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BEHAVIOUR OF JACKKNIFE ESTIMATORS IN 

TERMS OF ASYMPTOTIC DEFICIENCY UNDER 

TRUE AND ASSUMED MODELS 
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Masafumi Akahira * 

The problem on jackknifing estimators is investigated in the presence of nuisance 
parameters from the viewpoint of higher order asymptotics. It is shown that the 
asymptotic deficiency of the jackknife estimator relative to the bias-adjusted maximum 
likelihood estimator (MLE) is equal to zero under true and assumed m.odcls. More­
over, the asymptotic deficiency of the MLE or the jackknife estimator under the as­
sumed model relative to that under the true model is given. 
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1. Introduction 

In higher order asymptotics the concept of asymptotic deficiency is very useful for 

comparing asymptotically efficient estimators (e.g. Akahira, 1986). On the other hand, 

resampling plans like jackknife and bootstrap have been recently studied by many authors 

(e.g. Hinkley 1978, Efron 1982). So, it seems to be interesting to investigate the problem 

on j acklmifing estimators in terms of asymptotic deficiency from the viewpoint of higher 

order asymptotics. In one parameter case, it was shown by Akahira (1983, 1986) that 

the asymptotic deficiency of the jackknife estimator relative to the bias-adjusted MLE 

is equal to zero. And also the asymptotic deficiency of the jackknife estimator relative 

to the estimator in some class was given. Further, the asymptotic deficiency of the bias­

adjusted MLE under the assumed model relative to that under the true model was given 

by Akahira (1986) under the unbiasedness condition. 

In this paper, we consider the problem on jacknifing estimators in the presence of 

the nuisance parameter. It is shown that the jackknife estimator has asymptotic de­

ficiency zero relative to the bias-adjusted MLE under the true and assumed models, 

which means that the estimators are asymptotically equivalent up to the third order in 

the sense that their asymptotic distributions are equal up to the order n-l under the models. 

Further, the asymptotic deficiency of the MLE or the jackknife estimator under the 

assumed model relative to that under the true model is given. 

2. Notations and assumptions 

Suppose that Xl, .. " X n are independent and identically distributed (i.i.d.) real 

random variables with a density function ](x, 8, ;) with respect to a o--finite measure [i, 
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where 8 is a real-valued parameter to be estimated and ~ is a real-valued nuisance parame­

ter. Vve assume the following conditions (A.I) to (A.S). 

(A.I) The set {x: f(x, 8, ~) >O} does not depend on 8 and f 
(A.2) For almost all xLu] , f(x, 8, ~) is three times continuously differentiable in 8 and f 
(A.3) For each 8 and each ~ 

0<100(8, ~)=E[{10(8,~, X)}2]=-E[100(8,~, X)]<= , 

0<111(8, ~)=E[{11(8,~, X)}2]=-E[111(8,~, X)]<= , 

where 10(8,~, x) = (0/08)1(8, ~,x), 100(8,~, x) = (02/08 2 )1(8, ~, x) 

11(8,~, x)=(0/0~)1(8,~, x) and 111(8,~, x)=(02/0~2)1(8,~, x) 

with 1(8, S, x) =logf(x, 8, ~). 

(A.4) The parameters are defined to be "orthogonal" in the sense that 

E[101(8,~, X)] =0 

where 101(8, ~, x) = (02/080~)1(8, S, x). 

Note that the condition (A.4) is not necessarily restricted, because otherwise we can re­

define the parameter 17 = g(8, ~) so that we have the above orthogonality. 

(A.S) There exist 

}000=E[l00(8, ~,X)10(8, ~, X)] , 

}010=E[101(8, ~,X)10(8, ~, X)] , 

}11O=E[111(8, S, X)10(8, ~,X)] , 

]<'001=E[{10(8, ~,X)}211(8, ~,X)] , 

Moooo=E[{100(8,~, X)}2]-no , 

Moo01=E[100(8, ~, X)101(8, S, X)] , 

l\101o1=E[{101(8, ~,X)}2] , 

and the following holds. 

