著者別名	赤平 昌文
書籍名 | データ解析のための統計解析 | データ解析のための統計解析
発行者 | 日本統計学会 | 日本統計学会
権利 | 日本統計学会 | 日本統計学会
BEHAVIOUR OF JACKKNIFE ESTIMATORS IN TERMS OF ASYMPTOTIC DEFICIENCY UNDER TRUE AND ASSUMED MODELS

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Masafumi Akahira*

The problem on jackknifing estimators is investigated in the presence of nuisance parameters from the viewpoint of higher order asymptotics. It is shown that the asymptotic deficiency of the jackknife estimator relative to the bias-adjusted maximum likelihood estimator (MLE) is equal to zero under true and assumed models. Moreover, the asymptotic deficiency of the MLE or the jackknife estimator under the assumed model relative to that under the true model is given.

Key words: Jackknife estimator, Maximum likelihood estimator, Asymptotic deficiency, True model, Assumed Model.

1. Introduction

In higher order asymptotics the concept of asymptotic deficiency is very useful for comparing asymptotically efficient estimators (e.g. Akahira, 1986). On the other hand, resampling plans like jackknife and bootstrap have been recently studied by many authors (e.g. Hinkley 1978, Efron 1982). So, it seems to be interesting to investigate the problem on jackknifing estimators in terms of asymptotic deficiency from the viewpoint of higher order asymptotics. In one parameter case, it was shown by Akahira (1983, 1986) that the asymptotic deficiency of the jackknife estimator relative to the bias-adjusted MLE is equal to zero. And also the asymptotic deficiency of the jackknife estimator relative to the estimator in some class was given. Further, the asymptotic deficiency of the bias-adjusted MLE under the assumed model relative to that under the true model was given by Akahira (1986) under the unbiasedness condition.

In this paper, we consider the problem on jacknifing estimators in the presence of the nuisance parameter. It is shown that the jackknife estimator has asymptotic deficiency zero relative to the bias-adjusted MLE under the true and assumed models, which means that the estimators are asymptotically equivalent up to the third order in the sense that their asymptotic distributions are equal up to the order n^{-1} under the models. Further, the asymptotic deficiency of the MLE or the jackknife estimator under the assumed model relative to that under the true model is given.

2. Notations and assumptions

Suppose that X_1, \cdots, X_n are independent and identically distributed (i.i.d.) real random variables with a density function $f(x, \theta, \xi)$ with respect to a σ-finite measure μ,
where θ is a real-valued parameter to be estimated and ξ is a real-valued nuisance parameter. We assume the following conditions (A.1) to (A.5).

(A.1) The set $\{x: f(x, \theta, \xi) > 0\}$ does not depend on θ and ξ.

(A.2) For almost all $x[\mu]$, $f(x, \theta, \xi)$ is three times continuously differentiable in θ and ξ.

(A.3) For each θ and each ξ

\[0 < I_{00}(\theta, \xi) = E[(l_0(\theta, \xi, X))^2] = -E[l_{00}(\theta, \xi, X)] < \infty, \]
\[0 < I_{11}(\theta, \xi) = E[(l_1(\theta, \xi, X))^2] = -E[l_{11}(\theta, \xi, X)] < \infty, \]
where $l_0(\theta, \xi, x) = (\partial/\partial \theta) l(\theta, \xi, x)$, $l_{00}(\theta, \xi, x) = (\partial^2/\partial \theta^2) l(\theta, \xi, x)$
\[l_1(\theta, \xi, x) = (\partial/\partial \xi) l(\theta, \xi, x) \]
and $l_{11}(\theta, \xi, x) = (\partial^2/\partial \xi^2) l(\theta, \xi, x)$

with $l(\theta, \xi, x) = \log f(x, \theta, \xi)$.

(A.4) The parameters are defined to be "orthogonal" in the sense that

\[E[l_{01}(\theta, \xi, X)] = 0 \]
where $l_{01}(\theta, \xi, x) = (\partial^2/\partial \theta \partial \xi) l(\theta, \xi, x)$.

Note that the condition (A.4) is not necessarily restricted, because otherwise we can redefine the parameter $\eta = g(\theta, \xi)$ so that we have the above orthogonality.

(A.5) There exist

\[J_{000} = E[l_{00}(\theta, \xi, X) l_0(\theta, \xi, X)], \quad J_{001} = E[l_{00}(\theta, \xi, X) l_{01}(\theta, \xi, X)], \]
\[J_{010} = E[l_{01}(\theta, \xi, X) l_0(\theta, \xi, X)], \quad J_{011} = E[l_{01}(\theta, \xi, X) l_{01}(\theta, \xi, X)], \]
\[K_{00} = E[(l_0(\theta, \xi, X))^2 l_0(\theta, \xi, X)], \]
\[M_{000} = E[(l_{00}(\theta, \xi, X))^2] - I_{00}, \]
\[M_{001} = E[l_{00}(\theta, \xi, X) l_{01}(\theta, \xi, X)], \]
and the following holds.

\[E[l_{00}(\theta, \xi, X)] = -3J_{000} - K_{000}, \quad E[l_{001}(\theta, \xi, X)] = -J_{001}, \]
\[E[l_{01}(\theta, \xi, X)] = -J_{010}, \]
where

\[l_{00}(\theta, \xi, x) = (\partial^2/\partial \theta^2) l(\theta, \xi, x), \]
\[l_{001}(\theta, \xi, x) = (\partial^2/\partial \theta \partial \xi) l(\theta, \xi, x) \]
and $l_{01}(\theta, \xi, x) = (\partial^2/\partial \xi^2) l(\theta, \xi, x)$.

