Finally let us consider the Hermiticity of U. A matrix

element of U is evaluated as

Uij
W1ci;W2dj

� h’i
W1;ci

jUj’j
W2;dj

i
¼ h’i

W1;ci
jðEW2

�H0Þj’j
W2;dj

i; (30)

while

ðUyÞijW1ci;W2dj
¼ h’j

W2;dj
jðEW1

�H0Þj’i
W1;ci

i
¼ h’i

W1;ci
jðEW1

�H0Þj’j
W2;dj

i: (31)

Therefore potential U is not Hermite in general. However,
the physically relevant part of the potential is forW1 ¼ W2,
thus Hermite.

B. General cases

It is not so difficult to extend the argument in the
previous subsection to more general cases, where the total
energy satisfies W <Wnmaxþ1. As discussed before, the
validity of the nonrelativistic approximation requires
nmax ¼ 5 at most.
Let us consider W 2 �0 [�1 [ � � � [�nmax

. At W 2
�s with s � nmax , we define a set of the equal-time NBS
wave functions as

3Here and hereafter, the sum over ci with i � 0 is always
restricted to nonrelativistic states if the number of particles is
more than 2.
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ZNZ
k=2
� ’ki

W;ci
ð½x�kÞ ¼ h0jTfNðx; 0ÞNðxþ x0; 0Þ

Yk
l¼1

�ðxþ xl; 0ÞgjNN þ i�;W; ciiin; i � s;

¼ 0; i > s;
(32)

where indices k and i run from 0 to nmax , but ’
ki
W;ci

ð½x�kÞ
with k > s vanishes, as distances among all operators (two
nucleons and k pions) become large, ½x�k ¼ x0; x1; . . . ; xk
and ci represents quantum numbers other than the total
energy W of the in-state. In the present case, ðW; ciÞ are
equivalent to s1; s2;p1; k1; k2; . . . ; ki, where sl is the helic-
ity of the lth nucleon.

The coupled channel Schrödinger equation for this sys-
tem at W 2 �s (s � nmax ) is given by

ðEk
W �Hk

0Þ’ki
W;ci

ð½x�kÞ

¼ Xnmax

l¼0

Z
d½y�lUklð½x�k; ½y�lÞ’li

W;ci
ð½y�lÞ; i 2 IðWÞ;

(33)

where d½y�l ¼
Q

l
m¼0 d

3ym, IðWÞ ¼ f0; 1; . . . ; sg for W 2
�s, and k ¼ 0; 1; . . . ; nmax. Note that E

k
W ’ W �Wk

th < 0 if
k =2 IðWÞ. It is now clear that the nonrelativistic condition
is necessary here to determine Ek

W fromW; ci if k � i. Our
task is to show that a W-independent ðnmax þ 1Þ �
ðnmax þ 1Þ potential matrix U exists.

As in the previous subsection, we define vectors of NBS
wave functions with ðnmax þ 1Þ components atW 2 �s as

’i
W;ci

� ð’0i
W;ci

ð½x�0Þ; ’1i
W;ci

ð½x�1Þ; . . . ; ’nmax i
W;ci

ð½x�nmax
ÞÞT;

(34)

where i runs over IðWÞ.
The norm kernel is defined by

N ij
W1ci;W2dj

� ð’i
W1;ci

; ’j
W2;dj

Þ

¼ Xnmax

k¼0

Z
d½x�k’ki

W1;ci
ð½x�kÞ’kj

W2;dj
ð½x�kÞ; (35)

whose inverse is denoted by N �1, where i 2 IðW1Þ and
j 2 IðW2Þ. The bra and ket vectors, respectively defined by

h½x�kj’i
W;ci

i ¼ ’ki
W;ci

ð½x�kÞ; (36)

hc i
W;ci

j½x�ki ¼
X
W1

X
j2IðW1Þ

X
dj

ðN �1ÞijWci;W1dj
’kj

W1;dj
ð½x�kÞ;