}001=E[100(8, S, X)II(8,~, X)] , 

}01l=E[101(8, ~, X)11(8, ~, X)] , 

Kooo=E[{lo(8,~, X)}3] , 

E[1000(8, S, X)]=-3}000-Kooo, E[lOOl(8,~, X)]=- }010, 

E[1011(8,~, X)]=- }011 , 

where 1000(8, ~, x) = (03/08 3)1(8, ~,x), 1001(8,~, x) = (03/0820~)1(8, ~,x) and 

101l(8, ~, x) = (08/080~2)1(8, ~, x). 

From the condition (A.5) it is noted that KOOl= }010-}001. V\le put 

3. Asymptotic deficiency of the jackknife estimator under the true model 

In this section we consider the true model where 8 = 80 and ~ = ~o. Henceforth, for 

simplicity we denote by (8, ~) the true model (80 , ~o) omitting subscript zero. 

Let e* and ~* be the maximum likelihood estimators (MLEs) of 8 and ~ based on a 

sample Xl, "', Xn of size n, respectively. Then, we have the following. 

THEOREM 3.1. Assume that the cond'it£ons (A.I) to (A.S) hold. Then the MLE e* of 8 

has the follow£ng stochast£c expans£on under the tru,e model (8, ~). 
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(3.1) 

where 

(3.2) 

and 

(3.3) 
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- " Zo 1 1 ( 1 ) ~n(f)*-B)=-I + /-Qo+ /-Ql+0p /- , 
00 "" 11, "" n "" 11, 

Qo= I~o (ZooZo 
3}000+Kooo Zg) 

2100 

_ 1 ( }010 }011) lOll 2 
QI--

I 
I 21 201--

1 
ZO--I 21 + 2[ [2 ZI . 

00 11 00 11 00 11 

181 

The proof is given in the paper by Akahira and Takeuchi (1982) and also in section 

4.2 of the monograph by Akahira (1986). Let at be the MLE bias-adjusted so that 

E[ ,Jii(at-B)]=o(l/~n) 

under the true model (B, s). Since the asymptotic covariance of Qo and Ql is equal to 

0(1), i.e., symbolically Cov (Qo, Ql) =0(1)' we have the following. 

THEOREM 3.2. Assume that the conditions (A.l) to (A.S) hold. Then the asymptotic 

deficiency of the bias-adjusted MLE at under the true model (B, ;) is given by 

d=Ioo{V(Qo)+ V(Ql)} 

1 2 (Jooo+KOOO)2 1 ( }g10 }~1I ) }611 ( ) 
=-13 (IooMoooo- }OOO) + 213 +-1 I MOI01--I --I + 21 12 +0 1 , 

00 00 00 11 00 11 00 11 

where V ( .) designates the asymptotic variance. 

The proof is given in the paper by Akahira and Takeuchi (1982) and also in section 

4.2 of the monograph by Akahira (1986). It is noted that the term 

M 0101 - (}~101 100) - (}611/ Ill) 

in the above asymptotic deficiency, d, is equal to zero if and only if 

101(8, S, x) =ao(8, s) +al(8, s)10(8, S, x) +a2(8, s)II(8, S, x) a.e·Lu] , 

where ai(B, s) (i=O, 1,2) are certain functions of 8 and S, which are independent of x. 

Next, we shall obtain asymptotic deficiency of the jackknife estimator of B in the 

true model (B,s). We partition the sample Xl, "',Xn into 9 blocks Xl, ""Xq of 

size h each such that n = gh, that is, 

(J 

{Xl, "', Xn}= U Xi and '][inXJ=¢ for i=l= j . 
i==l 

For each i=l, ... ,g, we denote {j:XjEXi} by Ii. Further, for each i=l, "',g let 

aco be the MLE of B based on the sample of size (g-l)h, where the i-th block, Xi, of size 

h is deleted. For each i we put fh=ga*-(g-l)a Ci). Then we consider the jackknife 

estimator 

From Theorem 3.1 we have for each i 

- 1 9 -
f)=- ~f)i . 

9 i=l 
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(3.4) 

where 

(3.5) 

(3.6) Qei)=~(zei)zei)_ 3}000+Kooo zei)2) 
o no 00 0 2100 0, 

(3.7) Q(i) __ l_zeo (ze;)_ }010 zu)- }011 Z(i») I ~Z(i)2 
1 - 1001 11 1 01 100 0 111 1 '2IooIil 1 

with 

and 

Then we have the following. 

