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Abstract

In Bayesian data analysis, a deviance information criterion (DIC)
proposed by Spiegelhalter et al. (2002) is widely used for the model
selection, since this criterion is relatively easy to calculate and appli-
cable to a wide range of statistical models. Spiegelhalter et al. (2002)
gave an asymptotic justification of DIC in the case where the num-
ber of observations grows with respect to the number of parameters.
In small-sample cases, however, the estimated asymptotic bias of DIC
might underestimate the true bias (Burnham, 2002). In this paper, we
propose a finite-sample bias corrected information criterion (ICBL) for
the Bayesian linear regression models with conjugate priors, as AICC

proposed by Sugiura (1978) in frequentist framework. We examine the
performance of the proposed information criterion relative to the DIC
for small-sample cases by simulation, and found that our proposed
information criterion outperforms DIC.
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1 Introduction

The data analysis often involves a comparison of several candidate models.

Because true model is seldom known a priori, there is a need for a simple,

effective, and objective methods for the selection of the best approximating

model. Akaike (1973) proposed an information criterion later known to be

Akaike’s information criterion (AIC) to be an extension of likelihood theory.

AIC is based on the concept of minimizing the Kullback-Leibler Information,

a measure of discrepancy between the true density (or model) and approxi-

mating model. The discrepancy between two models or probability densities

is expressed by the expected log-likelihood with respect to the true density.

AIC is designed to be an approximately unbiased estimator of the expected

log-likelihood under the assumption that “true model” exists and it is one of

the candidate models being considered (see Appendix D for detail).

Hurvich and Tsai (1989) showed that AIC can be dramatically biased

when the sample size is small. The finite bias-correction version of AIC

(AICC) for linear regression model with normally distributed error was pro-

posed by Sugiura (1978). This criterion adjusts the AIC to be an exact

unbiased estimator of the expected log-likelihood. AICC is extended to au-

toregressive (AR) model and autoregressive moving average (ARMA) model

(Hurvich and Tsai, 1989) and multivariate regression model (Bedrick and

Tsai, 1994).

The Bayesian information criterion (BIC) was proposed by Schwarz (1978).

BIC selects the best approximating model with the highest posterior prob-

ability from the candidate models given the i.i.d. observed data x ≡ (x1,

x2, . . . , xN). This criterion is derived from the marginal likelihood p(x|M),

where M stands for model, under the assumption that each competing para-

metric model has the same prior probability p(M) and prior distribution on
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the parameters p(θ|M) is very vague. Because of this “ignorance” prior,

many statisticians consider BIC as a variation of AIC, and not a ‘fully’

Bayesian model selection criterion that allows the incorporation of prior infor-

mation. In BIC, the marginal likelihood are approximated by the Laplace’s

method which requires a large number of observations. Unlike AIC, however

derivation of BIC does not require an assumption that the true model is in

one of the candidate models.

In the ‘fully’ Bayesian data analysis, marginal likelihood is often used to

evaluate the goodness of fit of approximating models. To evaluate an evidence

in favor of one model against another, Bayes factor is widely used according

to Kass and Raftery (1995) and they proposed a method of assessing the

strength of evidence extending the method proposed by Jeffreys (1961).

The Bayes factor is simply expressed by the ratio of marginal likelihoods

with the same prior probability on each model. The large-sample distribution

theory for Bayes factor is not yet available unlike the standard likelihood ratio

test in the non-Bayesian approach.

For computing the marginal likelihoods in the Bayes factor, one needs to

integrate over parameters and in general, this integration is difficult when the

number of parameters is large. Thus, under the finite sample size, approxi-

mation methods for marginal likelihood using the posterior distributions are

proposed by several researchers (e.g., Newton and Raftery, 1994; Gelfand

and Dey, 1994).

To resolve a problem of comparing complex hierarchical Bayesian models

in which the number of parameters can be open to interpretation, Spiegelhal-

ter et al. (2002) suggested effective number of parameters pD for the Bayesian

models as the difference between the posterior mean of the deviance and the

deviance at the posterior mean of the parameters, and they used it as a
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Bayesian measure of complexity in a model. As the number of data is suffi-

ciently large, a deviance information criterion (DIC) is given by adding pD

to the posterior mean of the deviance.

In this paper, we propose a finite-sample bias corrected information crite-

rion (ICBL) for the Bayesian linear regression models with conjugate priors,

because Spiegelhalter et al. (2002) gave an asymptotic justification of DIC in

the case where the number of observations is large with respect to the num-

ber of parameters. We examine the finite-sample bias correction when the

posterior mean of observed log-likelihood is used as an estimator of posterior

mean of expected log-likelihood such as Sugiura (1978) has done to AIC in

frequentist case. We evaluate the results of simulation studies based on the

proposed information criterion relative to the DIC, and as an empirical ex-

ample, we estimate the cost functions for the U.S. electric power industry and

select the best approximating model via our proposed information criterion

in the set of the candidate models.

The rest of this paper is organized as follows: Next section introduces the

bias correction for the posterior mean of observed log-likelihood and propose

our information criterion for the variable selection in the Bayesian linear

regression model. Section 3 shows the results of simulation studies to show

the validity of our proposed information criterion when the sample size is

small. Section 4 presents the empirical example of the U.S. electric power

industry, and the last section contains the conclusions of our study.
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2 Variable Selection for Bayesian Linear Re-

gression Model in a Finite Sample Size

Let us denote unknown true density as fY(·) and approximating model as

g(·|θ) with parameter vector θ. Then Kullback-Leibler Information between

fY and g can be expressed as follows

I(fY, g(·|θ)) =
∫

fY(z) log

{
fY(z)

g(z|θ)

}
dz (2.1)

and (2.1) can be rewritten as

I(fY, g(·|θ)) = Ez [log{fY(z)}]− Ez [log{g(z|θ)}] . (2.2)

Even though the true density fY(·) is unknown, the first term on the right-

hand side of Kullback-Leibler Information in (2.2) can be regarded as a con-

stant since the variable z is integrated out.

In Bayesian perspective, parameters follow the posterior distributions es-

timated by observed data y. Hence we consider the posterior mean of (2.2):

Eθ|y [I(fY, g(·|θ))] = Ez [log{fY(z)}]− Eθ|y [Ez [log{g(z|θ)}]] (2.3)

and as in Spiegelhalter et al. (2002) and Ando (2007), our proposed in-

formation criterion is constructed based on the posterior mean of expected

log-likelihood.

As in Bayesian linear regression model in (A.1), we use y as observed data

of sample size N obtained from the unknown true density fY(y) to estimate

the posterior distributions of parameters β and σ−2, while we also use z

as replicate data of sample size N generated from the unknown true density

fY(z) to evaluate the goodness of fit of approximating model g(z|X,β, σ−2).

Then we select the best approximating model with maximizing the posterior
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mean of expected log-likelihood T as in the second term on the right-hand

side of (2.3)

T ≡ Eβ,σ−2|y,X
[
Ez

[
log
{
g(z|X,β, σ−2)

}]]
(2.4)

where we assume that expectation with respect to the joint posterior distribu-

tionEβ,σ−2|y,X [ · ] can be calculated byEβ,σ−2|y,X [ · ] ≡ Eσ−2|y,X [ Eβ|σ−2y,X [ · ] ]

from (A.15) and (A.16).

To estimate the posterior mean of expected log-likelihood T in (2.4), we

use the posterior mean of observed log-likelihood T̂N :

T̂N ≡ Eβ,σ−2|y,X
[
log
{
g(y|X,β, σ−2)

}]
(2.5)

and its bias bΘ ≡ Ey[T̂N − T ] $= 0 to obtain the bias-corrected estimator

T̂N − b̂N , where b̂N is the estimate of bΘ. Then we propose information

criterion (IC) of the form

IC ≡ −2T̂N + 2b̂N (2.6)

as in (D.15) and (D.16), so that we can choose the best approximating model

that minimizes IC in (2.6).

Ignoring the constant term, we can express the log-likelihood function for

the replicate data z such as

log
{
g(z|X,β, σ−2)

}
=

N

2
log σ−2 − σ−2

2
(z −Xβ)′(z −Xβ) (2.7)

where parameters β and σ−2 follow the posterior distributions estimated by

observed data y and X. Then the posterior mean of expected log-likelihood

T in (2.4) is expressed as

T = Eβ,σ−2|y,X
[
Ez

[
log
{
g(z|X,β, σ−2)

}]]

= Eβ,σ−2|y,X

[
Ez

[
N

2
log σ−2 − σ−2

2
(z −Xβ)′(z −Xβ)

]]
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= Eβ,σ−2|y,X

[
N

2
log σ−2 − σ−2

2
(y −Xβ)′(y −Xβ)

]

− Eβ,σ−2|y,X

[
Ez

[
σ−2

2
(z −Xβ)′(z −Xβ)

]]

+ Eβ,σ−2|y,X

[
σ−2

2
(y −Xβ)′(y −Xβ)

]

= T̂N − C1 + C2. (2.8)

When the posterior mean of observed log-likelihood T̂N is used as an estima-

tor of posterior mean of expected log-likelihood T , the bias bΘ with respect

to the true density fY(y) is obtained by bΘ ≡ Ey[T̂N − T ] = Ey[C1 − C2].

First we evaluate C1 in (2.8). However, true density fY(z) is seldom

known in practice, so that expectation with respect to the true density is not

analytically obtained. In the previous studies, Kitagawa (1997) replaced the

unknown true density by the prior predictive density to construct the pre-

dictive information criterion (PIC) for the Bayesian linear Gaussian model,

while Laud and Ibrahim (1995), Gelfand and Ghosh (1998), and Ibrahim et

al. (2001) considered using the posterior predictive density to generate the

replicate data z for model assessment. In this paper, we use the posterior

predictive density to evaluate the expectation with respect to the true den-

sity fY(z) in C1 because the prior predictive density is far more sensitive to

the selection of prior distribution.

To evaluate C1 in (2.8), we assume that true density fY(·) is a N -

dimensional multivariate normal distribution with unknown true parameters

and replace the true density with a (conditional) posterior predictive density

z|σ−2,y,X ∼ N
(
Xb1, σ

2Σ0

)
, (2.9)

where σ−2 follows the posterior distribution in (A.16) andΣ0 = IN+XB1X
′

(see Appendix A).
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From (2.9), we estimate C1 in (2.8) as

Ĉ1 = Eβ,σ−2|y,X

[
Ez|σ−2,y,X

[
σ−2

2
(z −Xβ)′(z −Xβ)

]]

= Eβ,σ−2|y,X

[
Ez|σ−2,y,X

[
σ−2

2
(z −Xb1 +Xb1 −Xβ)′(z −Xb1 +Xb1 −Xβ)

]]

= Eβ,σ−2|y,X

[
Ez|σ−2,y,X

[
σ−2

2
(z −Xb1)

′(z −Xb1)

]]

+ Eβ,σ−2|y,X

[
σ−2

2
(β − b1)

′(X ′X)(β − b1)

]

= Eβ,σ−2|y,X

[
Ez|σ−2,y,X

[
σ−2

2
(z −Xb1)

′(z −Xb1)

]]

+ Eσ−2|y,X

[
tr

{
σ−2

2
(X ′X)Eβ|σ−2,y,X

[
(β − b1) (β − b1)

′]
}]

.