(37)

satisfy

hc i
W1;ci

j’j
W2;dj

i ¼ Xnmax

k¼0

Z
d½x�khc i

W1;ci
j½x�kih½x�kj’j

W2;dj
i

¼ �ij�W1;W2
�ci;dj : (38)

Introducing operators EW , H0, and U, defined as in
Eqs. (25) and (26), we can construct

U ¼ X
W

X
i2IðWÞ

X
ci

ðEW �H0Þj’i
W;ci

ihc i
W;ci

j; (39)

which satisfies the coupled channel equation

ðEW �H0Þj’i
W;ci

i ¼ Uj’i
W;ci

i: (40)

It is also easy to see the effective Hermiticity of

U: Uij
W1ci;W2dj

¼ ðUyÞijW1ci;W2dj
at W1 ¼ W2 (with nonrela-

tivistic approximation).

C. Special case without nonrelativistic approximation

In this subsection, we discuss a special case of inelastic
scatterings where the nonrelativistic approximation is not
required to construct energy-independent potentials. Here,
coupled two-particle scattering channels such as AiBi !
AjBj with i; j ¼ 1; 2; . . . ; nmax are considered. For ex-

ample, in the baryon scattering in the strangeness S ¼
�2 and isospin I ¼ 0 channel, ��, N�, and �� appear
as asymptotic states if the total energy W in the center of
mass system is 2m� � W <mN þm� þm�. The method
to extract coupled channel potentials in this kind of situ-
ation has already been proposed in Ref. [24], under the
assumption that energy-independent coupled channel po-
tentials exist. In this subsection, we prove this assumption.
Given the total energy W, the relative momentum pi

(squared) and the kinetic energy Ei
W , together with the free

Hamiltonian H0, for AiBi are given by

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

Ai

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

Bi

q
; Ei

W ¼ p2
i

2mi
r

;

H0 ¼ �r2

2mi
r

; mi
r ¼

mAi
mBi

mAi
þmBi

;
(41)

wheremAi
andmBi

aremasses ofAi andBi, respectively, and

mi
r is their reduced mass. We here assume mAi

þmBi
<

mAj
þmBj

for i < j. Note that if W <Wi
th � mAi

þmBi
,

p2
i and E

i
W become negative.

We define NBS wave function for AkBk as

ðZAk
ZBk

Þ1=2’ki
W;ci

ðxÞ ¼ h0jTfAkðr; 0ÞBkðrþ x; 0Þg
� jAiBi;W; ciiin; (42)

where ZAk
and ZBk

are renormalization factors defined by

AkðxÞ ¼ Z1=2
Ak

Ar
kðxÞ and BkðxÞ ¼ Z1=2

Bk
Br
kðxÞ with bare fields

Ak and Bk and renormalized fields Ar
k and B

r
k, respectively,

and ci represents quantum number of the asymptotic
in-state jAiBi;W; ciiin other than W. The index k
always runs from 1 to nmax , while the index i runs over
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IðWÞ ¼ 1; 2; . . . ; s� 1 if Ws�1
th � W <Ws

th. We can

show that

lim
jxj!1

ðEk
W �H0Þ’ki

W;ci
ðxÞ ¼ 0; (43)

and ’ki
W;ci

ðxÞ carries the information of scattering phase

shifts [24].
We define vectors j’i

W;ci
i and the corresponding norm

kernel as

hx; kj’i
W;ci

i ¼ ’ki
W;ci

ðxÞ; (44)

N ij
W1ci;W2cj

¼ ð’i
W1;ci

; ’j
W2;cj

Þ

� Xnmax

k¼1

Z
d3x’ki

W1;ci
ðxÞ’kj

W2;cj
ðxÞ; (45)

where i 2 IðW1Þ and j 2 IðW2Þ. Using the inverse N �1

of N , we construct dual vectors

hc i
W;ci

jx; ki ¼ X
W1;j2IðW1Þ;cj

ðN �1ÞijWci;W1cj
hx; kj’j

W1;cj
i;