From the condition (A.5) it is noted that $K_{001} = J_{010} - J_{001}$. We put

\[Z_0 = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l_0(\theta, \xi, X_i), \quad Z_1 = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l_1(\theta, \xi, X_i), \]
\[Z_{00} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (l_{00}(\theta, \xi, X_i) + I_{00}), \quad Z_{01} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l_{01}(\theta, \xi, X_i), \]

3. Asymptotic deficiency of the jackknife estimator under the true model

In this section we consider the true model where $\theta = \theta_0$ and $\xi = \xi_0$. Henceforth, for simplicity we denote by (θ, ξ) the true model (θ_0, ξ_0) omitting subscript zero.

Let $\hat{\theta}_*$ and $\hat{\xi}_*$ be the maximum likelihood estimators (MLEs) of θ and ξ based on a sample X_1, \ldots, X_n of size n, respectively. Then, we have the following.

Theorem 3.1. Assume that the conditions (A.1) to (A.5) hold. Then the MLE $\hat{\theta}_*$ of θ has the following stochastic expansion under the true model (θ, ξ).
BEHAVIOUR OF JACKKNIFE ESTIMATORS

(3.1) \[\sqrt{n} (\hat{\theta}^n - \theta) = \frac{Z_0}{I_{oo}} + \frac{1}{\sqrt{n}} Q_0 + \frac{1}{\sqrt{n}} Q_1 + o\left(\frac{1}{\sqrt{n}}\right), \]

where

(3.2) \[Q_0 = \frac{1}{I_{oo}^2} \left(Z_{oo} Z_0 - \frac{3 J_{ooo} + K_{ooo}}{2 I_{oo}} \right) \]

and

(3.3) \[Q_1 = \frac{1}{I_{oo} I_{11}} \left(Z_{01} - \frac{J_{010}}{I_{oo}} Z_0 - \frac{J_{011}}{I_{11}} Z_1 \right) + \frac{J_{011}}{2 I_{oo} I_{11}} Z_1. \]

The proof is given in the paper by Akahira and Takeuchi (1982) and also in section 4.2 of the monograph by Akahira (1986). Let \(\hat{\theta}_n \) be the MLE bias-adjusted so that

\[E[\sqrt{n} (\hat{\theta}_n - \theta)] = o(1/\sqrt{n}) \]

under the true model \((\theta, \xi)\). Since the asymptotic covariance of \(Q_0 \) and \(Q_1 \) is equal to \(o(1) \), i.e., symbolically \(\text{Cov}(Q_0, Q_1) = o(1) \), we have the following.

Theorem 3.2. Assume that the conditions (A.1) to (A.5) hold. Then the asymptotic deficiency of the bias-adjusted MLE \(\hat{\theta}_n \) under the true model \((\theta, \xi)\) is given by

\[d = I_{oo} (V(Q_0) + V(Q_1)) \]

\[= \frac{1}{I_{oo}^2} \left(I_{oo} M_{ooo} - J_{0oo} \right) + \left(\frac{J_{ooo} + K_{ooo}}{2 I_{oo}} \right)^2 + \frac{1}{I_{oo} I_{11}} \left(M_{o1o} - \frac{J_{100}}{I_{oo}} - \frac{J_{111}}{I_{11}} \right) + \frac{J_{111}}{2 I_{oo} I_{11}} + o(1), \]

where \(V(\cdot) \) designates the asymptotic variance.

The proof is given in the paper by Akahira and Takeuchi (1982) and also in section 4.2 of the monograph by Akahira (1986). It is noted that the term

\[M_{o11} - (J_{0oo}^n/I_{oo}) - (J_{111}^n/I_{11}) \]

in the above asymptotic deficiency, \(d \), is equal to zero if and only if

\[l_0(\theta, \xi, x) = a_0(\theta, \xi) + a_1(\theta, \xi) l_0(\theta, \xi, x) + a_2(\theta, \xi) l_1(\theta, \xi, x) \text{ a.e.} [\mu], \]

where \(a_i(\theta, \xi) \) \((i=0, 1, 2)\) are certain functions of \(\theta \) and \(\xi \), which are independent of \(x \).

Next, we shall obtain asymptotic deficiency of the jackknife estimator of \(\theta \) in the true model \((\theta, \xi)\). We partition the sample \(X_1, \cdots, X_n \) into \(g \) blocks \(\mathcal{X}_1, \cdots, \mathcal{X}_g \) of size \(h \) each such that \(n = gh \), that is,

\(\{X_i, \cdots, X_n\} = \bigcup_{i=1}^g \mathcal{X}_i \) and \(\mathcal{X}_i \cap \mathcal{X}_j = \emptyset \) for \(i \neq j \).