(2.10)

From (2.9), the first term on the right-hand side of (2.10) can be rewritten

as follows

Eβ,σ−2|y,X

[
Ez|σ−2,y,X

[
σ−2

2
(z −Xb1)

′(z −Xb1)

]]

= Eσ−2|y,X

[
σ−2

2
tr
{
Ez|σ−2,y,X [(z −Xb1)(z −Xb1)

′]
}]

= Eσ−2|y,X

[
σ−2

2
tr
{
σ2Σ0

}]

=
1

2
tr {IN +XB1X

′}

=
N

2
+

1

2
tr {(X ′X)B1} . (2.11)

The second term on the right-hand side of (2.10) is obtained similarly from

(A.11) by

Eσ−2|y,X

[
tr

{
σ−2

2
(X ′X)Eβ|σ−2,y,X

[
(β − b1) (β − b1)

′]
}]

= Eσ−2|y,X

[
tr

{
σ−2

2
(X ′X)σ2B1

}]

=
1

2
tr {(X ′X)B1} . (2.12)
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From (2.11) and (2.12), Ĉ1 in (2.10) is evaluated as follows

Ĉ1 = Eβ,σ−2|y,X

[
Ez|σ−2,y,X

[
σ−2

2
(z −Xb1)

′(z −Xb1)

]]

+ Eσ−2|y,X

[
tr

{
σ−2

2
(X ′X)Eβ|σ−2,y,X

[
(β − b1) (β − b1)

′]
}]

=
N

2
+

1

2
tr {(X ′X)B1}+

1

2
tr {(X ′X)B1}

=
N

2
+ tr {(X ′X)B1} . (2.13)

Since Ĉ1 does not depend on any data y, we have Ey(Ĉ1) = Ĉ1.

Suppose that interchange of order of integrations is valid, we can rewrite

Ey(C2) such as

Ey (C2) = Ey

[
Eβ,σ−2|y,X

[
σ−2

2
(y −Xβ)′(y −Xβ)

]]

= Eβ,σ−2

[
Ey|X,β,σ−2

[
σ−2

2
(y −Xβ)′(y −Xβ)

]]
(2.14)

where Eβ,σ−2 [ · ] is an expectation with respect to joint prior distribution and

Ey|X,β,σ−2 [ · ] is an expectation with respect to N -dimensional multivariate

normal distribution with mean vector Xβ and variance covariance matrix

σ2IN . Since Ey|X,β,σ−2 [(y−Xβ)(y−Xβ)′] = σ2IN , Ey(C2) can be evaluated

as

Ey (C2) = Eβ,σ−2

[
Ey|X,β,σ−2

[
tr

{
σ−2

2
(y −Xβ)(y −Xβ)′

}]]

=
1

2
tr {IN}

=
N

2
. (2.15)

Therefore bias b̂N is obtained by

b̂N = Ey

[
Ĉ1 − C2

]

= Ĉ1 − Ey (C2)
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=
N

2
+ tr {(X ′X)B1} −

N

2

= tr {(X ′X)B1} . (2.16)

Then the bias b̂N in (2.16) can be regarded as a ratio of variance covariance

matrices σ2(X ′X)−1 and σ2B1.

Multiplying −2 to the bias-corrected estimator T̂N − b̂N , our proposed

information criterion for variable selection in the Bayesian linear regression

model (ICBL) is obtained by

ICBL = −2T̂N + 2tr {(X ′X)B1} (2.17)

where B1 =
(
X ′X +B−1

0

)−1
.

For simplicity, let us denote the parameter B0 as B0 = κ0IK , (κ0 > 0)

and the bias term b̂N can be rewritten as

b̂N = K − tr{(X ′XB0 + IK)
−1} (2.18)

from the matrix inversion lemma 1. Then if the sample size N → ∞,

the last term in (2.18) is expected to be zero because tr{(κ0X
′X/N +

IN/N)−1/N} → 0 (i.e., b̂N → K) when each element of X ′X/N does not di-

verge under the standard set of assumptions. Furthermore, if κ0 is sufficiently

large (i.e., non-informative prior), we also have tr{(κ0X
′X + IK)−1} → 0 in

(2.18).

1For any matrices A (m×m), B (m× n), C (n×m), and D (n× n), we have

(
A−BD−1C

)−1
= A−1 +A−1B

(
D −CA−1B

)−1
CA−1

where A and D are nonsingular matrices.
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3 Simulation study

We conduct a simulation study to compare the small-sample performance of

our proposed information criterion (ICBL) in (2.17) and deviance information

criterion (DIC) which is computed as

DIC = −2T̂N + pD, (3.1)

where Spiegelhalter et al. (2002) termed pD the effective number of parame-

ters defined as pD ≡ 2 log{g(y|X, β̄, σ̄−2)} − 2T̂N evaluated at the posterior

means of parameters β̄ (= b1) and σ̄−2 (= ν1/λ1) in (A.15) and (A.16).

As in Hurvich and Tsai (1989), we consider the nested candidate models

by using seven explanatory variables x1,x2, . . . ,x7. In this paper, x1 is a

N×1 vector whose elements are ones (i.e., intercept term) and the other N×1

vectors xi (2 ≤ i ≤ 7) are generated from the uniform distribution U(−2, 2).

These variables x1,x2, . . . ,x7 are included into the candidate models in a se-

quentially nested fashion. The candidate models are linear regression models

given by y = β1x1 + β2x2 + · · · + βKxK + ε, where ε ∼ N (0, σ2IN). The

candidate model with K = 1 has only intercept term and with K = 7 is the

full model. In this simulation study, we determine the number of variables

K by using our proposed information criterion (ICBL) in (2.17) and DIC

in (3.1) in small-sample cases N = 25, 50, 100 with informative (κ0 = 0.1)

and non-informative (κ0 = 100) priors. To examine the small-sample perfor-

mance in the Bayesian linear regression case, we generate a sample of y from

the true model (K = 3),

y = 1.0x1 + 2.0x2 + 3.0x3 + ε, ε ∼ N (0, 1.0IN) . (3.2)

In Table 1, we examine the performance of ICBL and DIC for the small-

sample cases (N = 25, 50, 100). The parameters of prior distributions in
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(A.2) and (A.3) are set to be b0 = 0, B0 = κ0IK (κ0 = 0.1 or 100), and ν0 =

λ0 = 0.1. The simulation considered each combination of N = 25, 50, 100

and κ0 = 0.1, 100. 50, 000 MCMC draws are generated from the posterior

distributions in (A.15) and (A.16) to compute the posterior mean of observed

log-likelihood T̂N in (2.5). For each combination of (N, κ0), we generate 100

observations of ICBL and DIC, and record the number of selected models

(i.e., the candidate model with minimum value for the two criteria).

Table 1 shows that our proposed information criterion (ICBL) identifies

the true model (K = 3) for the small-sample cases (N = 25, 50, 100) with

informative prior (κ0 = 0.1) far better than DIC because DIC tends to overfit

the model for these small-sample cases. On the other hand, for the non-

informative prior (κ0 = 100), both criteria tend to overfit the model for

the sample size N = 25 and 50, but nevertheless our proposed information

criterion (ICBL) far outperformes DIC at the sample size N = 100.

In Tables 2 and 3, we show the results of average criteria in 100 observa-

tions for the small-sample cases (N = 25, 50, 100) with informative (κ0 = 0.1)

and non-informative (κ0 = 100) priors. Both criteria selected the true model

(K = 3) in all cases, but the difference between 2b̂N and pD becomes more ap-

parent along with an increase in the number of explanatory variables. Hence

the effective number of parameters pD in DIC tends to underestimate the

complexity of candidate model as compared with the bias term 2b̂N in ICBL.
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Table 1: The number of selected models by ICBL and DIC for small-sample

cases N = 25, 50, 100 with informative (κ0 = 0.1) and non-informative (κ0 =

100) priors.

Informative prior (κ0 = 0.1) Non-informative prior (κ0 = 100)

N = 25 N = 50 N = 100 N = 25 N = 50 N = 100

Model (K) ICBL DIC ICBL DIC ICBL DIC ICBL DIC ICBL DIC ICBL DIC

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0

3 97 79 95 74 95 76 81 65 89 75 90 75

4 2 9 5 15 5 14 8 10 5 13 7 12

5 1 6 0 7 0 3 7 9 4 8 3 3

6 0 5 0 2 0 5 0 3 0 1 0 6

7 0 1 0 2 0 2 4 13 2 3 0 4
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4 Empirical example

As an empirical example, we estimate the cost function in the U.S. electric

power industry. The data set in Nerlove (1961) includes total cost “TC”

(million ), output “Q” (billion kwh), wage rate “PL” ( /hr), fuel price

“PF” ( /million Btu), and capital price “PC” (index) for 145 firms in 44

states in the year 1955. He divided the 145 firms into five groups of 29 firms,

ordered by output. The total costs of the first 29 firms with lower outputs

are widely scattered, hence we removed these firms from the data to avoid a

failure of the homoskedasticity assumption that the error variance does not

depend on the explanatory variables.

Nerlove (1961) fitted a log-linear cost function (i.e., Cobb-Douglas form).

The Cobb-Douglas form is a very convenient parameterization to represent

the cost-minimization problem, and coefficients in the log-linear form are

elasticities. However as discussed in Hayashi (2000) and Greene (2000),

there exists a nonlinear relationship between log(TC) and log(Q). Hence

we include the polynomial regression term into the log-linear cost function

as

log(TCi) = α0+α1 log(PLi)+α2 log(PFi)+α3 log(PCi)+
M∑

m=1

βm [log(Qi)]
m+εi

(4.1)

where εi ∼ N (0, σ2), i = 1, 2, . . . , 116, and we determine order M in (4.1)

via information criterion.

Table 4 shows the results of model selection for the cost function in (4.1).

The parameters of priors are set to be b0 = 0, κ0 = 104, ν0 = λ0 = 0.1

and we draw 50, 000 samples of parameters to estimate the posterior mean

of observed log-likelihood T̂N . In Table 4, our proposed information criterion

(ICBL) selects model 2 (M = 2) as the best approximating model, while DIC
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selects model 4 (M = 4). Since the number of sample is only 116, is relatively

small, and our simulation study shows that ICBL performs better than DIC

for small sizes, we are inclined to believe that DIC tries to overfit the data

relative to ICBL.

Table 4: Model selection for the cost function in the U.S. electric power

industry.

Model (M) ICBL DIC T̂N 2b̂N pD

1 -40.175 -44.214 25.085 9.994 5.955

2 -62.785 -67.822 37.388 11.991 6.954

3 -60.085 -66.099 36.974 13.862 7.848

4 -61.856 -68.134 38.155 14.453 8.175

5 Conclusion

In Bayesian data analysis, DIC (Spiegelhalter et al., 2002) is widely used for

the model selection, since this criterion is relatively easy to calculate and ap-

plicable to a wide range of statistical models. Spiegelhalter et al. (2002) gave

an asymptotic justification of DIC in the case where the number of observa-

tions grows with respect to the number of parameters. In the small-sample

cases, however, the estimated asymptotic bias of DIC might underestimate

the true bias (Burnham, 2002). In this paper, we have focused on the vari-

able selection criterion for the Bayesian linear regression models in a finite

sample case, as AICC proposed by Sugiura (1978) in frequentist framework,
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and examined the performance of our proposed information criterion (ICBL)

relative to the DIC for small-sample cases.

In our simulation study, DIC often shows a tendency to overfit the model

(see Table 1). On the other hand, our proposed information criterion (ICBL)

performs well for small-sample cases (N = 25, 50, 100). We also find that

the measure of model complexity 2b̂N is mostly larger than effective number

of parameters pD (see Tables 2 and 3). Hence, the bias correction of DIC is

likely to underestimate the model complexity in small-sample cases.

To show the applicability of our proposed information criterion (ICBL)

to the empirical study when the sample size is small, we estimate the cost

function on the U.S. electric power industry. We find that selected model by

DIC (i.e., model 4) has too many parameters relative to the model selected

by ICBL (i.e., model 2). Therefore this result shows that DIC tends to overfit

the model in small-sample case.