(46)

which satisfy

Xnmax

k¼1

Z
d3xhc i

W1;ci
jx; ki � hx; kj’j

W2;dj
i ¼ �ij�W1;W2

�ci;dj :

(47)

An energy-independent nmax � nmax potential matrix
which satisfies the coupled channel equation

ðEk
W �H0Þ’ki

W;ci
ðxÞ ¼ Xnmax

l¼1

Z
d3yUklðx; yÞ’li

W;ci
ðyÞ (48)

can be constructed as

Uklðx; yÞ ¼ X
W;i2IðWÞ;ci

ðEk
W �H0Þhx; kj’i

W;ci
ihc i

W;ci
jy; li;

(49)

which is manifestly energy (W) independent and is
Hermite at fixed W.

III. TIME-DEPENDENT METHOD

In Ref. [22], a method to extract hadronic potentials
below inelastic thresholds from time dependence of corre-
lation functions has been proposed, in order to overcome
difficulties in the conventional method where NBS wave
functions with definite energies are extracted from asymp-
totic behaviors of correlation functions in time. In this
section, we extend the method so that it can be applicable
to the case above inelastic thresholds.
The normalized correlation function is defined by

ZNZ
k=2
� Rkð½x�k; tÞ ¼ 1

e�Wk
th
t
h0jTfNðx; tÞNðxþ x0; tÞ

�Yk
l¼1

�ðxþ xl; tÞJ NNð0Þgj0i (50)

for k ¼ 0; 1; 2; . . . ; nmax , where J NN is some source op-
erator which couples to NN states. Inserting the complete
set for the NN system that

1 ¼ X
W

X
i2IðWÞ

X
ci

jNN þ i�;W; ciiin inhNN þ i�;W; cij

þ � � � ; (51)

where the ellipsis represents states withW >Wnmax

th and are

neglected hereafter, into the above correlation function, we
obtain

Rkð½x�k; tÞ ¼
X
W

X
i2IðWÞ

X
ci

e��kWt’ki
W;ci

ð½x�kÞAi
W;ci

; (52)

where

Ai
W;ci

¼ inhNN þ i�;W; cijJ NNð0Þj0i;
�kW � W �Wk

th ’ Ek
W:

(53)

Note that Rk automatically contains a sum over W, i 2
IðWÞ, ci, which is necessary to define the nonlocal poten-
tials in the previous section but is difficult in practice to
perform one by one. Note however, that states with rela-
tivistic momenta may appear in the sum. We here assume
that contributions from such states can be suppressed by
an appropriate choice of J NN . Using the nonrelativistic
approximation, we can derive

�
�Hk

0 �
@

@t

�
� Rkð½x�k; tÞ ¼

X
W;i2IðWÞ;ci

e��kWt
Xnmax

l¼0

Z
d½y�lUklð½x�k; ½y�lÞ’li

W;ci
ð½y�lÞAi

W;ci

¼ Xnmax

l¼0

e�ðl�kÞm�t
Z

d½y�lUklð½x�k; ½y�lÞ
X

W;i2IðWÞ;ci
e��lWt’lið½y�lÞAi

W;ci

¼ Xnmax

l¼0

e�ðl�kÞm�t
Z

d½y�lUklð½x�k; ½y�lÞRlð½y�l; tÞ: (54)

We then finally obtain
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�
�Hk

0 �
@

@t

�
� Rkð½x�k; tÞ

¼ ekm�t
Xnmax

l¼0

e�lm�t
Z

d½y�lUklð½x�k; ½y�lÞRlð½y�l; tÞ;

(55)

which can be used to obtain Ukl, combined with the
derivative expansion [22].