For each \(i=1, \cdots, g \), we denote \(\{j: X_j \in \mathcal{X}_i\} \) by \(I_i \). Further, for each \(i=1, \cdots, g \) let \(\hat{\theta}^{(i)} \) be the MLE of \(\theta \) based on the sample of size \((g-1)h\), where the \(i \)-th block, \(\mathcal{X}_i \), of size \(h \) is deleted. For each \(i \) we put \(\hat{\theta}_i = \hat{\theta}^n - (g-1) \hat{\theta}^{(i)} \). Then we consider the jackknife estimator

\[\hat{\theta} = \frac{1}{g} \sum_{i=1}^g \hat{\theta}_i. \]

From Theorem 3.1 we have for each \(i \)
\begin{align}
\sqrt{n-h(\hat{\theta}^{(i)}-\theta)} &= \frac{Z^{(i)}}{I_{00}} + \frac{1}{\sqrt{n-h}}Q^{(i)} + \frac{1}{\sqrt{n-h}}Q^{(i)} + o_p\left(\frac{1}{\sqrt{n}}\right),
\end{align}

where

\begin{align}
Z^{(i)} &= \frac{1}{\sqrt{n-h}} \sum_{k \in I_i} l_0(\theta, \xi, X_k), \\
Q^{(i)} &= \frac{1}{I_{00}} \left(Z^{(i)} Z^{(i)} - \frac{3 J_{00} + K_{000}}{2 I_{00}} Z^{(i)} Z^{(i)} \right), \\
Q^{(i)} &= \frac{1}{I_{00} I_{11}} \left(Z^{(i)} Z^{(i)} - \frac{J_{010}}{I_{00}} Z^{(i)} - \frac{J_{011}}{I_{11}} Z^{(i)} \right) + \frac{J_{011}}{2 I_{00} I_{11}} Z^{(i)} Z^{(i)}
\end{align}

with

\begin{align}
Z^{(i)} &= \frac{1}{\sqrt{n-h}} \sum_{k \in I_i} \{l_0(\theta, \xi, X_k) + I_{00}\}, \\
Z^{(i)} &= \frac{1}{\sqrt{n-h}} \sum_{k \in I_i} l_0(\theta, \xi, X_k)
\end{align}

and

\begin{align}
Z^{(i)} &= \frac{1}{\sqrt{n-h}} \sum_{k \in I_i} l_0(\theta, \xi, X_k).
\end{align}

Then we have the following.

Theorem 3.3. Assume that the conditions (A.1) to (A.5) hold. The stochastic expansion of the jackknife estimator \(\hat{\theta} \) of \(\theta \) under the true model \((\theta, \xi)\) is given by

\begin{align}
\sqrt{n}(\hat{\theta} - \theta) &= \frac{Z}{I_{00}} + \frac{\sqrt{n}}{n-h} \left(Q_0 + Q_1 \right) + o_p\left(\frac{1}{\sqrt{n}}\right),
\end{align}

and, moreover, if \(h = o(n) \), then

\begin{align}
\sqrt{n}(\hat{\theta} - \theta) &= \frac{Z}{I_{00}} + \frac{1}{\sqrt{n}} \left(Q_0 + Q_1 \right) + o_p\left(\frac{1}{\sqrt{n}}\right)
\end{align}

where

\begin{align}
Q_0 &= \frac{1}{I_{00}} \left(W_{000} - \frac{3 J_{000} + K_{000}}{2 I_{00}} W_{00} \right), \\
Q_1 &= \frac{1}{I_{00} I_{11}} \left(W_{010} - \frac{J_{010}}{I_{00}} W_{01} - \frac{J_{011}}{I_{11}} W_{11} \right) + \frac{J_{011}}{2 I_{00} I_{11}} W_{11}
\end{align}

with

\begin{align}
W_{00} &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k \in I_i} l_0(\theta, \xi, X_k) \sum_{k \in I_f} l_0(\theta, \xi, X_k), \\
W_{01} &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k \in I_i} l_0(\theta, \xi, X_k) \sum_{k \in I_f} l_1(\theta, \xi, X_k), \\
W_{11} &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k \in I_i} l_1(\theta, \xi, X_k) \sum_{k \in I_f} l_1(\theta, \xi, X_k), \\
W_{000} &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k \in I_i} l_0(\theta, \xi, X_k) \sum_{k \in I_f} \{l_0(\theta, \xi, X_k) + I_{00}\},
\end{align}
BEHAVIOUR OF JACKKNIFE ESTIMATORS

\[W_{011} = \frac{1}{n} \sum_{i \neq j} \sum_{k \in I_i} l_i(\theta, \xi, X_k) \sum_{k \in I_f} l_{01}(\theta, \xi, X_k). \]

The proof is given in section 6. From the above it is seen that

\[E[\sqrt{n}(\hat{\theta} - \theta)] = o(1) \]

hence it is not necessary to make a bias-adjustment of \(\hat{\theta} \). This is essentially different from that of the MLE \(\hat{\theta}^* \). From Theorems 3.2 and 3.3 we have the following.

Theorem 3.4. Assume that the conditions (A.1) to (A.5) hold. If \(h = o(n) \), then the asymptotic deficiency of the jackknife estimator \(\hat{\theta} \) under the true model \((\theta, \xi)\) is given by

\[\tilde{d} = I_{00}(V(\bar{Q}_0) + V(\bar{Q}_1)) \]

whose value has been further obtained in Theorem 3.2, and so the asymptotic deficiency of the jackknife estimator \(\tilde{\theta} \) relative to the bias-adjusted MLE \(\hat{\theta}^* \) under the true model is equal to zero.

The proof of this theorem is also given in section 6.