THEOREM 3.3. Assume that the conditions (A.I) to (A.5) hold. The the stochastic 

expansion of the jackknife estimator 11 of e under the ture model (e, s) is g1:ven by 

(3.8) r - Zo -.In ~ ~ (1) ",n({}-())=-1 +--h (QO+Q1)+OP 1- , 
00 n- ",11, 

and, moreover, if h=o(n), then 

r - Zo 1 ~ ~ (1) '" n({}-f)) =-1 + 1- (QO+Q1) +op 1-
00 ",n ",n 

where 

(3.9) Q __ I_(W 3}ooo+Kooo TV ) 
0- no 000 2100 00, 

(3.10) ~ _ 1 (! }010 }011) I }011 
Q1--1 I HOll--

1 
WOl--1 Wll 12112 W!1 

00 11 00 11 00 !l 

with 
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The proof is given in section 6. From the above it is seen that 

E[ -vln(8-8)] = o (l/-vln) , 

hence it is not necessary to make a bias-adjustment of 8. This is essentially different 

from that of the MLE a*. From Theorems 3.2 and 3.3 we have the following. 

THEOREM 3.4. Assume that the conditions (A .1) to (A .5) hold. If h = o(n), then the 

asymptotic deficiency of the jackknife estimator 8 under the ture model (0, ~) is given by 

whose value has been further obtained in Theorem 3.2, and so the asymptotic deficiency of the 

jackknife estimator 8 relative to the bias-adjusted M LE at under the ture model is equal to zero. 

The proof of this theorem is also given in section 6. 

REMARK 3.1. In the stochastic expansion (3.8) of the jackknife estimator 8 we 

consider the case when h=cn, with 0<c;;£1/2. Since 

-vln/(n-h)=l/{(l-c)Jn} , 

if follows from (4.2) that, under the true model (8, ~), 

j- - Zo 1 - - (1) 
v n(f}-8) = 100 + (l-c)-vln (QO+Ql) +op -vln ' 

hence the asymptotic deficiency do of 8 is given by 

under the true model. 

Then it is seen from (3.11) that, for the asymptotic deficiency d of 8 in the case h=o(n), 

for 0<c;£1/2 . 

Hence, if h=cn for 0<c;£1/2, then it follows from Theorem 3.4 that the asymptotic 

deficiency of 8 relative to the bias-adjusted MLE a~' under the true model (8, ~) is obtained 

by 

which is nonnegative, where the value of Ioo{V(Qo) + V(Ql)} is given m Theorem 3.2. 

This suggests that if the size, h, of each block of the sample in jackknifing is of the order 

n, then the jackknife estimator 8 is asymptotically worse than the bias-adjusted MLE at 
in the third order, i.e., the order n-1

, under the true model. 

4. Asymptotic deficiency of the bias-adjusted MLE relative to the jackknife estimator 

under the assumed model 

In this section we consider the assumed model (80,0). Henceforth, for simplicity 
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we denote by (e, 0) the assumed model (eo, 0) omitting the subscript zero. Let 8* be the 

MLE of e based on a sample Xl, "', X n of size n under the assumed model. We assume 

under the true (e, ~). Then we have the following. 

THEOREM 4.1. Assume that the conditions (A .1) to (A .5) hold. Then under the assumed 

model (e, 0), the MLE 8* of e has the following stochastic expansion. 

whe1'e Qo is given by (3.2), 

L=- --ZO-ZOI t (JOlO ) 
100 100 

and C=JOll t2 
2100 ' 

and op(') is taken under the distribution PO,t with the density f(x, e, ~). 

The proof is given in section 6. It is noted that the linear term, L, of Zo and ZOI 

in the order n-1
/

2 is involved in the stochastic expansion of 8*. The following additional 

assumption is made. 

(A.6) J011 = O. 

The condition (A.6) holds true if, for example, e is a location parameter, i.e. f(x, e, ~) = 

f(x-e, ~) a.a.x[fl] and j(x, ~) has the symmetric property, i.e., f(x,~) = f( -x, ~) a.a.x[fll 

Let 8~ be the MLE bias-adjusted so that 

E[ -vin(8~ -e)] =o(I/-vin) 

under the assumed model (e, 0). 