In this paper, we successfully showed that our proposed information crite-

rion (ICBL) outperforms DIC in small-sample cases. Interesting directions for

the further research would be to extend our information criterion to the sev-

eral types of Bayesian linear regression models (e.g., the hierarchical Bayesian

linear regression model, Bayesian linear regression model with serially corre-

lated error, and Bayesian linear regression model with structural change).
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A Bayesian Linear Regression Model

We consider the linear regression model as follows

y = Xβ + ε, ε ∼ N
(
0, σ2IN

)
(A.1)

where y is a N × 1 vector and X is a N ×K non-stochastic matrix. The pa-

rameter vector β is a K× 1 vector and error term ε follows a N -dimensional

multivariate normal distribution N (0, σ2IN). We assume that prior distri-

bution of β is a K-dimensional multivariate normal distribution and that of

σ−2 is a gamma distribution:

β|σ−2 ∼ N
(
b0, σ

2B0

)
(A.2)

σ−2 ∼ G
(
ν0
2
,
λ0

2

)
(A.3)

and joint prior distribution p(β, σ−2) is expressed as

p(β, σ−2) = p(β|σ−2)p(σ−2)

∝ (σ−2)K/2 exp

[
−σ−2

2
(β − b0)

′B−1
0 (β − b0)

]

× (σ−2)
ν0
2 −1 exp

[
−λ0σ−2

2

]
(A.4)

where b0, B0, ν0/2, and λ0/2 are assumed to be known.

Let us denote β̂N = (X ′X)−1X ′y, then we have

(y −Xβ)′(y −Xβ)

= (y −Xβ̂N +Xβ̂N −Xβ)′(y −Xβ̂N +Xβ̂N −Xβ)

= (y −Xβ̂N)
′(y −Xβ̂N) + (β − β̂N)

′X ′X(β − β̂N) (A.5)

where X ′(y −Xβ̂) = 0. Hence the likelihood function is written as

L
(
β, σ−2|y,X

)
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∝ (σ−2)N/2 exp

[
−σ−2

2
(y −Xβ)′(y −Xβ)

]

= (σ−2)N/2 exp

[
−σ−2

2

{
(y −Xβ̂N)

′(y −Xβ̂N) + (β − β̂N)
′X ′X(β − β̂N)

}]
.

(A.6)

From (A.4) and (A.6), posterior distribution is calculated as

p(β, σ−2|y,X) ∝ L
(
β, σ−2|y,X

)
p(β, σ−2). (A.7)

Therefore we have

p(β, σ−2|y,X)

∝ (σ−2)N/2 exp

[
−σ−2

2

{
(y −Xβ̂N)

′(y −Xβ̂N) + (β − β̂N)
′X ′X(β − β̂N)

}]

× (σ−2)K/2 exp

[
−σ−2

2
(β − b0)

′B−1
0 (β − b0)

]

× (σ−2)
ν0
2 −1 exp

[
−λ0σ−2

2

]
. (A.8)

Lemma A.1. 2

(β − β̂N)
′X ′X(β − β̂N) + (β − b0)

′ B−1
0 (β − b0)

= (β − b1)
′ B−1

1 (β − b1) +
(
b0 − β̂N

)′ (
(X ′X)−1 +B0

)−1 (
b0 − β̂N

)

(A.9)

where

b1 = B1

(
X ′y +B−1

0 b0
)

(A.10)

B1 =
(
X ′X +B−1

0

)−1
. (A.11)

2The proof is in Appendix B.
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From Lemma A.1, the joint posterior distribution p(β, σ−2|y,X) is obtained

by

p(β, σ−2|y,X) ∝ exp

[
−σ−2

2
(β − b1)

′B−1
1 (β − b1)

]

× (σ−2)
ν1
2 −1 exp

[
−λ1σ−2

2

]
(A.12)

where ν1 and λ1 are defined as follows:

ν1 = ν0 +N +K (A.13)

λ1 = λ0 + (y −Xβ̂N)
′(y −Xβ̂N)

+
(
b0 − β̂N

)′ (
(X ′X)−1 +B0

)−1 (
b0 − β̂N

)
. (A.14)

From (A.12), posterior distributions 3 of parameters β and σ−2 are expressed

as

β|σ−2,y,X ∼ N
(
b1, σ

2B1

)
(A.15)

σ−2|y,X ∼ G
(
ν1
2
,
λ1

2

)
. (A.16)

The marginal posterior distribution p(β|y,X) is derived as

p(β|y,X) =

∫ ∞

0

p(β, σ−2|y,X)dσ2

∝
∫ ∞

0

exp

[
−(β − b1)

′ B−1
1 (β − b1)

2σ2

]
(σ2)−(

ν1
2 −1) exp

[
− λ1

2σ2

]
dσ2

=

∫ ∞

0

(σ2)−(
ν1
2 −1) exp

[
−λ1 + (β − b1)

′ B−1
1 (β − b1)

2σ2

]
dσ2.

(A.17)

3We notice that posterior mean b1 is rewritten as b1 = B1(X
′Xβ̂N +B−1

0 b0) by using

MLE β̂N =
(
X ′X

)−1
X ′y. Then posterior mean b1 is a weighted average of β̂N and

prior mean b0 with weights inversely proportional to the variance covariance matrices,

σ−2(X ′X) and σ−2B−1
0 , of β̂N and b0.
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Integration in (A.17) is obtained by using the gamma function 4:

[
λ1 + (β − b1)

′ B−1
1 (β − b1)

2

]−(
ν1
2 −1)

×
∫ ∞

0

[
λ1 + (β − b1)

′ B−1
1 (β − b1)

2σ2

] ν1
2 −1

exp

[
−λ1 + (β − b1)

′ B−1
1 (β − b1)

2σ2

]
dσ2

= Γ
(ν1
2

)[λ1 + (β − b1)
′ B−1

1 (β − b1)

2

]−( ν1
2 −1)

∝ Γ
(
ν0 +N +K

2

)[
1 +

1

ν0 +N
(β − b1)

′
(

λ1

ν0 +N
B1

)−1

(β − b1)

]− ν0+N+K
2

(A.18)

then we notice that (A.18) is proportional to the K-dimensional multivariate

t-distribution 5. Hence we have

β|y,X ∼ TK

(
b1,

λ1

ν0 +N
B1, ν0 +N

)
. (A.19)

Let us denote the predictive value of y as y0. Then predictive density

p(y0|y,X) is derived as

p(y0|y,X) =

∫ ∞

0

∫

RK

p(y0|X,β, σ−2)p(β, σ−2|y,X)dβdσ2

=

∫ ∞

0

[∫

RK

p(y0|X,β, σ−2)p(β|σ−2,y,X)dβ

]

× p(σ−2|y,X)dσ2. (A.20)

4The gamma function is denoted by

Γ(m) =

∫ ∞

0
xm−1e−xdm

where m > 0 and Γ(m+ 1) = mΓ(m).
5The K-dimensional multivariate t-distribution TK(µ,Σ, ν) is denoted by

p(x|µ,Σ, ν) =
Γ
(
ν+K
2

)

Γ
(
ν
2

)
ν

K
2 π

K
2

Σ− 1
2

[
1 +

1

ν
(x− µ)′Σ−1(x− µ)

]− ν+K
2

where x is a K-dimensional random variable, and E(x) = µ and Var(x) = ν
ν−2Σ.
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First, we calculate the integration with respect to β :

∫

RK

p(y0|X,β, σ−2)p(β|σ−2,y,X)dβ. (A.21)

where

p(y0|X,β, σ−2)p(β|σ−2,y,X)

∝ (σ−2)N/2 exp

[
−σ−2

2
(y0 −Xβ)′(y0 −Xβ)

]

× (σ−2)K/2 exp

[
−σ−2

2
(β − b1)

′B−1
1 (β − b1)

]

= (σ−2)(N+K)/2 exp

[
−σ−2

2
(y0 −Xβ)′(y0 −Xβ)− σ−2

2
(β − b1)

′ B−1
1 (β − b1)

]
.

(A.22)

Lemma A.2.

(y0 −Xβ)′(y0 −Xβ) + (β − b1)
′ B−1

1 (β − b1)

= (y0 −Xb1)
′Σ−1

0 (y0 −Xb1) + (β − b2)
′B−1

2 (β − b2) (A.23)

where

b2 = B2

(
X ′y0 +B−1

1 b1
)

(A.24)

B2 =
(
X ′X +B−1

1

)−1
(A.25)

Σ0 = IN +XB1X
′. (A.26)

From Lemma A.2, we have the integration with respect to β in (A.21) as

p(y0|σ−2,y,X)

=

∫

RK

p(y0|X,β, σ−2)p(β|σ−2,y,X)dβ

∝
∫

RK

(σ−2)(N+K)/2 exp

[
−σ−2

2
(y0 −Xb1)

′Σ−1
0 (y0 −Xb1)

−σ−2

2
(β − b2)

′ B−1
2 (β − b2)

]
dβ
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∝ (σ−2)N/2 exp

[
−σ−2

2
(y0 −Xb1)

′Σ−1
0 (y0 −Xb1)

]
. (A.27)

Hence the predictive density conditional on σ−2 is N -dimensional multivari-

ate normal distribution:

y0|σ−2,y,X ∼ N
(
Xb1, σ

2Σ0

)
. (A.28)

From (A.16) and (A.27), integration with respect to the posterior distribution

of σ2 for p(y0|σ−2,y,X) is

∫ ∞

0

p(y0|σ−2,y,X)p(σ−2|y,X)dσ2

∝
∫ ∞

0

(σ−2)N/2 exp

[
−σ−2

2
(y0 −Xb1)

′Σ−1
0 (y0 −Xb1)

]

× (σ−2)
ν1
2 −1 exp

[
−λ1σ−2

2

]
dσ2

=

∫ ∞

0

(σ−2)
ν1+N

2 −1 exp

[
−λ1 + (y0 −Xb1)′Σ

−1
0 (y0 −Xb1)

2σ2

]
dσ2

=

[
λ1 + (y0 −Xb1)′Σ

−1
0 (y0 −Xb1)

2

]−( ν1+N
2 −1)

×
∫ ∞

0

[
λ1 + (y0 −Xb1)′Σ

−1
0 (y0 −Xb1)

2σ2

] ν1+N
2 −1

× exp

[
−λ1 + (y0 −Xb1)′Σ

−1
0 (y0 −Xb1)

2σ2

]
dσ2

= Γ

(
ν1 +N

2

)[
λ1 + (y0 −Xb1)′Σ

−1
0 (y0 −Xb1)

2

]−( ν1+N
2 −1)

∝ Γ
(
ν1 +N

2

)[
1 +

(
1

ν1

)
(y0 −Xb1)

′
(
λ1

ν1
Σ0

)−1

(y0 −Xb1)

]− ν1+N
2

.

(A.29)

Hence we notice that (A.29) is proportional to N -dimensional multivariate

t-distribution:

y0|y,X ∼ TN (Xb1,Σ0, ν1) . (A.30)
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B Proof of Lemma A.1

Recall (A.9):

(β − β̂N)
′X ′X(β − β̂N) + (β − b0)

′B−1
0 (β − b0)

= (β − b1)
′ B−1

1 (β − b1) +
(
b0 − β̂N

)′ (
(X ′X)−1 +B0

)−1 (
b0 − β̂N

)
.

where B1 =
(
X ′X +B−1

0

)−1
and b1 = B1

(
X ′y +B−1

0 b0
)
.

Proof. To prove (A.9), we show the following equation:

(θ − c)′A (θ − c) + (d− θ)′B (d− θ)

=
[
θ − (A+B)−1(Ac+Bd)

]′
(A+B)

[
θ − (A+B)−1(Ac+Bd)

]

+ (c− d)′
(
B−1 +A−1

)
(c− d) (B.1)

where A and B are K ×K symmetric and invertible matrices, and θ, c and

d are K × 1 vectors.