Remark 3.1. In the stochastic expansion (3.8) of the jackknife estimator \(\tilde{\theta} \) we consider the case when \(h = cn \), with \(0 < c \leq 1/2 \). Since

\[\sqrt{n}/(n - h) = 1/(1 - c) \sqrt{n}, \]

if follows from (4.2) that, under the true model \((\theta, \xi)\),

\[\sqrt{n}(\tilde{\theta} - \theta) = \frac{Z_n}{I_{00}} + \frac{1}{(1 - c) \sqrt{n}}(\bar{Q}_0 + \bar{Q}_1) + o_p \left(\frac{1}{\sqrt{n}} \right), \]

hence the asymptotic deficiency \(\tilde{d}_e \) of \(\tilde{\theta} \) is given by

\[\tilde{d}_e = \frac{I_{00}}{(1 - c)^2} (V(\bar{Q}_0) + V(\bar{Q}_1)), \]

under the true model.

Then it is seen from (3.11) that, for the asymptotic deficiency \(\tilde{d} \) of \(\tilde{\theta} \) in the case \(h = o(n) \),

\[\tilde{d} \leq \tilde{d}_e \quad \text{for } 0 < c \leq 1/2. \]

Hence, if \(h = cn \) for \(0 < c \leq 1/2 \), then it follows from Theorem 3.4 that the asymptotic deficiency of \(\tilde{\theta} \) relative to the bias-adjusted MLE \(\hat{\theta}^* \) under the true model \((\theta, \xi)\) is obtained by

\[\tilde{d}_e = \frac{1}{(1 - c)^2 - 1} I_{00}(V(\bar{Q}_0) + V(\bar{Q}_1)), \]

which is nonnegative, where the value of \(I_{00}(V(\bar{Q}_0) + V(\bar{Q}_1)) \) is given in Theorem 3.2. This suggests that if the size, \(h \), of each block of the sample in jackknifing is of the order \(n \), then the jackknife estimator \(\tilde{\theta} \) is asymptotically worse than the bias-adjusted MLE \(\hat{\theta}^* \) in the third order, i.e., the order \(n^{-3} \), under the true model.

4. Asymptotic deficiency of the bias-adjusted MLE relative to the jackknife estimator under the assumed model

In this section we consider the assumed model \((\theta_0, 0)\). Henceforth, for simplicity
we denote by \((\theta, 0)\) the assumed model \((\theta_0, 0)\) omitting the subscript zero. Let \(\hat{\theta}_*\) be the MLE of \(\theta\) based on a sample \(X_1, \cdots, X_n\) of size \(n\) under the assumed model. We assume
\[
\xi = t/\sqrt{n}
\]
under the true \((\theta, \xi)\). Then we have the following.

Theorem 4.1. Assume that the conditions (A.1) to (A.5) hold. Then under the assumed model \((\theta, 0)\), the MLE \(\hat{\theta}_*\) of \(\theta\) has the following stochastic expansion.
\[
\sqrt{n}(\hat{\theta}_* - \theta) = \frac{Z_0}{I_{00}} + \frac{1}{\sqrt{n}}Q_0 + \frac{1}{\sqrt{n}}(L - c) + o_p\left(\frac{1}{\sqrt{n}}\right),
\]
where \(Q_0\) is given by (3.2),
\[
L = \frac{t}{I_{00}} \left(\frac{J_{010}}{I_{00}} Z_0 - Z_{01} \right) \quad \text{and} \quad c = \frac{J_{011}}{2I_{00}} t^2,
\]
and \(o_p(\cdot)\) is taken under the distribution \(P_{\theta, \xi}\) with the density \(f(x, \theta, \xi)\).

The proof is given in section 6. It is noted that the linear term, \(L\), of \(Z_0\) and \(Z_{01}\) in the order \(n^{-1/2}\) is involved in the stochastic expansion of \(\hat{\theta}_*\). The following additional assumption is made.
(A.6) \(J_{011} = 0\).

The condition (A.6) holds true if, for example, \(\theta\) is a location parameter, i.e., \(f(x, \theta, \xi) = f(x - \theta, \xi)\) a.a.\(x[\mu]\) and \(f(x, \xi)\) has the symmetric property, i.e., \(f(x, \xi) = f(-x, \xi)\) a.a.\(x[\mu]\).

Let \(\hat{\theta}_*^\circ\) be the MLE bias-adjusted so that
\[
E[\sqrt{n}(\hat{\theta}_*^\circ - \theta)] = o(1/\sqrt{n})
\]
under the assumed model \((\theta, 0)\).

Next we consider the jackknife estimator under the assumed model \((\theta, 0)\). For each \(i = 1, \ldots, g\), let \(\hat{\theta}_*^{(i)}\) be the MLE of \(\theta\) based on the sample of size \((g-1)h\), where the \(i\)-th block, \(X_i\), of size \(h\) is deleted. For each \(i\) we put
\[
\hat{\theta}_*^i = g\hat{\theta}_* - (g-1)\hat{\theta}_*^{(i)}.
\]
Then the jackknife estimator is defined as
\[
\hat{\theta}_* = \frac{g}{\sum_{i=1}^g \hat{\theta}_*^i} g .
\]
It is easily seen that
\[
E[\sqrt{n}(\hat{\theta}_* - \theta)] = o(1/\sqrt{n})
\]
under the assumed model, hence a bias-adjustment of \(\hat{\theta}_*\) is unnecessary, which is essentially different from that of the MLE \(\hat{\theta}_*\). From Theorem 4.1 and (A.6) we have for each \(i\)
\[
(4.1) \quad \sqrt{n-h}(\hat{\theta}_*^{(i)} - \theta) = \frac{Z_0^{(i)}}{I_{00}} + \frac{1}{\sqrt{n-h}}Q_0^{(i)} + \frac{1}{\sqrt{n}}L^{(i)} + o_p\left(\frac{1}{\sqrt{n}}\right),
\]
where \(Z_0^{(i)}\) and \(Q_0^{(i)}\) are given in (3.5) and (3.6), respectively, and
Then we have the following.