Next we consider the jackknife estimator under the assumed model (e,O). For 

each i = 1, ... , g, let 8~) be the MLE of e based on the sample of size (g-l)h, where the 

i-th block, 1\, of sjze h is deleted. For each i we put 

1tt =g8* - (g-I)8~) . 

Then the jackknife estimator is defined as 

It is easily seen that 

E[ -vin(iJ* -e)] =0(1/ -vin) 

under the assumed model, hence a bias-adjustment of 8* is unnecessary, which is essen­

tially different from that of the MLE 8*. From Theorem 4.1 and (A.6) we have for each 

i 

(4.1) 

where Z~i) and Q~i) are given in (3.5) and (3.6), respectively, and 
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LCi)=_t_(JOI0 ZCi)_ZCi)) 
lao 100 0 01. 

Then we have the following. 

THEOREM 4.2. Assume that the conditions (A .i) to (A .6) hold. Then the J'ackknife 

estimatOl', 8* of 8, has the following stochastic expansion under the assumed model (8,0). 

r - Zo...;n - 1 ( 1 ) ....; n(f}*-8) =-1 +--h Qo+ /-L+o p /- , 
00 n- ....;n ....;n 

where Qo is given by (3.9), and op(') is taken unde1' the distribution PO,f with the density f(x, 

8, ~). Moreover, if h=o(n), then 

The proof of this theorem is also given in section 6. From Theorems 4.1 and 4.2 

we have the following. 

THEOREM 4.3. Assume that the conditions (A.i) to (A.6) hold. If ~=t/-Jn and 

h=o(n), then the asymptotic deficiency, D(a, t), of the bias-adjusted MLE, 8~, relative to the 

jackknife estimator 8*, under the assumed model (8, 0), is equal to zero so that 8* has the 

same asymptotic distribution as 8~ at a point a up to the order n-1
• 

The proof is given in section 6. From the above we have the following. 

THEOREM 4.4. Assume that the conditions (A.i) to (A.5) hold. Suppose that 8 is a 

location parameter, i.e., f(x, 8, ~) = f(x-8, ~)a.a.x[!lJ and f(x, ~) has the symmetric property, 

i.e., f(x, ~)=f(-x, ~)a.a.x[fl]. If h=o(n), then the asymptotic deficiency of the MLE 8* 
(or jackknife estimator 8*) under the assumed model relative to the MLE 8* (or jackknife 

estimator 8) under the true model is given by 

(4.2) D= ~o (t2- I~J (Io01v10101- JglO) . 

The proof is given in section 6. It is noted that the symmetric property of f implies 

unnecessity of bias-corrections of MLEs. 

REMARK 4.1. In (4.2), the term t2 is derived from the asymptotic bias due to the 

"incorrectness" of the assumed model, and 1/111 represents the error due to the presence 

of unknown nuisance parameter~. Since 

IooMolol- J~lO?;.O , 

it follows that the asymptotic deficiency (4.2) can be negative for t2 <1/I11. 

REMARK 4.2. In a similar manner as the Remark 3.1, it follows from Theorems 4.2, 

4.3 and 4.4 that if h=cn for 0<c;;;;'1/2, then under the same conditions as Theorem 4.4, the 

asymptotic deficiency of the jackknife estimator 8* under the assumed model relative to 

the jackknife estimator 8 under the true model is given by 

_1 f 2 1 1 (I J2 no t - (1-c)2Ill J 00MOI01- OlO). 
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5. Example 

Let f I(X) be a standard normal density, i.e., 

for - 00 <X< 00, and fo(x) be a t-distribution with a-degrees of freedom, i.e., with the 

density 

fo(X) 
1 

(
a 1) ( X2 ) (a+1)/2 raE - - 1+-va 2'2 a 

for -oo<x<oo, where a=l, 2, "', and B(a, b) denotes the Beta function. Then we 

consider a mixturef(x, ~) of densitiesfo(x) andfl(x), defined as 

for -oo<x<oo , 

where 0;£~;£1 and C(~) is some constant with C(O) = C(l) = 1. We also have 

where 0;£~;£1 and 

It is easily seen that 

(5.1) 

for -oo<x<oo , 

r(~) 
~a7Tr( ~) , 

Suppose that Xl, "', Xn are i.i.d. random variables with the density 

(5.2) 
f (x 8)2} (a+1)(~-1)/2 

f(x-8, ~)=K(~) ll+--=;- e-~(X-IJ)2/2 

for -oo<x<oo. 