Taking a trace of matrices for both sides, we have

(θ − c)′ A (θ − c) + (d− θ)′ B (d− θ)

= tr
{
A (θ − c) (θ − c)′ +B (d− θ) (d− θ)′

}

= tr {(A+B)θθ′ − 2 (Ac+Bd)θ′ +Acc′ +Bdd′}

= tr
{
(A+B)

[
θθ′ − 2 (A+B)−1 (Ac+Bd)θ′]+Acc′ +Bdd′}

= tr
{
(A+B)

[
θ − (A+B)−1 (Ac+Bd)

] [
θ − (A+B)−1 (Ac+Bd)

]′

− (A+B)
[
(A+B)−1 (Ac+Bd)

] [
(A+B)−1 (Ac+Bd)

]′

+Acc′ +Bdd′
}

=
[
θ − (A+B)−1 (Ac+Bd)

]′
(A+B)

[
θ − (A+B)−1 (Ac+Bd)

]

−
[
(A+B)−1 (Ac+Bd)

]′
(A+B)

[
(A+B)−1 (Ac+Bd)

]

+ c′Ac+ d′Bd. (B.2)
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Next last three terms of the above expression in (B.2) can be rewritten as

−
[
(A+B)−1 (Ac+Bd)

]′
(A+B)

[
(A+B)−1 (Ac+Bd)

]

+ c′Ac+ d′Bd

= − (Ac+Bd)′ (A+B)−1 (Ac+Bd)

+ c′Ac+ d′Bd

= −
(
c+A−1Bd

)′
A (A+B)−1 B

(
B−1Ac+ d

)

+ c′Ac+ d′Bd

= −
(
c+A−1Bd

)′ (
B−1 +A−1

)−1 (
B−1Ac+ d

)

+ c′Ac+ d′Bd

=
(
c− d+ d+A−1Bd

)′ (
B−1 +A−1

)−1 (
c− d−B−1Ac− c

)

+ c′Ac+ d′Bd

= (c− d)′
(
B−1 +A−1

)−1
(c− d)

+ (c− d)′
(
B−1 +A−1

)−1 (−B−1Ac− c
)

+
(
d+A−1Bd

)′ (
B−1 +A−1

)−1
(c− d)

+
(
d+A−1Bd

)′ (
B−1 +A−1

)−1 (−B−1Ac− c
)

+ c′Ac+ d′Bd

= (c− d)′
(
B−1 +A−1

)−1
(c− d) +R0. (B.3)

where

R0 =(c− d)′
(
B−1 +A−1

)−1 (−B−1Ac− c
)

+
(
d+A−1Bd

)′ (
B−1 +A−1

)−1
(c− d)

+
(
d+A−1Bd

)′ (
B−1 +A−1

)−1 (−B−1Ac− c
)

+ c′Ac+ d′Bd. (B.4)

Finally we show that the remainder term in (B.3) become zero (i.e., R0 = 0).
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Expanding the remainder term (B.4), we have

R0 = −c′
(
IK +BA−1

)−1
Ac− c′

(
B−1 +A−1

)−1
c

+ d′ (IK +BA−1
)−1

Ac+ d′ (B−1 +A−1
)−1

c

+ d′ (B−1 +A−1
)−1

c− d′ (B−1 +A−1
)−1

d

+ d′B
(
IK +B−1A

)−1
c− d′B

(
IK +B−1A

)−1
d

− d′ (IK +BA−1
)−1

Ac− d′ (B−1 +A−1
)−1

c

− d′ (B−1 +A−1
)−1

c− d′B
(
IK +B−1A

)−1
c

+ c′Ac+ d′Bd

= c′Ac− c′
(
IK +BA−1

)−1
Ac− c′

(
B−1 +A−1

)−1
c

+ d′Bd− d′B
(
IK +B−1A

)−1
d− d′ (B−1 +A−1

)−1
d

= c′
[
A−

(
IK +BA−1

)−1
A
]
c− c′

(
B−1 +A−1

)−1
c

+ d′
[
B −B

(
IK +B−1A

)−1
]
d− d′ (B−1 +A−1

)−1
d. (B.5)

To show that remainder term R0 = 0, we need to prove that

(
B−1 +A−1

)−1 −
[
A−

(
IK +BA−1

)−1
A
]
= 0K×K , (B.6)

(
B−1 +A−1

)−1 −
[
B −B

(
IK +B−1A

)−1
]
= 0K×K . (B.7)

Multiplying (B.6) on the left by
(
B−1 +A−1

)
, we have

IK −
(
B−1 +A−1

) [
A−

(
IK +BA−1

)−1
A
]

= IK −
(
B−1 +A−1

) [
A−

(
B−1 +A−1

)−1
B−1A

]

= IK −B−1A− IK +B−1A

= 0K×K , (B.8)

and multiplying (B.7) on the right by
(
B−1 +A−1

)
, we have

IK −
[
B −B

(
IK +B−1A

)−1
] (

B−1 +A−1
)
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= IK −
[
B −BA−1

(
B−1 +A−1

)−1
] (

B−1 +A−1
)

= IK − IK −BA−1 +BA−1

= 0K×K . (B.9)

From (B.8) and (B.9), (B.6) and (B.7) hold. Hence the remainder term R0

is zero and we can show that (B.1) is correct. Substituting A = X ′X,

B = B−1
0 , θ = β, c = β̂N and d = b0 into (B.1), then we have (A.9).

C Proof of Lemma A.2

Recall (A.23):

(y0 −Xβ)′(y0 −Xβ) + (β − b1)
′B−1

1 (β − b1)

= (y0 −Xb1)
′Σ−1

0 (y0 −Xb1) + (β − b2)
′B−1

2 (β − b2)

where

b2 = B2

(
X ′y0 +B−1

1 b1
)

B2 =
(
X ′X +B−1

1

)−1

Σ0 = IN +XB1X
′.

Proof. Expanding the left-hand side of (A.23), we have

(y0 −Xβ)′(y0 −Xβ) + (β − b1)
′ B−1

1 (β − b1)

= y′
0y0 − y′

0Xβ − β′X ′y0 + β′X ′Xβ

+ β′B−1
1 β − β′B−1

1 b1 − b′1B
−1
1 β + b′1B

−1
1 b1

= tr {y0y
′
0 − 2X ′y0β

′ + (X ′X)ββ′

+B−1
1 ββ′ − 2B−1

1 b1β
′ +B−1

1 b1b
′
1

}

= tr
{
y0y

′
0 +B−1

1 b1b
′
1
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+
(
X ′X +B−1

1

)
ββ′ − 2

(
X ′y0 +B−1

1 b1
)
β′}

= tr
{
y0y

′
0 +B−1

1 b1b
′
1

+
(
X ′X +B−1

1

)
(β − b2) (β − b2)

′

−
(
X ′X +B−1

1

)
b2b

′
2

}

= (β − b2)
′B−1

2 (β − b2) +R1 (C.1)

where

R1 = y′
0y0 + b′1B

−1
1 b1 − b′2

(
X ′X +B−1

1

)
b2

b2 = B2

(
X ′y0 +B−1

1 b1
)

B2 =
(
X ′X +B−1

1

)−1
.

Next the remainder term R1 in (C.1) can be rewritten as

R1 = y′
0y0 + b′1B

−1
1 b1 − b′2

(
X ′X +B−1

1

)
b2

= y′
0y0 + b′1B

−1
1 b1

−
[(
X ′X +B−1

1

)−1 (
X ′y0 +B−1

1 b1
)]′ (

X ′X +B−1
1

)

×
[(
X ′X +B−1

1

)−1 (
X ′y0 +B−1

1 b1
)]

= y′
0y0 + b′1B

−1
1 b1

−
(
X ′y0 +B−1

1 b1
)′ (

X ′X +B−1
1

)−1 (
X ′y0 +B−1

1 b1
)

= y′
0y0 + b′1B

−1
1 b1

−
(
X ′y0 −X ′Xb1 +X ′Xb1 +B−1

1 b1
)′

×
(
X ′X +B−1

1

)−1

×
(
X ′y0 −X ′Xb1 +X ′Xb1 +B−1

1 b1
)

= y′
0y0 + b′1B

−1
1 b1

−
(
X ′y0 −X ′Xb1 +B−1

2 b1
)′
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×B2

×
(
X ′y0 −X ′Xb1 +B−1

2 b1
)

= y′
0y0 + b′1B

−1
1 b1

− (X ′y0 −X ′Xb1)
′ B2 (X

′y0 −X ′Xb1)

− (X ′y0 −X ′Xb1)
′ B2

(
B−1

2 b1
)

−
(
B−1

2 b1
)′
B2 (X

′y0 −X ′Xb1)

−
(
B−1

2 b1
)′
B2

(
B−1

2 b1
)

= y′
0y0 + b′1B

−1
1 b1

− (y0 −Xb1)
′XB2X

′ (y0 −Xb1)

− (y0 −Xb1)
′Xb1

− b′1X
′ (y0 −Xb1)

− b′1B
−1
2 b1

= y′
0y0 + b′1B

−1
1 b1

+ (y0 −Xb1)
′ (IN −XB2X

′) (y0 −Xb1)

− (y0 −Xb1)
′ (y0 −Xb1)

− 2 (y0 −Xb1)
′ Xb1

− b′1B
−1
2 b1. (C.2)

Substituting

IN −XB2X
′ = IN −X

(
X ′X +B−1

1

)−1
X ′

= (IN +XB1X
′)−1 (C.3)

into (C.2), we have

R1 = y′
0y0 + b′1B

−1
1 b1

+ (y0 −Xb1)
′ (IN +XB1X

′)−1 (y0 −Xb1)
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− (y0 −Xb1)
′ (y0 −Xb1)

− 2 (y0 −Xb1)
′ Xb1

− b′1
(
X ′X +B−1

1

)
b1

= (y0 −Xb1)
′ (IN +XB1X

′)−1 (y0 −Xb1)

= (y0 −Xb1)
′Σ−1

0 (y0 −Xb1) . (C.4)

Hence, from (C.1) and (C.4), we have (A.23).

D Classical Measure of Model Selection

D.1 Akaike’s Information Criterion (AIC)

We denote a true density (or model) fX(x) and its approximating model

g(x|θ) with K-dimensional parameter vector θ. Given the i.i.d. observed

data y ≡ (y1, y2, . . . , yN), MLE of parameter θ is defined as θ̂N ≡ θ̂N(y)

under the regularity condition and the true parameter θ0 satisfies fX(x) ≡

g(x|θ0). Then Kullback-Leibler Information is calculated as

I(f, g(·|θ̂N)) =

∫
fX(x) log

{
fX(x)

g(x|θ̂N)

}
dx.

= constant− Ex

[
log{g(x|θ̂N)}

]
(D.1)

where the expected log-likelihood Ex[log{g(x|θ̂N)}] in (D.1) is a measure of

goodness of fit of approximating model g(·|θ̂N) relative to the true density

fX(x).

Now we consider a problem of finding the model that maximizes the es-

timate of the expected log-likelihood Ex[log{g(x|θ̂N)}] in (D.1) among sev-

eral competing models. The most natural estimator of the expected log-

likelihood is its sample counterpart based on y ≡ (y1, y2, . . . , yN), that is,
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1
N

∑N
i=1 log{g(yi|θ̂N)}. Since we do not know if this is an unbiased estimator

of the expected log-likelihood, we examine the asymptotic bias bΘ when the

observed log-likelihood is used as an estimator of expected log-likelihood,

which is decomposed in three terms

bΘ ≡ Ey

[
1

N

N∑

i=1

log{g(yi|θ̂N)} − Ex

[
log{g(x|θ̂N)}

]]

= Ey

[
1

N

N∑

i=1

log{g(yi|θ̂N)} −
1

N

N∑

i=1

log{g(yi|θ0)}
]

+ Ey

[
1

N

N∑

i=1

log{g(yi|θ0)} − Ex [log{g(x|θ0)}]
]

+ Ey

[
Ex [log{g(x|θ0)}]− Ex

[
log{g(x|θ̂N)}

]]

= Ey(D1) + Ey(D2) + Ey(D3). (D.2)

The three components, D1, D2, and D3 are respectively: The discrepancy be-

tween the average observed log-likelihoods of the approximating model g(·|θ)

under the MLE θ̂N and the true parameter θ0; The sampling bias of the log-

likelihoods of the approximating model g(·|θ) under the true parameter θ0;

The discrepancy between the expected log-likelihoods of the approximating

model g(·|θ) under the MLE θ̂N and the true parameter θ0.