We here propose a method to extract Ukl directly.
For this purpose, we consider a set of more complicated
correlation functions defined by

Rklð½x�k;½y�l;tÞ¼ 1

e�Wk
th
t
h0jTfNðx;tÞNðxþx0;tÞ

�Yk
m¼1

�ðxþxm;tÞ
Z
d3y �Nðy;0Þ �Nðyþy0;0Þ

�Yl
s¼1

�yðyþys;0Þgj0i; (56)

which satisfies�
�Hk

0 �
@

@t

�
� Rklð½x�k; ½y�l; tÞ

¼ Xnmax

s¼0

e�ðs�kÞm�t
Z

d½z�sUksð½x�k; ½z�sÞRslð½z�s; ½y�l; tÞ:

(57)

Using real eigenvalues �m of the Hermitian operator R and
their eigenvectors vm whose kth component is given by
vk
mð½x�k; tÞ with m ¼ 0; 1; . . . ; nmax , we can construct the

inverse of R as

ðR�1Þklð½x�k; ½y�l; tÞ ¼
Xnmax

m¼n0

1

�m

vk
mð½x�k; tÞfvl

mð½y�l; tÞgy:

(58)

Note that we remove zero modes with �m ¼ 0 from R and
R�1, so that the dimensions of R and R�1 are effectively
reduced from ðnmax þ1Þ�ðnmax þ1Þ to ðnmax þ1�n0Þ�
ðnmax þ1�n0Þ, where n0 is the number of zero modes.

Using the inverse R�1, we can extract U as

Uklð½x�k; ½y�lÞ

¼ e�km�t
Xnmax

s¼0

Z
d½z�s

�
�Hk

0 �
@

@t

�
� Rksð½x�k; ½z�s; tÞ

� ðR�1Þslð½z�s; ½y�l; tÞelm�t: (59)

IV. CONCLUSION AND DISCUSSION

In this paper, we have shown that energy-independent
and nonlocal potentials can be constructed from a par-
ticular set of NBS wave functions even above inelastic
thresholds as long as momenta of all particles involved

are nonrelativistic (Secs. II A and II B) or the number of
particles is always two (Sec. II C). We have also derived a
formula to extract nonlocal potentials with nonrelativistic
approximations using the time-dependent method pro-
posed in Ref. [22].
By the same method in Secs. II A and II B, we can

construct an energy-independent nonlocal potential for
three-nucleon systems [14,15] and even for systems
with more than three nucleons. In the case of inelastic
scattering such as �� ! ��, N�, �� [25], the result
in Sec. II C has completed the HAL QCD method pro-
posed in Ref. [24], where nonrelativistic approximation is
not required.
The existence of energy-independent potentials,

which is one of the important properties necessary for the
HAL QCD method to investigate hadronic interactions, is
now established in rather general situations. A remaining
important property to be proven is the asymptotic behavior
of NBS wave functions for more than two particles and
its relation to the S matrix of the corresponding quantum
field theory. Results on this issue will be published
elsewhere [23].
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APPENDIX: COMPARISONS AMONG
DIFFERENT CONSTRUCTIONS

The energy-independent ðnmax þ 1Þ � ðnmax þ 1Þ
potential matrix in the main text is given in the coordinate
space by

Ukl ¼ X
W

X
i2IðWÞ

X
ci

ðEk
W �Hk

0Þj’ki
W;ci

ihc li
W;ci

j (A1)

for 0 � k, l � nmax , where h½x�kj’ki
W;ci

i ¼ ’ki
W;ci

ð½x�kÞ andPnmax

k¼0 hc ki
W1;ci

j’kj
W2;dj

i ¼ �ij�W1;W2
�ci;dj . The corresponding

coupled channel Schrödinger equation is given by

ðEW �H0Þj’ki
W;ci

i ¼ Xnmax

l¼0

Uklj’li
W;ci

i (A2)

for 0 � k � nmax and i 2 IðWÞ.
In this Appendix, we consider some other constructions

of energy-independent potentials in terms of NBS wave
functions and compare them with Eq. (A1).
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1. Modified wave function vectors