Theorem 4.2. Assume that the conditions (A.1) to (A.6) hold. Then the jackknife estimator, $\hat{\theta}_*$ of θ, has the following stochastic expansion under the assumed model $(\theta, 0)$.

$$\sqrt{n}(\tilde{\theta}_* - \theta) = \frac{Z_0}{I_{10}} + \frac{1}{\sqrt{n}} Q_0 + \frac{1}{\sqrt{n}} L + o_p\left(\frac{1}{\sqrt{n}}\right),$$

where Q_0 is given by (3.9), and $o_p(\cdot)$ is taken under the distribution $P_{\theta, t}$ with the density $f(x, \theta, \xi)$. Moreover, if $h = o(n)$, then

$$\sqrt{n}(\tilde{\theta}_* - \theta) = \frac{Z_0}{I_{10}} + \frac{1}{\sqrt{n}} Q_0 + \frac{1}{\sqrt{n}} L + o_p\left(\frac{1}{\sqrt{n}}\right).$$

The proof of this theorem is also given in section 6. From Theorems 4.1 and 4.2 we have the following.

Theorem 4.3. Assume that the conditions (A.1) to (A.6) hold. If $\xi = t/\sqrt{n}$ and $h = o(n)$, then the asymptotic deficiency, $D(a, t)$, of the bias-adjusted MLE, $\hat{\theta}_a$, relative to the jackknife estimator $\tilde{\theta}_*$, under the assumed model $(\theta, 0)$, is equal to zero so that $\tilde{\theta}_*$ has the same asymptotic distribution as $\hat{\theta}_a$ at a point a up to the order n^{-1}.

The proof is given in section 6. From the above we have the following.

Theorem 4.4. Assume that the conditions (A.1) to (A.5) hold. Suppose that θ is a location parameter, i.e., $f(x, \theta, \xi) = f(x - \theta, \xi)a.a.x[\mu]$ and $f(x, \xi)$ has the symmetric property, i.e., $f(x, \xi) = f(-x, \xi)a.a.x[\mu]$. If $h = o(n)$, then the asymptotic deficiency of the MLE $\hat{\theta}_*$ (or jackknife estimator $\tilde{\theta}_*$) under the assumed model relative to the MLE $\hat{\theta}_*$ (or jackknife estimator $\tilde{\theta}_*$) under the true model is given by

$$D = \frac{1}{I_{10}} \left(t^2 - \frac{1}{I_{11}} \right) \left(I_{00} M_{010} - J_{10} \right).$$

The proof is given in section 6. It is noted that the symmetric property of f implies unnecessity of bias-corrections of MLEs.

Remark 4.1. In (4.2), the term t^2 is derived from the asymptotic bias due to the "incorrectness" of the assumed model, and $1/I_{11}$ represents the error due to the presence of unknown nuisance parameter ξ. Since

$$I_{00} M_{010} - J_{10} \geq 0,$$

it follows that the asymptotic deficiency (4.2) can be negative for $t^2 < 1/I_{11}$.

Remark 4.2. In a similar manner as the Remark 3.1, it follows from Theorems 4.2, 4.3 and 4.4 that if $h = cn$ for $0 < c \leq 1/2$, then under the same conditions as Theorem 4.4, the asymptotic deficiency of the jackknife estimator $\tilde{\theta}_*$ under the assumed model relative to the jackknife estimator $\tilde{\theta}_*$ under the true model is given by

$$\frac{1}{I_{10}} \left(t^2 - \frac{1}{(1-c)^2 I_{11}} \right) \left(I_{00} M_{010} - J_{10} \right).$$
5. Example

Let \(f_1(x) \) be a standard normal density, i.e.,
\[
 f_1(x) = (1/\sqrt{2\pi})e^{-x^2/2}
\]
for \(-\infty < x < \infty\), and \(f_0(x) \) be a t-distribution with \(\alpha \)-degrees of freedom, i.e., with the density
\[
 f_0(x) = \frac{1}{\sqrt{\alpha B\left(\frac{\alpha}{2}, \frac{1}{2}\right)}} \left(1 + \frac{x^2}{\alpha}\right)^{-\left(\frac{\alpha+1}{2}\right)}
\]
for \(-\infty < x < \infty\), where \(\alpha = 1, 2, \ldots \), and \(B(a, b) \) denotes the Beta function. Then we consider a mixture \(f(x, \xi) \) of densities \(f_0(x) \) and \(f_1(x) \), defined as
\[
 f(x, \xi) = C(\xi)\{f_1(x)\}^{1-t}\{f_0(x)\}^t \quad \text{for} \quad -\infty < x < \infty ,
\]
where \(0 \leq \xi \leq 1 \) and \(C(\xi) \) is some constant with \(C(0) = C(1) = 1 \). We also have
\[
 f(x, \xi) = K(\xi)\left(1 + \frac{x^2}{\alpha}\right)^{\left(\xi+1\right)\left(\xi-1\right)/2} e^{-\xi x^2/2} \quad \text{for} \quad -\infty < x < \infty ,
\]
where \(0 \leq \xi \leq 1 \)

\[
 K(\xi) = C(\xi)\left(1/\sqrt{2\pi}\right)^{t}\left(\sqrt{\alpha B(\alpha/2, 1/2)}\right)^{1-t}.
\]