First, we evaluate Ey(D1) in (D.2). Second-order Taylor series expansion

around MLE θ̂N gives

1

N

N∑

i=1

log{g(yi|θ)} ≈ 1

N

N∑

i=1

log{g(yi|θ̂N)}

+ (θ − θ̂N)
′

[
1

N

N∑

i=1

∂ log{g(yi|θ̂N)}
∂θ

]

− 1

2
(θ − θ̂N)

′

[
1

N

N∑

i=1

−∂2 log{g(yi|θ̂N)}
∂θ∂θ′

]
(θ − θ̂N).

(D.3)
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Assuming that interchange of integral and derivative is valid under the reg-

ularity conditions, we have

∂

∂θ

∫
g(x|θ)∂ log g(x|θ)

∂θ′ dx =

∫
∂

∂θ

{
g(x|θ)∂ log g(x|θ)

∂θ′

}
dx

=

∫
g(x|θ)

{
∂ log g(x|θ)

∂θ

∂ log g(x|θ)
∂θ′

}
dx

+

∫
g(x|θ)

{
∂2 log g(x|θ)

∂θ∂θ′

}
dx. (D.4)

Since the left-hand side of (D.4) is zero because

∂

∂θ

∫
g(x|θ)∂ log g(x|θ)

∂θ′ dx =
∂

∂θ

∫
g(x|θ) 1

g(x|θ)
∂g(x|θ)

∂θ′ dx

=
∂

∂θ∂θ′

∫
g(x|θ)dx

= 0,

when evaluated at θ = θ0 in (D.4), we have

J(θ0) = I(θ0) (D.5)

where due to the fact that g(x|θ0) = fX(x),

J(θ0) ≡
∫

fX(x)

{
−∂2 log g(x|θ0)

∂θ∂θ′

}
dx (D.6)

I(θ0) ≡
∫

fX(x)

{
∂ log g(x|θ0)

∂θ

∂ log g(x|θ0)

∂θ′

}
dx. (D.7)

Since θ̂N
p−→ θ0 as N → ∞, we have

1

N

N∑

i=1

[
−∂2 log{g(yi|θ̂N)}

∂θ∂θ′

]
p−→ J(θ0) = I(θ0). (D.8)

Moreover, asymptotic normality of MLE shows that

√
N(θ̂N − θ0)

w! N
(
0, I−1(θ0)

)
. (D.9)
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Since the second term on the right-hand side of (D.3) is zero because θ̂N is

MLE, Ey(D1) can be asymptotically evaluated in view of Slutsky’s theorem

by substituting θ = θ0 into (D.3) as follows

Ey(D1)
p−→ 1

2
tr
{
I(θ0)Ey

[
(θ̂N − θ0)(θ̂N − θ0)

′
]}

=
1

2N
tr
{
I(θ0)I

−1(θ0)
}

=
K

2N
. (D.10)

Next we can evaluate Ey(D2) in (D.2) as

Ey(D2) = Ey

[
1

N

N∑

i=1

log{g(yi|θ0)} − Ex [log{g(x|θ0)}]
]

= Ey [log{g(y|θ0)}]− Ex [log{g(x|θ0)}]

= Ey [log{fX(y)}]− Ex [log{fX(x)}]

= 0. (D.11)

Finally, we evaluate Ey(D3) in (D.2) based on the second-order Taylor series

expansion around true parameter θ0:

Ex

[
log{g(x|θ̂N)}

]
≈ Ex [log{g(x|θ0)}] + (θ̂N − θ0)

′Ex

[
∂ log{g(x|θ0)}

∂θ

]

− 1

2
(θ̂N − θ0)

′Ex

[
−∂2 log{g(x|θ0)}

∂θ∂θ′

]
(θ̂N − θ0).

(D.12)

The second term on the right-hand side of (D.12) is zero because the true

parameter θ0 is a point solution of Ex [∂ log{g(x|θ)}/∂θ] = 0. Since J(θ0) =

I(θ0), we can evaluate Ey(D3) as follows

Ey(D3)
p−→ 1

2
tr
{
I(θ0)Ey

[
(θ̂N − θ0)(θ̂N − θ0)

′
]}

=
1

2N
tr
{
I(θ0)I

−1(θ0)
}
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=
K

2N
. (D.13)

Therefore the asymptotic bias is

Ey(D1) + Ey(D2) + Ey(D3)
p−→ K

2N
+ 0 +

K

2N

=
K

N

= bΘ. (D.14)

Then we have an asymptotically unbiased estimator of expected log-likelihood

as
1

N

N∑

i=1

log{g(yi|θ̂N)} −
K

N
(D.15)

As a matter of convention the criterion is often stated as that of minimizing

−2 log{g(y|θ̂N)}+ 2K.

Therefore AIC can be computed as

AIC = −2 log{Lg(θ̂N |y)}+ 2K (D.16)

where Lg(θ̂N |y) ≡ g(y|θ̂N).

D.2 Corrected AIC in a Finite Sample Size (AICC)

Sugiura (1978) derived the corrected AIC when the number of data N is

small for the linear regression model with normally distributed error:

y = Xβ + ε, ε ∼ N
(
0, σ2IN

)
(D.17)

where y is a N ×1 vector, X is a N ×K matrix, and β is a K×1 parameter

vector. The maximized log-likelihood of candidate linear regression model

g(·|X, β̂N , σ̂
−2
N ) can be taken as

log
{
g(y|X, β̂N , σ̂

−2
N )
}
= −N

2
log σ̂2

N − 1

2

(y −Xβ̂N)
′(y −Xβ̂N)

σ̂2
N

(D.18)
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where MLEs in (D.18) are well-known:

β̂N = (X ′X)−1 X ′y (D.19)

σ̂2
N = (y −Xβ̂N)

′(y −Xβ̂N)/N. (D.20)

Let us denote the sample z ≡ (z1, z2, . . . , zN) from the true density fY(z)

to evaluate expected log-likelihood and the true density is assumed to be

a N -dimensional multivariate normal distribution z ∼ N (µ, σ2IN), where

we assume that K × 1 true parameter β satisfies µ = Xβ. We define the

expected log-likelihood T as

T ≡
∫

log
{
g(z|X, β̂N , σ̂

−2
N )
}
fY(z)dz

= Ez

[
−N

2
log σ̂2

N − 1

2

(z −Xβ̂N)
′(z −Xβ̂N)

σ̂2
N

]
(D.21)

and define the observed log-likelihood TN in (D.18) as

TN ≡ log
{
g(y|X, β̂N , σ̂

−2
N )
}

= −N

2
log σ̂2

N − 1

2

(y −Xβ̂N)
′(y −Xβ̂N)

σ̂2
N

= −N

2
log σ̂2

N − N

2
. (D.22)

From (D.21) and (D.22), bias bΘ when the observed log-likelihood TN is used

as an estimator of expected log-likelihood T is defined as

bΘ ≡ Ey [TN − T ]

= −N

2
+

1

2
EyEz

[
(z −Xβ̂N)

′(z −Xβ̂N)

σ̂2
N

]
. (D.23)

The second term on the right-hand of (D.23) is evaluated as

1

2
EyEz

[
(z −Xβ̂N)

′(z −Xβ̂N)

σ̂2
N

]
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=
1

2
EyEz

[
(z −Xβ +Xβ −Xβ̂N)

′(z −Xβ +Xβ −Xβ̂N)

σ̂2
N

]

=
1

2
EyEz

[
(z −Xβ)′(z −Xβ)

σ̂2
N

]
+

1

2
EyEz

[
(Xβ −Xβ̂N)

′(Xβ −Xβ̂N)

σ̂2
N

]

=
1

2
Ey

[
Nσ2

σ̂2
N

]
+

1

2
Ey

[
(β − β̂N)

′(X ′X)(β − β̂N)

σ̂2
N

]

=
N2

2
Ey

[
σ2

Nσ̂2
N

]
+

N

2
Ey

[
(β − β̂N)σ

−2(X ′X)(β − β̂N)

Nσ̂2
N/σ

2

]
. (D.24)

Using the fact that Nσ̂2
N/σ

2 ∼ χ2
N−K , we have

Ey

[
Nσ2

σ̂2
N

]
= Ey

[
1

χ2
N−K

]
=

1

N −K − 2
. (D.25)

Moreover, since asymptotic normality β̂N ∼ N (β, σ2(X ′X)−1) holds with

respect to sample y ≡ (y1, y2, . . . , yN) generated from the true density fY(y),

we have

(
N −K

K

)
(β − β̂N)σ

−2(X ′X)(β − β̂N)
′

Nσ̂2
N/σ

2
∼ F (K,N −K) (D.26)

and expectation of (D.26) with respect to fY(y) is derived by

Ey

[
(β − β̂N)σ

−2(X ′X)(β − β̂N)
′

Nσ̂2
N/σ

2

]
=

(
K

N −K

)
N −K

N −K − 2
. (D.27)

Therefore

TN − bΘ = TN +
N

2
− N2

2(N −K − 2)
− NK

2(N −K − 2)

= −N

2
log σ̂2

N − N(N +K)

2(N −K − 2)
. (D.28)

Consequently, multiplying −2 to (D.28) we have

AICC = N
{
log σ̂2

N + 1
}
+ 2

N(K + 1)

N −K − 2
. (D.29)
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D.2.1 Proof of Eq.(D.25)

We show that
Nσ̂2

N

σ2
∼ χ2

N−K

where σ̂2
N = (y −Xβ̂N)

′(y −Xβ̂N)/N .

Proof. We consider the QR decomposition of the N ×K matrix X such as

X = QR (D.30)

where Q is an orthogonal N ×N matrix and R is a N ×K matrix defined

as

R =



 RK

0(N−K)×K



 (D.31)

by using a K ×K invertible upper triangular matrix RK .

We can rewrite the linear regression model with normally distributed

error ε as follows

ε =
(
y −Xβ̂N

)
+X

(
β̂N − β

)
, ε ∼ N

(
0, σ2IN

)
. (D.32)

where β̂N = (X ′X)−1 X ′y.

Multiplying Q′ and substituting X = QR into (D.32), we have

Q′ε = Q′y −Q′ (QR) β̂N +Q′ (QR)
(
β̂N − β

)

= Q′y −Rβ̂N +R
(
β̂N − β

)
. (D.33)

Let us denote qε
N×1 = Q′ε and qy

N×1 = Q′y. (D.33) can be written as

qε
N×1 = qy

N×1 −Rβ̂N +R
(
β̂N − β

)
(D.34)

where

qy
N×1 −Rβ̂N =



 q
y
K×1 −RKβ̂N

qy
(N−K)×1



 (D.35)
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R
(
β̂N − β

)
=



RK

(
β̂N − β

)

0(N−K)×1



 . (D.36)

Then qy
K×1 −RKβ̂N in (D.35) and RK(β̂N − β) in (D.36) can be obtained

as

qy
K×1 −RKβ̂N = qy

K×1 −RK (X ′X)−1X ′y

= qy
K×1 −RK (R′Q′QR)−1 R′Q′y

= qy
K×1 − qy

K×1

= 0K×1 (D.37)

RK

(
β̂N − β

)
= RK

(
β + (X ′X)−1 X ′ε− β

)

= RK (R′Q′QR)−1 R′Q′ε

= qε
K×1. (D.38)

Hence we have

qε
N×1 =



 qε
K×1

qε
(N−K)×1



 (D.39)

= Q′y −Rβ̂N +R(β̂N − β)

=



 0K×1

qy
(N−K)×1



+



 qε
K×1

0(N−K)×1



 . (D.40)

Since we notice that

Q′y −Rβ̂N = Q′
(
y −Xβ̂N

)
(D.41)

qy
(N−K)×1 = qε

(N−K)×1 ∼ N
(
0, σ2IN−K

)
(D.42)

then

{
Q′y −Rβ̂N

}′ {
Q′y −Rβ̂N

}
=
(
y −Xβ̂N

)′ (
y −Xβ̂N

)
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= (qεK+1)
2 + (qεK+2)

2 + · · ·+ (qεN)
2. (D.43)

Therefore

σ−2
(
y −Xβ̂N

)′ (
y −Xβ̂N

)
= σ−2

[
(qεK+1)

2 + (qεK+2)
2 + · · ·+ (qεN)

2
]

∼ χ2
N−K . (D.44)

D.3 Bayesian Information Criterion (BIC)

The posterior probability of selecting a candidate model M is obtained as

Pr(M |x) = p(x|M)p(M)

p(x)
(D.45)

where x ≡ (x1, . . . , xN) is the i.i.d. observed data.