As already mentioned in the main text, we can define the vectors of NBS wave functions by using Eq. (18) instead
of Eq. (17). The corresponding modification to Eq. (32) becomes

ZNZ
k=2
� ’ki

W;ci
ð½x�kÞ ¼ h0jTfNðx; 0ÞNðxþ x0; 0Þ

Yk
l¼1

�ðxþ xl; 0ÞgjNN þ i�;W; ciiin;

k; i � s; ¼ 0; otherwise:
(A3)

The energy-independent potentialUkl
M (whereM represents

‘‘modified’’) is given by the same formula in Eq. (A1) with
modifications by (A3) to j’i

W;ci
i and hc i

W;ci
j, while the

corresponding Schrödinger equation reads

ðEW �H0Þj’ki
W;ci

i ¼ X
l2IðWÞ

Ukl
Mj’li

W;ci
i (A4)

for k, i 2 IðWÞ, where IðWÞ ¼ 0; 1; 2; . . . ; s at W 2 �s ¼
½Ws

th; W
sþ1
th Þ.

2. Recursive construction

We construct another energy-independent potential re-
cursively starting from the potential for the elastic NN
scattering.

We first define the U00
R corresponding to NN ! NN

elastic scattering as

U00
R ¼ X

W2�0

X
c0

ðEW �H0Þj’00
W;c0

ihc 00
W;c0

j; (A5)

where the dual wave function hc 00
W;c0

j to j’00
W;c0

i satisfies
hc 00

W1;c0
j’00

W2;d0
i ¼ �W1;W2

�c0;d0 at W1, W2 2 �0. This

U00
R is identical to the elastic potential given in Eq. (7)

and satisfies

ðEW �H0Þj’00
W;c0

i ¼ U00
R j’00

W;c0
i (A6)

at W 2 �0.
We then increase the energy so that W 2 �1. A condi-

tion that ’ki
W;ci

for 0 � k, i � 1 satisfy the corresponding

Schrödinger equation leads to

U01
R ¼ X

W2�1

X
i¼0;1

X
ci

½ðEW �H0Þj’0i
W;ci

i

�U00
R j’0i

W;ci
i�hc 1i

W;ci
j; (A7)

where hc 1i
W;ci

j for i ¼ 0, 1 satisfy hc 1i
W1;ci

j’1j
W2;dj

i ¼
�ij�W1;W2

�ci;dj at W1, W2 2 �1. Note that U00
R used here

is determined in Eq. (A6) at the elastic region. We define
U10

R by imposing Hermiticity for the potential, i.e., U10
R ¼

ðU01
R Þy, from which we can finally determine

U11
R ¼ X

W2�1

X
i¼0;1

X
ci

½ðEW �H0Þj’1i
W;ci

i

�U10
R j’0i

W;ci
i�hc 1i

W;ci
j: (A8)

We now have U00
R at W 2 �0 and Uij

R for 0 � i, j � 1
at W 2 �1.
It is not so difficult to extend the above construction to

larger W recessively. We assume that the s� s potential

matrix Uij
R is already determined at W 2 �s�1 for s �

nmax . At W 2 �s, Uks for k < s can be obtained by

Uks
R ¼ X

W2�s

X
i2IðWÞ

X
ci

�
ðEW �H0Þj’ki

W;ci
i

� Xs�1

l¼0

Ukl
R j’li

W;ci
i
�
hc si

W;ci
j; (A9)

where hc si
W;ci

j for i ¼ 0; 1; . . . ; s satisfy hc si
W1;ci

j’sj
W2;dj

i ¼
�ij�W1;W2

�ci;dj at W1, W2 2 �s. Using the Hermiticity

relation that Usk
R ¼ ðUks

R Þy for k ¼ 0; 1; . . . ; s� 1, we
obtain Uss

R as

Uss
R ¼ X

W2�s

X
i2IðWÞ

X
ci

�
ðEW �H0Þj’si

W;ci
i

� Xs�1

l¼0

Usl
R j’li

W;ci
i
�
hc si

W;ci
j: (A10)

The ðsþ 1Þ � ðsþ 1Þ potential matrixUkl
R for 0 � k, l � s

is constructed. We can continue this recursive construction
until s ¼ nmax .
The corresponding Schrödinger equation at W 2 �s

becomes

ðEW �H0Þj’ki
W;ci

i ¼ Xs
l¼0

Ukl
R j’li

W;ci
i (A11)

for 0 � k, i � s, where off-diagonal elements Ukl for
k � l are Hermite by construction.