It is easily seen that
\[
 (5.1) \quad K(0) = \frac{1}{\sqrt{\alpha B\left(\frac{\alpha}{2}, \frac{1}{2}\right)}} \frac{\Gamma\left(\frac{\alpha+1}{2}\right)}{\sqrt{\alpha \pi \Gamma\left(\frac{\alpha}{2}\right)}} = \frac{\Gamma\left(\frac{\alpha+1}{2}\right)}{\sqrt{\alpha \pi \Gamma\left(\frac{\alpha}{2}\right)}} ,
\]

Suppose that \(X_1, \ldots, X_n \) are i.i.d. random variables with the density
\[
 f(x - \theta, \xi) = K(\xi)\left(1 + \frac{(x - \theta)^2}{\alpha}\right)^{\left(\xi+1\right)\left(\xi-1\right)/2} e^{-\xi(x - \theta)^2/2}
\]
for \(-\infty < x < \infty\).

Then we shall obtain the value of the asymptotic deficiency, \(D \), of the MLE (or jackknife estimator) under the assumed model \((\theta, 0)\) relative to the MLE (or jackknife estimator) under the true model as given by
\[
 (5.3) \quad D = \frac{1}{I_{00}} \left(t^2 - \frac{1}{1_t}\right)\{I_{00}M_{0101} - J_{00}\}
\]
(see Theorem 4.4).

Since
\[
 \xi = t/\sqrt{n}
\]
it is noted that
\[
 (5.4) \quad I_{00} = I_{00}(\theta, \xi) = I_{00}(\theta, 0) + o(1) \quad (\alpha = 0, 1) ,
\]
\[
 (5.5) \quad M_{0101} = M_{0101}(\theta, \xi) = M_{0101}(\theta, 0) + o(1) ,
\]

-241-
In order to obtain the value of deficiency as given by (5.3), it is sufficient to calculate $I_{01}(\theta, 0)$, $M_{011}(\theta, 0)$ and $J_{010}(\theta, 0)$ instead of I_{00}, M_{010} and J_{010}, respectively. It should be noted that these variables are independent of θ since θ is the location parameter. Firstly we can write from (5.2)

$$l(l(\theta, \xi, x) = \log f(x-\theta, \xi)$$

$$= \log K(\xi) + \frac{\alpha + 1}{2} (\xi - 1) \log \left(1 + \frac{1}{\alpha} \frac{(x-\theta)^2}{\alpha}\right) - \frac{\xi}{2} (x-\theta)^2,$$

which implies

$$l_0(\theta, \xi, x) = \frac{\partial l}{\partial \theta} = -\frac{\alpha + 1}{\alpha} (\xi - 1) \frac{x-\theta}{1 + \frac{(x-\theta)^2}{\alpha}} + \xi (x-\theta),$$

and

$$l_{11}(\theta, \xi, x) = \frac{\partial^2 l}{\partial \theta \partial \xi} = -\frac{\alpha + 1}{\alpha} \frac{x-\theta}{1 + \frac{(x-\theta)^2}{\alpha}} + x - \theta.$$

Next, we consider the case when $\alpha = 3, 4, \ldots$. Since

$$E[l_0(\theta, 0, X)] = \int_{-\infty}^{\infty} \left(-\frac{\alpha + 1}{\alpha} \frac{x}{1 + \frac{x^2}{\alpha}} + x \right) K(0) \frac{1}{\left(1 + \frac{x^2}{\alpha} \right)^{(\alpha + 1)/2}} dx = 0,$$

the orthogonality condition (A.4) is satisfied. From (5.1), (5.7) and (5.8) we have

$$I_{00}(\theta, 0) = E[l(\theta, 0, X)] = \int_{-\infty}^{\infty} \left(-\frac{\alpha + 1}{\alpha} \frac{x}{1 + \frac{x^2}{\alpha}} + x \right) K(0) \frac{1}{\left(1 + \frac{x^2}{\alpha} \right)^{(\alpha + 1)/2}} dx$$

$$= K(0) \frac{(\alpha + 1)^2}{\alpha} \int_{-\infty}^{\infty} \frac{x^2}{\left(1 + \frac{x^2}{\alpha} \right)^{(\alpha + 1)/2}} dx$$

$$= K(0) \frac{(\alpha + 1) \sqrt{\pi\alpha} \Gamma\left(\frac{\alpha}{2}\right)}{(\alpha + 3) \Gamma\left(\frac{\alpha + 1}{2}\right)}$$

$$= \frac{\alpha + 1}{\alpha + 3}.$$

$$M_{010}(\theta, 0) = E[l_1(l(\theta, 0, X))] = \int_{-\infty}^{\infty} \left(-\frac{\alpha + 1}{\alpha} \frac{x}{1 + \frac{x^2}{\alpha}} + x \right)^2 K(0) \frac{1}{\left(1 + \frac{x^2}{\alpha} \right)^{(\alpha + 1)/2}} dx$$

$$= K(0) \sqrt{\pi} \frac{(\alpha + 1) \sqrt{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}{(\alpha + 3) \Gamma\left(\frac{\alpha + 1}{2}\right)} - \frac{2 \sqrt{\pi} \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{\alpha + 1}{2}\right)} + \frac{\alpha \sqrt{\alpha} \Gamma\left(\frac{\alpha - 2}{2}\right)}{2 \Gamma\left(\frac{\alpha + 1}{2}\right)}$$

$$= \frac{10}{(\alpha - 2)(\alpha + 3)}.$$
From (5.3) to (5.6) and (5.9), (5.10), and (5.11) it follows that, in the asymptotic deficiency D,

\begin{equation}
\frac{1}{P_\theta} (I_{\theta \theta} M_{\theta \theta} - I_{\theta \theta}) = \frac{6(\alpha + 3)}{(\alpha + 1)^2(\alpha - 2)} = k_\alpha \quad \text{(say)}.
\end{equation}