Assuming that candidate models have same prior probabilities p(M), the

critical quantity to be approximated is the marginal likelihood of the candi-

date model M :

p(x|M) =

∫ [ N∏

i=1

g(xi|θ,M)

]
p(θ|M)dθ (D.46)

where parameter θ has dimension K.

First we rewrite (D.46) as
∫

g(x|θ,M)p(θ|M)dθ =

∫
exp [Q(θ)] dθ (D.47)

where

Q(θ) = log{g(x|θ,M)p(θ|M)}. (D.48)

From the second-order Taylor series expansion of Q(θ), we can approximate

it around the MLE θ̂N ≡ θ̂(x) as follows:

Q(θ) ≈ Q(θ̂N)+(θ−θ̂N)
′ ∂Q(θ)

∂θ

∣∣∣∣
θ=

ˆθN

+
1

2
(θ−θ̂N)

′ ∂
2Q(θ)

∂θ∂θ′

∣∣∣∣
θ=

ˆθN

(θ−θ̂N).

(D.49)
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Assuming that prior distribution p(θ|M) is a non-informative flat prior and

sample size N is large, we can treat p(θ|M) as a constant. Then we have

∂Q(θ)

∂θ

∣∣∣∣
θ=

ˆθN

=
∂ log{g(x|θ,M)}

∂θ

∣∣∣∣
θ=

ˆθN

+
∂ log{p(θ|M)}

∂θ

∣∣∣∣
θ=

ˆθN

= 0

(D.50)

and

∂2Q(θ)

∂θ∂θ′

∣∣∣∣
θ=

ˆθN

=
∂2 log{g(x|θ,M)}

∂θ∂θ′

∣∣∣∣
θ=

ˆθN

+
∂ log{p(θ|M)}

∂θ∂θ′

∣∣∣∣
θ=

ˆθN

=
∂2 log{g(x|θ,M)}

∂θ∂θ′

∣∣∣∣
θ=

ˆθN

. (D.51)

Hence, exp [Q(θ)] in (D.47) can be approximated as

g(x|θ,M)p(θ|M)

≈ g(x|θ̂N ,M)p(θ̂N |M) exp

[
−1

2
(θ − θ̂N)

′(N Ĵ(θ̂N))(θ − θ̂N)

]
(D.52)

where

Ĵ(θ̂N) = − 1

N

∂2 log{g(x|θ̂N ,M)}
∂θ∂θ′ =

1

N

N∑

i=1

[
−∂2 log{g(xi|θ̂N ,M)}

∂θ∂θ′

]
.

From (D.52), the marginal likelihood in (D.46) is approximately as follows:

g(x|θ̂N ,M)p(θ̂N |M)

∫
exp

[
−1

2
(θ − θ̂N)

′(N Ĵ(θ̂N))(θ − θ̂N)

]
dθ.

The needed integral is directly related to the underlying K-dimensional mul-

tivariate normal distribution and can be evaluated because we know the

needed normalizing constant:

∫
(2π)−K/2|N Ĵ(θ̂N)|1/2 exp

[
−1

2
(θ − θ̂N)

′(N Ĵ(θ̂N))(θ − θ̂N)

]
dθ = 1,

where | · | denotes the determinant of matrix. Therefore, we have

p(x|M) ≈ g(x|θ̂N ,M)p(θ̂N |M)
[
(2π)K/2|N Ĵ(θ̂N)|−1/2

]
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= g(x|θ̂N ,M)p(θ̂N |M)
[
(2π)K/2N−K/2|Ĵ(θ̂N)|−1/2

]
.

Taking −2 times the log of the right-hand side above, we have essentially the

BIC:

−2 log{g(x|θ̂N ,M)}+K log(N)−2 log{p(θ̂N |M)}−K log(2π)+log{|Ĵ(θ̂N)|}.

The last three terms of above expression are dropped because−2 log{p(θ̂N |M)},

K log(2π), and Ĵ(θ̂N)
p−→ J(θ0) are constants. Therefore BIC can be com-

puted as

BIC = −2 log{Lg(θ̂N |x)}+K log(N) (D.53)

where Lg(θ̂N |x) ≡ g(x|θ̂N ,M).

D.4 Likelihood Ratio Test and Asymptotic property

of Likelihood Ratio Statistic

Given i.i.d. data x ≡ (x1, x2, . . . , xN), the likelihood function with respect

to model g(x|θ) is defined as

Lg(θ|x) ≡
N∏

i=1

g(xi|θ)

where θ is a K-dimensional parameter.

Considering the null hypothesis for true parameter θ0:

H0 : θ0,j = 0 for 1 ≤ j ≤ R, (D.54)

we define the K × 1 parameter vector θ0 and restricted MLE θ̂
res

N :

θ0 =



0R×1

θ∗
0



 , θ̂
res

N =



0R×1

θ̂
∗
N



 (D.55)

where 0R×1 is a R × 1 zero vector, and θ∗
0, θ̂

∗
N are (K − R) × 1 non-zero

vectors.
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Given K-dimensional unrestricted MLE θ̂N , the second-order Taylor se-

ries expansion of log-likelihood function log{Lg(θ0|x)} ≡
∑N

i=1 log{g(xi|θ0)}

around the MLE θ̂N shows that
N∑

i=1

log{g(xi|θ0)} ≈
N∑

i=1

log{g(xi|θ̂N)}+ (θ0 − θ̂N)
′

N∑

i=1

∂ log{g(xi|θ)}
∂θ

∣∣∣∣∣
θ=

ˆθN

− 1

2

√
N(θ0 − θ̂N)

′ 1

N

N∑

i=1

[
−∂2 log{g(xi|θ)}

∂θ∂θ′

∣∣∣∣
θ=

ˆθN

]
√
N(θ0 − θ̂N).

(D.56)

Notice that
N∑

i=1

∂ log{g(xi|θ)}
∂θ

∣∣∣∣∣
θ=

ˆθN

= 0, (D.57)

1

N

N∑

i=1

[
−∂2 log{g(xi|θ̂N)}

∂θ∂θ′

]
p−→ Ex

[
−∂2 log{g(x|θ0)}

∂θ∂θ′

]
≡ I(θ0), (D.58)

then (D.56) can be rewritten as

log{Lg(θ0|x)} ≈ log{Lg(θ̂N |x)} −
1

2

√
N(θ̂N − θ0)

′I(θ0)
√
N(θ̂N − θ0)

(D.59)

where I(θ0) is the Fisher information matrix.

Given theK-dimensional restricted MLE θ̂
res

N , the second-order Taylor se-

ries expansion of log-likelihood function log{Lg(θ0|x)} ≡
∑N

i=1 log{g(xi|θ0)}

around the restricted MLE θ̂
res

N shows that

N∑

i=1

log{g(xi|θ0)} ≈
N∑

i=1

log{g(xi|θ̂
res

N )}+ (θ0 − θ̂
res

N )′
N∑

i=1

∂ log{g(xi|θ)}
∂θ

∣∣∣∣∣
θ=

ˆθ
res

N

− 1

2

√
N(θ0 − θ̂

res

N )′
1

N

N∑

i=1

[
−∂2 log{g(xi|θ)}

∂θ∂θ′

∣∣∣∣
θ=

ˆθ
res

N

]
√
N(θ0 − θ̂

res

N ).

(D.60)

Recall (D.55):

θ0 =



0R×1

θ∗
0



 and θ̂
res

N =



0R×1

θ̂
∗
N




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and let us denote

∇R ≡





∂
∂θ1

∂
∂θ2
...

∂
∂θR




and ∇K−R ≡





∂
∂θR+1

∂
∂θR+2

...

∂
∂θK




.

Since the restricted MLE θ̂
res

N does not include parameters θ1, θ2, . . . , θR in

the model g(·|θ̂
res

N ), ∇R log{g(xi|θ̂
res

N )} is a R × 1 zero vector. Moreover,

(K − R)-dimensional parameter θ̂
∗
N can be regarded as a solution of vector

equation
∑N

i=1 ∇K−R log{g(xi|θ)} = 0(K−R)×1. Therefore the first derivative

of log-likelihood in (D.60) is zero:

N∑

i=1

∂ log{g(xi|θ)}
∂θ

∣∣∣∣∣
θ=

ˆθ
res

N

=
N∑

i=1



∇R

∇K−R



 log{g(xi|θ)}

∣∣∣∣∣∣
θ=

ˆθ
res

N

=




∑N

i=1 ∇R log{g(xi|θ̂
res

N )}
∑N

i=1 ∇K−R log{g(xi|θ̂
res

N )}





=



 0R×1

∑N
i=1 ∇K−R log{g(xi|θ̂

∗
N)}





= 0K×1. (D.61)

The second derivative of log-likelihood in (D.60) is denoted as

1

N

N∑

i=1

[
−∂2 log{g(xi|θ)}

∂θ∂θ′

∣∣∣∣
θ=

ˆθ
res

N

]

=
1

N

N∑

i=1



−∇R∇′
R log{g(xi|θ̂

res

N )} −∇R∇′
K−R log{g(xi|θ̂

res

N )}

−∇K−R∇′
R log{g(xi|θ̂

res

N )} −∇K−R∇′
K−R log{g(xi|θ̂

res

N )}





p−→



0R×R 0R×(K−R)

0(K−R)×R I(θ∗
0)



 (D.62)
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where I(θ∗
0) is a (K −R)× (K −R) Fisher information matrix evaluated at

parameter θ∗
0.

From (D.61) and (D.62), the second-order Taylor series expansion of log-

likelihood in (D.60) can be rewritten as

N∑

i=1

log{g(xi|θ0)}

≈
N∑

i=1

log{g(xi|θ̂
res

N )}

− 1

2

√
N(θ̂

res

N − θ0)
′



0R×R 0R×(K−R)

0(K−R)×R I(θ∗
0)



√N(θ̂
res

N − θ0)

=
N∑

i=1

log{g(xi|θ̂
res

N )}

− 1

2

[
0′
R×1

√
N(θ̂

∗
N − θ∗

0)
′
]


0R×R 0R×(K−R)

0(K−R)×R I(θ∗
0)







 0R×1
√
N(θ̂

∗
N − θ∗

0)





=
N∑

i=1

log{g(xi|θ̂
res

N )}

− 1

2

√
N(θ̂

∗
N − θ∗

0)
′I(θ∗

0)
√
N(θ̂

∗
N − θ∗

0) (D.63)

then (D.63) can be rewritten as

log{Lg(θ0|x)} ≈ log{Lg(θ̂
res

N |x)} − 1

2

√
N(θ̂

∗
N − θ∗

0)
′I(θ∗

0)
√
N(θ̂

∗
N − θ∗

0).