3. Construction at each energy interval

Wefinally give a construction of the potentialmatrix differ-
ent at each energy interval. At W2�s for 0�s�nmax , the
ðsþ1Þ�ðsþ1Þ potential matrix can be constructed as

Ukl
s ¼ X

W2�s

X
i2IðWÞ

X
ci

ðEW �H0Þj’ki
W;ci

ihc li
W;ci

j (A12)

for 0 � k, l � s, where hc ki
W;ci

j for i ¼ 0; 1; . . . ; s satisfyPs
k¼0hc ki

W1;ci
j’kj

W2;dj
i ¼ �ij�W1;W2

�ci;dj at W1, W2 2 �s.

Note that U00
0 is identical to U00 given in Eq. (7).
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The corresponding Schrödinger equation at W 2 �s

becomes

ðEW �H0Þj’ki
W;ci

i ¼ Xs
l¼0

Ukl
s j’li

W;ci
i (A13)

for 0 � k, i � s.

4. Comparison

Properties of the original construction in the main text
are as follows.

(1) The size of the potential matrix Ukl is always

ðnmax þ 1Þ2 at all W 2 ½W0
th; W

nmaxþ1
th Þ.

(2) The form of the potential matrix given in Eq. (A1) is
also the same at all energy.

(3) We use ðnmaxþ1Þ-length vectors fj’0i
W;ci

i;
j’1i

W;ci
i;...;j’nmax i

W;ci
ig, which are taken to be linearly

independent for different values of W 2
½W0

th; W
nmaxþ1
th Þ, i 2 IðWÞ, and ci.

(4) The construction can be combined with the time-
dependent method in Sec. III.

In the case of the modified wave function vectors, we have
the following.

(1) The size of the potential matrix Ukl
M is ðsþ 1Þ2 at

W 2 �s.
(2) The form of Ukl

M is the same at all energy where Ukl
M

is defined.
(3) We use vectors fj’0i

W;ci
i;j’1i

W;ci
i;...;j’si

W;ci
i;0;...;0g,

which are linearly independent for different

values of W 2 ½W0
th; W

nmaxþ1
th Þ, i 2 IðWÞ, and ci.

The (effective) length of these vectors is sþ 1 at
W 2 �s.

For the recursive construction, we have the following.
(1) The size of the potential matrix Ukl

R is ðsþ 1Þ2 at
W 2 �s.

(2) The form of Ukl
R is the same at all energy where Ukl

R

is defined.
(3) We use j’si

W;ci
i, which are linearly independent for

different values of W 2 �s, i 2 IðWÞ, and ci.
(4) The potential matrix is recursively constructed: At

W 2 �s, U
ks
R for k ¼ 0; 1; 2; . . . ; s are determined

from fUk0sjk0 < kg, while Usk
R can be obtained from

Uks
R by using Hermiticity.

For the construction in Sec. A 3 in the Appendix, we have
the following.
(1) The size of the potential matrix Ukl is ðsþ 1Þ2 at

W 2 �s.
(2) The form of Ukl

s is different for each s at W 2 �s.
(3) We use the (sþ 1) length vectors

fj’0i
W;ci

i; j’1i
W;ci

i; . . . ; j’si
W;ci

ig, which are linearly in-

dependent for different values of W 2 �s, i 2
IðWÞ, and ci.

(4) Ukl
s can be determined at each energy interval

�s, without using information of other energy
intervals.

We summarize the above properties in Table I.
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