It is easily seen that $k_\alpha > 0$ for $\alpha = 3, 4, \cdots$. The numerical calculation for k_α's is given as follows:

<table>
<thead>
<tr>
<th>α</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_α</td>
<td>2.251</td>
<td>0.840</td>
<td>0.444</td>
<td>0.276</td>
<td>0.188</td>
<td>0.136</td>
<td>0.103</td>
<td>0.080</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>50</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_α</td>
<td>0.024</td>
<td>0.017</td>
<td>0.011</td>
<td>0.003</td>
<td>0</td>
</tr>
</tbody>
</table>

It is noted that, for $\alpha = 1, 2$, the value of (5.12) is, formally, infinity.

Next we shall calculate $I_{\theta \theta}(\theta, 0)$. We put $k = K(0)$. Since

\begin{equation}
C(\xi) = \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \right)^t \left(t^{\alpha/2} \right) \left(1 + \frac{x^2}{\alpha} \right)^{\alpha/2} d\xi,
\end{equation}

it follows that

\begin{align*}
(5.13) \quad & C_t(0) = \frac{\partial}{\partial \xi^t} C(\xi) \bigg|_{t=0} = \log k \sqrt{2\pi} + \frac{\alpha}{2(\alpha - 2)} - \frac{\alpha + 1}{2} E_f \left[\log \left(1 + \frac{X^2}{\alpha} \right) \right], \\
(5.14) \quad & C_{tt}(0) = \frac{\partial^2}{\partial \xi^t \partial \xi^t} C(\xi) \bigg|_{t=0} = \left(\log k \sqrt{2\pi} \right)^2 - \frac{\alpha^2}{4(\alpha - 2)^2} + \frac{\alpha^2}{\alpha - 2} \log k \sqrt{2\pi} - \frac{(\alpha + 1)^2}{4} E_f \left[\left(\log \left(1 + \frac{X^2}{\alpha} \right) \right)^2 \right] + \frac{\alpha + 1}{2} E_f \left[X^2 \log \left(1 + \frac{X^2}{\alpha} \right) \right] \\
& - (\alpha + 1) \left(\log k \sqrt{2\pi} + \frac{\alpha}{\alpha - 2} \right) E_f \left[\log \left(1 + \frac{X^2}{\alpha} \right) \right] + \frac{\alpha + 1}{2} \left[E_f \left[\log \left(1 + \frac{X^2}{\alpha} \right) \right] \right],
\end{align*}

where $\alpha > 4$ and $E_f[\cdot]$ denotes the expectation under the density $f_\theta(x)$. From (5.13) and (5.14) we have for $\alpha > 4$.

\[-243 - \]
(5.15) \[I_{11}(\theta) = C_1(0) - C_{11}(0) \]
\[= \frac{\alpha^2(\alpha-1)}{2(\alpha-2)^3(\alpha-4)} + \frac{(\alpha+1)^2}{4} V_{f_0} \left(\log \left(\frac{1+X^2}{\alpha} \right) \right) \]
\[+ \frac{\alpha(\alpha+1)}{2(\alpha-2)} E_{f_0} \left[\log \left(\frac{1+X^2}{\alpha} \right) \right] - \frac{\alpha+1}{2} E_{f_0} \left[X^2 \log \left(\frac{1+X^2}{\alpha} \right) \right] , \]

where \(V_{f_0}(\cdot) \) denotes the variance under the density \(f_0(x) \). In order to obtain the value of (5.15), it is necessary to get

(5.16) \[E_{f_0} \left[\log \left(\frac{1+X^2}{\alpha} \right) \right] = \int_{-\infty}^{\infty} k \log \left(\frac{1+x^2}{\alpha} \right) \left(1+x^2 \right)^{(\alpha+1)/2} dx , \]

(5.17) \[E_{f_0} \left[\left\{ \log \left(\frac{1+X^2}{\alpha} \right) \right\}^2 \right] = \int_{-\infty}^{\infty} k \left\{ \log \left(\frac{1+x^2}{\alpha} \right) \right\}^2 \left(1+x^2 \right)^{(\alpha+1)/2} dx \]

(5.18) \[E_{f_0} \left[X^2 \log \left(\frac{1+X^2}{\alpha} \right) \right] = \int_{-\infty}^{\infty} k x^2 \log \left(\frac{1+x^2}{\alpha} \right) \left(1+x^2 \right)^{(\alpha+1)/2} dx . \]

Using integration by parts we have for \(v = 2, 3, \ldots \)

(5.19) \[\int_{0}^{\infty} y^v (1+y^2)^{-v} \log (1+y^2) dy \]
\[= \frac{1}{2(v-1)} \int_{0}^{\infty} (1+y^2)^{-v} \log (1+y^2) dy + \frac{1}{v-1} \int_{0}^{\infty} y^v (1+y^2)^{-v} dy . \]