(D.64)

Recall (D.59) and (D.64):

log{Lg(θ0|x)} ≈ log{Lg(θ̂N |x)} −
1

2

√
N(θ̂N − θ0)

′I(θ0)
√
N(θ̂N − θ0),

log{Lg(θ0|x)} ≈ log{Lg(θ̂
res

N |x)} − 1

2

√
N(θ̂

∗
N − θ∗

0)
′I(θ∗

0)
√
N(θ̂

∗
N − θ∗

0),

then subtracting (D.64) from (D.59), we have

log{Lg(θ̂
res

N |x)} − log{Lg(θ̂N |x)} ≈ −1

2

√
N(θ̂N − θ0)

′I(θ0)
√
N(θ̂N − θ0)
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+
1

2

√
N(θ̂

∗
N − θ∗

0)
′I(θ∗

0)
√
N(θ̂

∗
N − θ∗

0).

(D.65)

Therefore the left-hand side in (D.65) can be rewritten as the likelihood ratio

statistic by multiplying −2 to the both sides in (D.65), and then we need to

evaluate the asymptotic distribution of the right-hand side.

−2 log

[
Lg(θ̂

res

N |x)
Lg(θ̂N |x)

]
≈

√
N(θ̂N − θ0)

′I(θ0)
√
N(θ̂N − θ0)

−
√
N(θ̂

∗
N − θ∗

0)
′I(θ∗

0)
√
N(θ̂

∗
N − θ∗

0). (D.66)

Redefine the Fisher information matrix I(θ0) as

1

N

N∑

i=1



−∇R∇′
R log{g(xi|θ̂N)} −∇R∇′

K−R log{g(xi|θ̂N)}

−∇K−R∇′
R log{g(xi|θ̂N)} −∇K−R∇′

K−R log{g(xi|θ̂N)}





p−→



Ex [−∇R∇′
R log{g(x|θ0)}] Ex

[
−∇R∇′

K−R log{g(x|θ0)}
]

Ex [−∇K−R∇′
R log{g(x|θ0)}] Ex

[
−∇K−R∇′

K−R log{g(x|θ0)}
]





=



 A(θ∗
0) B(θ∗

0)

B′(θ∗
0) I(θ∗

0)





≡ I(θ0) (D.67)

where A(θ∗
0) is a R×R matrix and B(θ∗

0) is a R× (K −R) matrix.

Let us denote the score function as

1√
N

N∑

i=1

∂ log{g(xi|θ)}
∂θ

∣∣∣∣
θ=θ0

≡



 sr(θ0)

su(θ0)



 (D.68)

where sr(θ0) is a R × 1 vector and su(θ0) is a (K − R) × 1 vector. Under

the null hypothesis H0 : θ0,j for 1 ≤ j ≤ R, the Taylor series expansion of

the first derivative of log-likelihood divided by
√
N shows that

1√
N

N∑

i=1

∂ log{g(xi|θ̂N)}
∂θ

≈ 1√
N

N∑

i=1

∂ log{g(xi|θ0)}
∂θ
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−
[
− 1

N

N∑

i=1

∂2 log{g(xi|θ0)}
∂θ∂θ′

]
√
N(θ̂N − θ0).

(D.69)

As the number of samples N is large, (D.69) can be rewritten as

0K×1 ≈



 sr(θ0)

su(θ0)



− I(θ0)
√
N(θ̂N − θ0) (D.70)

then we have 

 sr(θ0)

su(θ0)



 ≈ I(θ0)
√
N(θ̂N − θ0). (D.71)

As for restricted MLE θ̂
res

N , under the null hypothesis H0 : θ0,j for 1 ≤

j ≤ R, the Taylor series expansion of the first derivative of log-likelihood

divided by
√
N shows that

1√
N

N∑

i=1

∂ log{g(xi|θ̂
res

N )}
∂θ

≈ 1√
N

N∑

i=1

∂ log{g(xi|θ0)}
∂θ

−
[
− 1

N

N∑

i=1

∂2 log{g(xi|θ0)}
∂θ∂θ′

]
√
N(θ̂

res

N − θ0)

≈ 1√
N

N∑

i=1

∂ log{g(xi|θ0)}
∂θ

−
√
N



 A(θ∗
0) B(θ∗

0)

B′(θ∗
0) I(θ∗

0)







 0R×1

θ̂
∗
N − θ∗

0



 .

(D.72)

Since the left-hand side of (D.72) is zero, (D.72) can be rewritten as


 sr(θ0)

su(θ0)



 ≈



B(θ∗
0)
√
N(θ̂

∗
N − θ∗

0)

I(θ∗
0)
√
N(θ̂

∗
N − θ∗

0)



 , (D.73)

hence we have

sr(θ0) ≈ B(θ∗
0)
√
N(θ̂

∗
N − θ∗

0)
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≈ B(θ∗
0)I

−1(θ∗
0)su(θ0). (D.74)

From (D.71) and (D.73), we can denote the first two terms on the right-

hand side of (D.66) as follows

√
N(θ̂N − θ0)

′I(θ0)
√
N(θ̂N − θ0) ≈




I−1(θ0)



 sr(θ0)

su(θ0)










′ 

 sr(θ0)

su(θ0)





=



 sr(θ0)

su(θ0)




′

I−1(θ0)



 sr(θ0)

su(θ0)



 ,

(D.75)
√
N(θ̂

∗
N − θ∗

0)
′I(θ∗

0)
√
N(θ̂

∗
N − θ∗

0) ≈
[
I−1(θ∗

0)su(θ0)
]′
I(θ∗

0)
[
I−1(θ∗

0)su(θ0)
]

= s′u(θ0)I
−1(θ∗

0)su(θ0) (D.76)

where Fisher information matrix I(θ0) is symmetric and invertible. Using

(D.74), vector of score function in (D.75) is rewritten as


 sr(θ0)

su(θ0)



 ≈







 sr(θ0)−B(θ∗
0)I

−1(θ∗
0)su(θ0)

0(K−R)×1



+



B(θ∗
0)I

−1(θ∗
0)su(θ0)

su(θ0)









= [sa(θ0) + sb(θ0)] (D.77)

and inverse matrix of I(θ0) is expressed as

I−1(θ0)

=



 D(θ∗
0) −D(θ∗

0)B(θ∗
0)I

−1(θ∗
0)

−I−1(θ∗
0)B

′(θ∗
0)D(θ∗

0) I−1(θ∗
0) + I−1(θ∗

0)B
′(θ∗

0)D(θ∗
0)B(θ∗

0)I
−1(θ∗

0)





(D.78)

where D(θ∗
0) ≡

(
A(θ∗

0)−B(θ∗
0)I

−1(θ∗
0)B

′(θ∗
0)
)−1

.

From (D.75) and (D.77), we have


 sr(θ0)

su(θ0)




′

I−1(θ0)



 sr(θ0)

su(θ0)



 = [s′a(θ0) + s′b(θ0)] I
−1(θ0) [sa(θ0) + sb(θ0)]
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= s′a(θ0)I
−1(θ0)sa(θ0) + s′a(θ0)I

−1(θ0)sb(θ0)

+ s′b(θ0)I
−1(θ0)sa(θ0) + s′b(θ0)I

−1(θ0)sb(θ0).

(D.79)

Using the fact that

[
B′(θ∗

0) I(θ∗
0)
]
I−1(θ0)

=
[
B′(θ∗

0) I(θ∗
0)
]

×



 D(θ∗
0) −D(θ∗

0)B(θ∗
0)I

−1(θ∗
0)

−I−1(θ∗
0)B

′(θ∗
0)D(θ∗

0) I−1(θ∗
0) + I−1(θ∗

0)B
′(θ∗

0)D(θ∗
0)B(θ∗

0)I
−1(θ∗

0)





=
[
0(K−R)×R IK−R

]
, (D.80)

we have

s′b(θ0)I
−1(θ0) =

[ {
B(θ∗

0)I
−1(θ∗

0)su(θ0)
}′

s′u(θ0)
]
I−1(θ0)

=
[ {

I−1(θ∗
0)su(θ0)

}′
B′(θ∗

0) s′u(θ0)
]
I−1(θ0)

=
[
I−1(θ∗

0)su(θ0)
]′ [

B′(θ∗
0) I(θ∗

0)
]
I−1(θ0)

=
[
I−1(θ∗

0)su(θ0)
]′ [

0(K−R)×R IK−R

]

=
[
01×R s′u(θ0)I

−1(θ∗
0)
]
. (D.81)

Hence we notice that

I−1(θ0)sb(θ0) =
[
s′b(θ0)I

−1(θ0)
]′

=



 0R×1

I−1(θ∗
0)su(θ0)



 . (D.82)

From (D.81) and (D.82), the cross product terms on the right-hand side of

(D.79) are calculated as follows:

s′a(θ0)I
−1(θ0)sb(θ0)
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=



 sr(θ0)−B(θ∗
0)I

−1(θ∗
0)su(θ0)

0(K−R)×1




′ 

 0R×1

I−1(θ∗
0)su(θ0)





= 0, (D.83)

s′b(θ0)I
−1(θ0)sa(θ0)

=
[
01×R s′u(θ0)I

−1(θ∗
0)
]


 sr(θ0)−B(θ∗
0)I

−1(θ∗
0)su(θ0)

0(K−R)×1





= 0. (D.84)

The other terms on the right-hand side of (D.79) are computed as follows:

s′a(θ0)I
−1(θ0)sa(θ0)

=



 sr(θ0)−B(θ∗
0)I

−1(θ∗
0)su(θ0)

0(K−R)×1




′

×



 D(θ∗
0) −D(θ∗

0)B(θ∗
0)I

−1(θ∗
0)

−I−1(θ∗
0)B

′(θ∗
0)D(θ∗

0) I−1(θ∗
0) + I−1(θ∗

0)B
′(θ∗

0)D(θ∗
0)B(θ∗

0)I
−1(θ∗

0)





×



 sr(θ0)−B(θ∗
0)I

−1(θ∗
0)su(θ0)

0(K−R)×1





=
[
sr(θ0)−B(θ∗

0)I
−1(θ∗

0)su(θ0)
]′
D(θ∗

0)
[
sr(θ0)−B(θ∗

0)I
−1(θ∗

0)su(θ0)
]
,

(D.85)

s′b(θ0)I
−1(θ0)sb(θ0)

=
[
01×R s′u(θ0)I

−1(θ∗
0)
]


B(θ∗
0)I

−1(θ∗
0)su(θ0)

su(θ0)





= s′u(θ0)I
−1(θ∗

0)su(θ0). (D.86)

From (D.83), (D.84), (D.85) and (D.86), (D.75) can be approximated to

√
N(θ̂N − θ0)

′I(θ0)
√
N(θ̂N − θ0)
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≈
[
sr(θ0)−B(θ∗

0)I
−1(θ∗

0)su(θ0)
]′
D(θ∗

0)
[
sr(θ0)−B(θ∗

0)I
−1(θ∗

0)su(θ0)
]

+ s′u(θ0)I
−1(θ∗

0)su(θ0). (D.87)

Recall (D.76):

√
N(θ̂

∗
N − θ∗

0)
′I(θ∗

0)
√
N(θ̂

∗
N − θ∗

0) ≈
[
I−1(θ∗

0)su(θ0)
]′
I(θ∗

0)
[
I−1(θ∗

0)su(θ0)
]

= s′u(θ0)I
−1(θ∗

0)su(θ0).