Then we shall obtain the value of the asymptotic deficiency, D, of the MLE (or jackknife 

estimator) under the assumed model (8, 0) relative to the MLE (or jackknife estimator) 

under the true model as given by 

(5.3) 

(see Theorem 4.4). 

Since 

it is noted that 

(5.4) 

(5.5) 

D= ~o (t2- I~I)(IooMolol- jglO) 

~=t/~n 

Iaa=Iaa(8, ~) =Iaa(8, 0) +0(1) (a=O, 1) , 

M010I=NIolOl(B, ~) =M010l(B, 0) +0(1) , 
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(5.6) 

In order to obtain the value of deficiency as given by (5.3), it is sufficient to calculate 

100(fJ, 0), MOlol(fJ, 0) and JOI0(fJ, 0) instead of 100 , MOlol and JOIO, respectively. It should 

be noted that these variables are independent of fJ since fJ is the location parameter. Firstly 

we can write from (5.2) 

l=l(fJ, S, x) =logf(x-fJ, s) 

=log K(s) + a; 
1 

(s -1) log (1 + (x~fJ)2 ) - ; (X-8)2 , 

which implies 

(5.7) 
()l a+1 x-fJ 

lo(fJ, S, x)= ()fJ =--a-(s-l) (X-fJ)2 +S(x-fJ) 
1 + ---'---'--

a 

and 

(5.8) 
()2l a+ 1 x-fJ 

lOl(fJ, S, x)= ()fJ()s =-~ 1+ (x-fJ)2 +x-8. 

a 

Next, we consider the case when a=3, 4, .... 

Since 

(00 (a+1 X) 1 
E[lol(fJ, O, X)]= )-00 --a-' XZ +x K(O) ( X2)Ca+1)/2dX=O, 

1+- 1+-
a a 

the orthogonality condition (AA) is satisfied. From (5.1), (5.7) and (5.8) we have 

(5.9) _ 2 _\00 (a+1)2( X)2 K(O) 
100(fJ, O)-E[{l(fJ, 0, X)} J- )-00 -a- ---------:;z- ( X2 )(a+l)/Z dX 

1+- 1+-
a a 

a+1 ---

(5.10) T 2 ~oo { a+ 1 x } 2 K(O) MOIOl(fJ,O)=E[{lol(fJ,O,X)}]= --_. 2 +x (. 2\ (a+l)/zdx 
-00 a 1 x 1 X) +- +-

a a 

_ _{ (a+1)~ar(f) 
-K(O)-/7T (a+1) 

(a+3)r -2-

10 
(a-2)(a+3) , 
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(5.11) JOlO(B, 0) =E[lOl(B, 0, X)lo(B, 0, X)] 

ex+1 --x 
roo (ex+1 x ) ex K(O) d 

= J-= --ex-' X2 +x x 2 ' ( X2 )Ca+1)/2 x 
1+- 1+- 1+-

ex ex ex 

=K(O) { 
(a+l)-Iarrr( %-) + -Iarrr( %-) } 
(ex+3)r( ex;l ) r( a;l ) 

2 
a+3 . 

From (5.3) to (5.6) and (5.9), (5.10), and (5.11) it follows that, in the asymptotic deficiency 

D, 

(5.12) 
I
· ~ (IooMolOl- J61O) 

00 

6(ex+3) 
ka (say). 

It is easily seen that ka>O for ex=3, 4, .... The numerical calculation for ka's is given 

as follows: 

Table 1. 

ex 3 4 5 6 7 8 9 10 

2.251 0.840 0.444 0.276 0.188 0.136 0.103 0.080 

ex 16 20 25 50 00 

0.024 0.017 0.011 0.003 o 

It is noted that, for ex= 1, 2, the value of (5.12) is, formally, infinity. 