From (D.76) and (D.87), (D.66) is expressed as

− 2 log

[
Lg(θ̂

res

N |x)
Lg(θ̂N |x)

]

≈
[
sr(θ0)−B(θ∗

0)I
−1(θ∗

0)su(θ0)
]′
D(θ∗

0)
[
sr(θ0)−B(θ∗

0)I
−1(θ∗

0)su(θ0)
]

(D.88)

where

D−1(θ∗
0) ≡ A(θ∗

0)−B(θ∗
0)I

−1(θ∗
0)B

′(θ∗
0). (D.89)

From the central limit theorem for score function in (D.68), we have

1√
N

N∑

i=1

∂ log{g(xi|θ)}
∂θ

∣∣∣∣
θ=θ0

≡



 sr(θ0)

su(θ0)



 ∼ N (0K×1, I(θ0)) . (D.90)

Considering a R×K nonrandom matrix C:

C(θ∗
0) ≡

[
IR −B(θ∗

0)I
−1(θ∗

0)
]
, (D.91)

then we know that

C(θ∗
0)



 sr(θ0)

su(θ0)



 =
[
sr(θ0)−B(θ∗

0)I
−1(θ∗

0)su(θ0)
]

∼ N (0R×1,C(θ∗
0)I(θ0)C

′(θ0)) (D.92)

where the Fisher information matrix I(θ0):

I(θ0) ≡



 A(θ∗
0) B(θ∗

0)

B′(θ∗
0) I(θ∗

0)




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and

C(θ∗
0)I(θ0)C

′(θ∗
0)

=
[
IR −B(θ∗

0)I
−1(θ∗

0)
]


 A(θ∗
0) B(θ∗

0)

B′(θ∗
0) I(θ∗

0)







 IR
{
−B(θ∗

0)I
−1(θ∗

0)
}′





= A(θ∗
0)−B(θ∗

0)I
−1(θ∗

0)B
′(θ∗

0)

= D−1(θ∗
0). (D.93)

Therefore asymptotic distribution of likelihood ratio statistic in (D.88) is

chi-squared distribution with degrees of freedom R:

−2 log

[
L(θ̂

res

N |x)
L(θ̂N |x)

]
∼ χ2

R. (D.94)

E Bayesian Measure of Model Selection

E.1 Marginal Likelihood and Bayes Factor

Given the parameter θ ∈ Θ, marginal likelihood p(x|M) for i.i.d. data x ≡

(x1, x2, . . . , xN) conditional on model M is defined as

p(x|M) =

∫

Θ
Lg(θ|x,M)p(θ|M)dθ (E.1)

where

Lg(θ|x,M) =
N∏

i=1

g(xi|θ,M)

and p(θ|M) is a prior distribution given model M . To evaluate the marginal

likelihood p(x|M) in (E.1), we suppose that p(θ|M) is a proper density. Then

we notice that

1 =

∫

Θ
p(θ|M)dθ
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=

∫

Θ

[
p(x|M)p(θ|x,M)

Lg(θ|x,M)p(θ|M)

]
p(θ|M)dθ

= p(x|M)

∫

Θ

1

Lg(θ|x,M)
p(θ|x,M)dθ (E.2)

where

p(x|M)p(θ|x,M)

Lg(θ|x,M)p(θ|M)
=

p(θ|x,M)
Lg(θ|x,M)p(θ|M)

p(x|M)

=
p(θ|x,M)

p(θ|x,M)
= 1.

Given the MCMC draws after burn-in period {θ(j)}nj=1 from the posterior

distribution p(θ|x,M), Newton and Raftery (1994) estimates the marginal

likelihood p(x|M) in (E.2) as

p̂(x|M) =

[
1

n

n∑

j=1

1

Lg(θ
(j)|x,M)

]−1

(E.3)

and the Bayes factor for model Mi against model Mj is obtained as

BFij =
p̂(x|Mi)

p̂(x|Mj)
. (E.4)

The BIC in (D.53) gives a rough approximation to the logarithm of the Bayes

factor (Kass and Raftery, 1995) as follows:

log BFij = log{p(x|Mi)} − log{p(x|Mj)}

≈ 1

2
[BIC(Mi)− BIC(Mj)] . (E.5)

E.2 Deviance Information Criterion (DIC)

Given observed data x ≡ (x1, x2, . . . , xN) and K-dimensional parameter vec-

tor θ, Spiegelhalter et al. (2002) defined the reduction in uncertainty due to

the estimation of parameter θ as

dΘ{x,θ0, θ̃(x)} = −2 log{p(x|θ0)}+ 2 log{p(x|θ̃(x))} (E.6)
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where θ0 is a true parameter and p(x|θ̃(x)) is an approximating model. In

the classical measure of model selection based on the MLE θ̂N , expectation

of dΘ{x,θ0, θ̃(x)} with respect to the unknown true model is used to express

the complexity of non-Bayesian model.

In Bayesian perspective, true parameter θ0 can be replaced by a random

quantity θ. Then Spiegelhalter et al. (2002) defined a posterior mean of

dΘ{x,θ, θ̃(x)} as the effective number of parameters pD{x,Θ, θ̃(x)}:

pD{x,Θ, θ̃(x)} = Ep(θ|x)

[
dΘ{x,θ, θ̃(x)}

]
(E.7)

= Ep(θ|x) [−2 log{p(x|θ)}] + 2 log{p(x|θ̃(x))}.

Taking θ̃(x) = E(θ|x) = θ̄, effective number of parameters pD{x,Θ, θ̃(x)}

in (E.7) can be rewritten as

pD = D(θ)−D(θ̄) (E.8)

where Spiegelhalter et al. (2002) termed D(θ) the ‘Bayesian deviance’.

Suppose that we wish to make predictions on a replicate data set Xrep

which has an identical design to the observed data x ≡ (x1, x2, . . . , xN), we

set the true model p(Xrep|θ). Then deviance information criterion (DIC)

selects a model for which Ep(θ|x)Ep(Xrep|θ)
[
−2 log{p(Xrep|θ̄)}

]
is expected to

be small. To derive the DIC, we define cΘ such as

cΘ = Ep(Xrep|θ)
[
−2 log{p(Xrep|θ̄)}

]
−
[
−2 log{p(x|θ̄)}

]

= Ep(Xrep|θ)
[
Drep(θ̄)

]
−D(θ̄). (E.9)

To evaluate (E.9), it is convenient to expand cΘ into three terms:

cΘ = Ep(Xrep|θ)
[
Drep(θ̄)−Drep(θ)

]
+ Ep(Xrep|θ)

[
Drep(θ)−D(θ)

]

+
[
D(θ)−D(θ̄)

]
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= L1(θ̄,θ) + L2(θ,θ) +
[
D(θ)−D(θ̄)

]
, (E.10)

where we denote the first two terms by L1(θ̄,θ) and L2(θ,θ) respectively.

In practice, Spiegelhalter et al. (2002) approximated the true Bayes esti-

mator by the posterior mean θ̄. Expanding the Bayesian deviance Drep(θ̄)

to the second order shows that

Drep(θ̄) ≈ Drep(θ) + (θ̄− θ)′
∂Drep(θ)

∂θ
+

1

2
(θ̄− θ)′

∂2Drep(θ)

∂θ∂θ′ (θ̄− θ) (E.11)

and L1(θ̄,θ) in (E.10) can be approximated to

L1(θ̄,θ) ≈ Ep(Xrep|θ)

[
(θ̄ − θ)′

∂Drep(θ)

∂θ
+

1

2
(θ̄ − θ)′

∂2Drep(θ)

∂θ∂θ′ (θ̄ − θ)

]

= Ep(Xrep|θ)

[
−2(θ̄ − θ)′

∂ log{p(Xrep|θ)}
∂θ

−(θ̄ − θ)′
∂2 log{p(Xrep|θ)}

∂θ∂θ′ (θ̄ − θ)

]

= tr
{
J rep(θ)(θ − θ̄)(θ − θ̄)′

}
(E.12)

where

Ep(Xrep|θ)

[
∂ log{p(Xrep|θ)}

∂θ

]
= 0K×1, (E.13)

Ep(Xrep|θ)

[
−∂2 log{p(Xrep|θ)}

∂θ∂θ′

]
= J rep(θ). (E.14)

Since J rep(θ) is assumed to be the Fisher information matrix Irep(θ), then

(E.12) can be rewritten as

tr
{
J rep(θ)(θ − θ̄)(θ − θ̄)′

}
= tr

{
Irep(θ)(θ − θ̄)(θ − θ̄)′

}
. (E.15)

Using (E.10) and (E.15), we have a posterior mean of cΘ in (E.10):

Ep(θ|x) (cΘ) ≈ Ep(θ|x)
[
tr
{
Irep(θ)(θ − θ̄)(θ − θ̄)′

}]

+ Ep(θ|x) [L2(θ,θ)] +
[
D(θ)−D(θ̄)

]
,
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= tr {Irep(θ)Σθ}+ Ep(θ|x) [L2(θ,θ)] + pD (E.16)

where

Σθ = Ep(θ|x)
[
(θ − θ̄)(θ − θ̄)′

]
(E.17)

and Spiegelhalter et al. (1998, 2002) suggested that posterior mean of L2(θ,θ)

on the right-hand side of (E.16) is zero:

Ep(θ|x) [L2(θ,θ)] = Ep(θ|x)Ep(Xrep|θ) [−2 log{p(Xrep|θ)}] + 2Ep(θ|x) [log{p(x|θ)}]

= 0. (E.18)

Next we expand D(θ) = −2 log{p(x|θ)} around θ̄ to the second order:

D(θ) ≈ D(θ̄) + (θ − θ̄)′
∂D(θ)

∂θ

∣∣∣∣
θ=

¯θ
+

1

2
(θ − θ̄)′

∂2D(θ)

∂θ∂θ′

∣∣∣∣
θ=

¯θ
(θ − θ̄)

= D(θ̄)− 2(θ − θ̄)′
∂ log{p(x|θ̄)}

∂θ
− (θ − θ̄)′

∂2 log{p(x|θ̄)}
∂θ∂θ′ (θ − θ̄).

(E.19)

The posterior mean of (E.19) gives

Ep(θ|x) [D(θ)] ≈ D(θ̄) + tr
{
−H(θ̄)Ep(θ|x)

[
(θ − θ̄)(θ − θ̄)′

]}

= D(θ̄) + tr
{
−H(θ̄)Σθ

}
(E.20)

where

Ep(θ|x)
[
θ − θ̄

]
= Ep(θ|x) (θ)− θ̄ = 0,

H(θ̄) =
∂2 log{p(x|θ̄)}

∂θ∂θ′ .

Since Ep(θ|x) [D(θ)] = D(θ), (E.20) can be rewritten as

D(θ)−D(θ̄) ≈ tr
{
−H(θ̄)Σθ

}
. (E.21)

Recall (E.16):

Ep(θ|x) (cΘ) ≈ Ep(θ|x)
[
tr
{
Irep(θ)(θ − θ̄)(θ − θ̄)′

}]
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+ Ep(θ|x) [L2(θ,θ)] +
[
D(θ)−D(θ̄)

]

= tr {Irep(θ)Σθ}+ pD.

Spiegelhalter et al. (1998, 2002) approximated the first term on the right-

hand side of (E.16) as

tr {Irep(θ)Σθ} ≈ tr
{
−H(θ̄)Σθ

}

≈ D(θ)−D(θ̄)

= pD. (E.22)

Suppose that (E.16) and (E.22) hold, posterior mean of cΘ in (E.16) is ap-

proximated to

Ep(θ|x) (cΘ) ≈ 2pD. (E.23)

Using (E.9) and (E.23), we have

Ep(θ|x)Ep(Xrep|θ)
[
−2 log{p(Xrep|θ̄)}

]
= −2 log{p(x|θ̄)}+ Ep(θ|x) (cΘ)

≈ D(θ̄) + 2pD. (E.24)

Therefore DIC is given by

DIC = D(θ̄) + 2pD

= D(θ) + pD (E.25)

where pD = D(θ)−D(θ̄) and D(θ) = Ep(θ|x) [−2 log p(x|θ)].
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