Next we shall calculate Iaa(B, 0). We put k=I{(O). Since 

I~ = ( 1 )' ~ (X2) Ca+l)Ce-
1
)/2 

C(;)=l -= k1-<e-P ;2/2 1+·- dx , I -= ,.j21T a 

it follows that 

(5.13) a+1 [ ( X2)] 2 Elo log 1 +--;- , 

where ex>4 and Efo[' ] denotes the expectation under the density fo(x). From (5.13) 

and (5.14) welhave for a>4 
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(5.15) 111(8, 0) = CHO) - C~e(O) 

_ a2(a-1) (a+1)2 ( ( X2)) 
- 2(a-2)2(a-4) + 4 Vfo log 1+-;-

I a(a+1) [ ( X2)] a+1 [2 ( X2)] 
T 2(a-2) Efo log 1+-;- --2-Efo X log 1+-;- , 

where Vfo(·) denotes the variance under the density fo(x). In order to obtain the value 

of (5.15), it is necessary to get 

(5.16) 

(5.17) 

(5.18) 

Using integration by parts we have for v = 2, 3, ... 

Since 

(5.20) ~~ (1+y2)1-V log (1+y2)dy 

= ~~ (1+y2)-v log (1+y2)dy+ ~~ y2(1+y2)-V log (l+yZ)dy , 

it follows from (5.19) that 

(5.21) ~~ (1+y2)-V log (1+y2)dy 

2v-3 (00 (1+y2)1-V log (1+y2)dy __ l_(00 y2(1+y2)-vdy 
2(v-l))0 v-I )0 

2v-3 (00 (1 2) I-V 1 (1 2)d 1 B( 3 3) 
2(v-1))0 +y og +y y 2(v-l) v-"2<Z' 

Putting 

we obtain from (5.21) 
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(5.22) 2v-3 1 ( 3 3) 
Iv 2(v_l)Iv-l 2(V-1)B v-"2'"2 ' 

and also 

(5.23) I _~oo log (l+yZ) d - 1 2 
1 - 1 Z Y -7T og . 

o +y 

From (5.16), (5.22) and (5.23) we can calculate the value of 

[ ( 
XZ)] _\00 log (1+y2) _ 

(5.24) Efo log 1+-;- =2k"/ a Jo (1+yZ)Ccr+1)/zd y =2k"/ aIca+o/2 

for a=2v-1 (v = 3,4,5, ... ). From (5.20) we have 

~~ yZ(1+y2)-vlog (l+yZ)dy=Iv-l-Iv, 

hence, from (5.18) and (5.22), 

(5.25) 

for a=2v-1 (v=3, 4, 5, ... ). Putting 

we have by a similar procedure as above that 

(5.26) 

forv=2,3, "', 

By the transformation x= 1/(1+y2), we obtain 

(5.27) 

Since 

for p, q>O , 

it follows that 

(5.28) 

and also 

[)2 [f d
2 

d
2 

} (5.29) Op2 B(p, q)=B(p, q) (d~2 log r(p)- dpz log r(p+q) 

+ {d~ log r(p)- :p log r(p+q)rJ ' 

where 
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Putting 

d 
P(x) = dx log r(x) , 

we have from (5.29) and the numerical table of polygamma functions 

(5.30) 00;2 B(p, q) jV=Q=1/2 =7T[ {p,( ~) - P'(l)} + {p( ~) - P(l)} 2J 

='=;:5.2127T . 

From (5.27), (5.28) and (5.30) it follows that 

Jl= ~~ {logl(~:;2)}2 dy=; [p,( ~)-P'(l)+ {p( ~)-P(l)} 2J 
='=;:2.6067T . 

From (5.17) we obtain 

[{ ( 
X2)}2J __ (00 {log (1+y2)}2 _ 

(5.31) E10 log 1+-a -2k../ Cl Jo (1+y2)Ca+O/2 dy-2k,JaJca+D/2 

for Cl=2v-1 (v =3,4,5, ... ). If Cl=5, then we have from (5.22) to (5.27) and (5.31) 

E [X21 ( X2)J -~(1 I )-~(.l1 ~) -=-1477 f 0 og 1 + 5 - 37T 2 - 3 - 37T 8 1 - 32 -;-. , 

hence from (5.15) 

111(8,0) ='=;:27.700 

From (5.3), (5.4), (5.12) and Table 1 it follows that the asymptotic deficiency D is given by 

D= l~o (t2_j~1) (looMolOl- J61O) ='=;:0.444(t2-0.036) 

for a=5. 

6. Proofs 

Here, the proofs of theorems in the previous sections, are given. 

PROOF OF THEOREM 3.3. First we have 

- {A 1 g A } 1 g -A (6.1) h((]-8)=g h((]*-8)-g'f. h((](i)-8) + g 'f.../ n ((]Ci)_8) 

=gh(B*-8)- / n (9-1)-l ± "/n-h(BCi)-8) . Y n-h 9 i=l 

Since 
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~ ~Z(i)- / n-h Z L-! 01 - Y 01 , 
9 i=l n 

~ ~ ZCi)2_Z 3 __ 
h_W 

9 ~ 0 - 0 n-h 00, 
~ 5;ZCi)2_Z2 __ 

h_W 
9 tj 1 - 1 n-h 11, 

it follows from (3.4) to (3.7) that 

(6.2) ~ ± ,In-h(8(i)-B)=~ ± r Z~i) + 1 2 (Zai)Z~h)- 3}000+Kooo Z~i)'L) 
9 i=l 9 1:=1 l 100 ,In-hloo 2100 

+ 1 Zii)(Z&i)- }O1O Zai)- }011 Z~i»)l +op(-l-) 
,In-hlool11 100 2111 J ,J n 

=-1
1 

In-h Zo+ p,J1 h rZoZoo-~hWooo 3}000+Kooo (z~--h_Woo)l 
00 n 00 n- l n- 2100 n-h J 

1 { h }010 I h ) +,J Jl I ZlZ01---h T;J1011--1 I Z1Zo---h-W01 n- ~ 00 11 n- 00 \ n-

-~(Zi-_h wll)l +op(-l-) 
2111 n-h ) ,J n 

=~Jn-h Zo+ 1 Qo+ 1 Ql 
100 n ,In-h ,In-h 

+op( In ) , 
where Qo, Q1, Qo, and Ql are given by (3.2), (3.3), (3.9) and (3.10), respectively. From 

(6.1) and (6.2) we obtain 

If h=o(n), then 

r::: - Zo 1 - - (1) 
,y n(fJ-B)=-1 + /- (QO+Ql)+Op /- . 

00 ,y n ,y n· 

This completes the proof. 

PROOF OF THEOREM 3.4. First, it is seen from Akahira and Takeuchi (1982) and 

Akahira (1986) that the asymptotic deficiency, d, of the jackknife estimator is given by 

100 V(Qo +Ql). Since E(Qo) = E(Ql) = Cov (Qo, (1) = 0(1), it follows that 

d=loo{E(Q6)+E(Qi)} . 
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Since 

E(TV~oo) =looMoooo+ }600+0(1) , 

E(Wooo Woo) =2100}000+0(1) , E(W~o) =2no+o(1) , 

it follows that 

(6.3) E(Qg)= l~oE[(Wooo_3}0~10KoooWoorJ 
1 1 

=-14 (100M 0000- }~oo) + 214 (} 000+ KOOO)2 +0(1) , 
00 00 

Since 

E(W~1l)=100Mo101+ }~11+0(1) , 

E(WOll W01) =111}010+0(1) , E(W01W11)=0(1) 

and 

E(Woll1iVll)=2111}01l+0(1) , 

we have 

(6.4) E(Q-2) __ 1_E [(W _}010W _~T:rl )2J 
1 - no1il 011 100 01 2111 n' 11 

1 ( }~10 }Ell ) () =121 MOI01--1 -21 +0 1 00 11 00 11 

1 ( ]~10 J~ll) }~11 ( ) = 121 M0101--1 --1 + 212 12 +0 1 . 00 11 00 11 00 11 

From (6.3) and (6.4) we obtain 

d - 1 (1 }2) 1 (} I K ) 2 1 ( }glO }~11 ) }~1l I () --13 ooMoooo- 000 + 213 000, 000 +-1 I MOlol--1 --I + 21 12 ,0 1 , 
00 00 00 11 00 11 00 11 

which coincides with 100{V(Qo) + V(Ql)}, by Theorem 3.2. This completes the proof. 

PROOF OF THEOREM 4.1. Since 

we have by the Taylor expansion around (f), s) 

1 n 1 n _ " -n ~ lOl(e, g, Xi)..JnS + 2n,Jn ~ looo(B, S, Xi){,J n (fJ*_f))}2 

+ 2 ~ ~lol1(B, S, Xi)nS2- 1;_ ~lOOl(f), S, Xi)n(8*-B)s+oP( ;-) 
n n i=l n...; n i=l ...; n 
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and op(·) is taken under the distribution Po,e with the density f(x) B) ;). Letting 

we obtain 

hence 

This completes the proof. 

PROOF OF THEOREM 4.2. First we have 

From (4.1) we obtain 

(6.6) ~ ± "/n-h(fJ~)-B)=~ ± {Zai) + 2 1 " (Zai)Z~~) 
gi=l gi=l 100 Ioo"/n-h 

3looo+Kooo Z(i)2) 
2100 0 

+ t (lolo Zai)-ZW)1 +op(_l_) 
100"/11, 100 J rn 

where Qo and Qo are given by (3.2) and (3.9), respectively, and op(·) is taken under the 

distribution P8,~. From (6.5) and (6.6) it follows that 

h(B*-B)=g(IZo + ;_ Qo+ ;- L)-,J 11, 7 (g-l) f-I1 ,J11,-h Zo 
00 -v 11, -v 11, 11, - I~ l 00 11, 
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If h= o(n), then 

r::: - Zo 1 - 1 (1) 
'V' n ((}*-f}) =-1 + /- Qo+ /- L+op /- • 

00 'V' n 'V' n 'V' n 

This completes of the proof. 

PROOF OF THEOREM 4.3. First, it follows from Theorem 2.3.1 III Akahira (1986) 

that for - = <a< = 

if and only if the asymptotic deficiency D(a, t) of e~ relative to 8* is given by 

(6.7) D(a, t) =loo[V(Qo)+ V(L) -{V(Qo) + V(L)}] 

+a~{E(ZoLQo)-E(ZoLQo)} 

=loo{V (Qo) - V(Qo)}+a,J 100{E(ZoLQo) - E(ZoLQo)} . 

Since 

E(Z~Qo)=E[I~o Z~( ZoZoo 3}00~7a~000 Zg) J 
3 

=- 2100 (}ooo+Kooo)+o(l) , 

[ 
1 ( 3} ooo+Kooo 2)J E(ZOZ01QO) =E no Z OZ01 ZoZoo 2100 Zo 

= ~o {100Moo01- ~ }010(5}000+3Kooo)} +0(1) , 

it follows that 

(6.8) E(ZoLQo) = :00 E[ Zo( ~:~o ZO-ZOl)QOJ 

t 
=-13 (}ooo}olo-looMoool)+o(l) . 

00 

Since 

E(ZoWooo)=2100 }000+0(1) , E(Zn¥oo) =2no+o(1) , 

E(ZOZOl Woo~) =looMoool + }01O}000+0(1) , E(ZOZOl Woo) =2100}010 +0(1) , 

it follows that 

(6.9) E(Z LQ )=_t E[Z (}010 Z W }010(3}000+1<.000) Z W 
o 0 l~o 0 100 0 000 2100 0 00 

3}000+Kooo )J 
-ZOlWOOO+ 2100 ZOlWOO 

t 
= 1~ (}000}010-100Moool) +0(1) . 

Since V(Qo) = V((:>o) +0(1), we have from (6.4) to (6.9) D(a, t) =0, which completes the 

proof. 
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PROOF OF THEOREM 4.4. Since f has the symmetric property, it follows that 

(6.10) Jooo= JOll=MOOOl=O , 

hence, by (6.8) and (6.9), E(ZoLQo) =E(ZoLQo) =0(1). Then the asymptotic deficiency 

d*(d*) of the MLE e~ (jackknife estimator 8*) is given by 

d*=d*=Ioo{V(Qo)+ V(L)} . 

Since 

V(L)=E(L2)+0(1) 

=E[j;o (~:~o ZO-ZOlrJ +0(1) 

t2 
=-13 (1ooMolol- J~lO) +0(1) , 

00 

it follows from Theorems 3.2, 3.4 and (6.10) that the asymptotic deficiency D of the MLE 

8* (or jackknife estimator 8*) under the assumed model relative to the MLE 8* (or jack­

knife estimator 8) under the true model is given by 

D=d*-d=d*-d 

This completes the proof. 

=1oo{V(Qo) + V(L)}-1oo{V(Qo) + V(Ql)} 

=1oo{V(L)- V(QI)} 

= 1~o (tZ
- I~J (1ooMolOl- J51O) . 
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