Since

(5.20) \[\int_{0}^{\infty} (1+y^2)^{-v} \log (1+y^2) dy \]
\[= \int_{0}^{\infty} (1+y^2)^{-v} \log (1+y^2) dy + \int_{0}^{\infty} y^v (1+y^2)^{-v} \log (1+y^2) dy , \]

it follows from (5.19) that

(5.21) \[\int_{0}^{\infty} (1+y^2)^{-v} \log (1+y^2) dy \]
\[= \frac{2v-3}{2(v-1)} \int_{0}^{\infty} (1+y^2)^{-v} \log (1+y^2) dy - \frac{1}{v-1} \int_{0}^{\infty} y^v (1+y^2)^{-v} dy \]
\[= \frac{2v-3}{2(v-1)} \int_{0}^{\infty} (1+y^2)^{-v} \log (1+y^2) dy - \frac{1}{2(v-1)} B \left(v-\frac{3}{2}, \frac{3}{2} \right) . \]

Putting

\[I_v = \int_{0}^{\infty} (1+y^2)^{-v} \log (1+y^2) dy , \]

we obtain from (5.21)
\[
I_v = \frac{2v - 3}{2(v-1)} I_{v-1} - \frac{1}{2(v-1)} B \left(v - \frac{3}{2}, \frac{3}{2} \right),
\]
and also
\[
I_1 = \int_0^\infty \frac{\log (1+y^2)}{1+y^2} dy = \pi \log 2.
\]

From (5.16), (5.22) and (5.23) we can calculate the value of
\[
E_f \left[\log \left(1 + \frac{X^2}{\alpha} \right) \right] = 2k \sqrt{\alpha} \int_0^\infty \frac{\log (1+y^2)}{(1+y^2)^{(v+\frac{1}{2})/2}} dy = 2k \sqrt{\alpha} I_{(v+\frac{1}{2})/2}
\]
for \(\alpha = 2v - 1 \) \((v = 3, 4, 5, \cdots) \). From (5.20) we have
\[
\int_0^\infty y^2(1+y^2)^{-v} \log (1+y^2) dy = I_{v-1} - I_v,
\]
hence, from (5.18) and (5.22),
\[
E_f \left[X^2 \log \left(1 + \frac{X^2}{\alpha} \right) \right] = 2k \sqrt{\alpha} \int_0^\infty \frac{y^2 \log (1+y^2)}{(1+y^2)^{(v+\frac{1}{2})/2}} dy
\]
\[
= 2k \sqrt{\alpha} (I_{(v+\frac{1}{2})/2} - I_{(v+1)/2})
\]
for \(\alpha = 2v - 1 \) \((v = 3, 4, 5, \cdots) \). Putting
\[
J_v = \int_0^\infty (1+y^2)^{-v} \log (1+y^2) dy \quad (v = 1, 2, \cdots)
\]
we have by a similar procedure as above that
\[
J_v = \frac{2v - 3}{2(v-1)} J_{v-1} - \frac{1}{v-1} B \left(v - \frac{3}{2}, \frac{3}{2} \right)
\]
for \(v = 2, 3, \cdots \).

By the transformation \(x = 1/(1+y^2) \), we obtain
\[
J_1 = \frac{1}{2} \int_0^1 x^{-1/2} (1-x)^{-1/2} (\log x)^2 dx.
\]

Since
\[
B(p, q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx \quad \text{for } p, q > 0,
\]
it follows that
\[
\frac{\partial^2}{\partial p^2} B(p, q) = \int_0^1 x^{p-1} (1-x)^{q-1} (\log x)^2 dx,
\]
and also
\[
\frac{\partial^2}{\partial p^2} B(p, q) = B(p, q) \left[\frac{d^2}{dp^2} \log \Gamma(p) - \frac{d^2}{dp^2} \log \Gamma(p+q) \right]
\]
\[
+ \left(\frac{d}{dp} \log \Gamma(p) - \frac{d}{dp} \log \Gamma(p+q) \right)^2,
\]
where

\[-245-\]
Putting

\[\Psi(x) = \frac{d}{dx} \log \Gamma(x) , \]

we have from (5.29) and the numerical table of polygamma functions

\[\frac{\partial^2}{\partial p^2} B(p, q) \bigg|_{p=1, q=1/2} = \pi \left[\left\{ \Psi' \left(\frac{1}{2} \right) \right\} - \Psi' \left(1 \right) \right] + \left\{ \Psi' \left(\frac{1}{2} \right) - \Psi \left(1 \right) \right\} \]

\(\equiv 5.212 \pi . \)

From (5.27), (5.28) and (5.30) it follows that

\[J_L = \int_0^\infty \frac{\log \left(1 + y^2 \right)}{1 + y^2} dy = \frac{\pi}{2} \left[\Psi' \left(\frac{1}{2} \right) - \Psi' \left(1 \right) + \left\{ \Psi' \left(\frac{1}{2} \right) - \Psi \left(1 \right) \right\} \right] \]

\(\equiv 2.606 \pi . \)

From (5.17) we obtain

\[E_{x_0} \left[\left\{ \log \left(1 + \frac{X^2}{\alpha} \right) \right\} \right] = 2k \sqrt{\alpha} \int_0^\infty \frac{\log \left(1 + y^2 \right)^2}{1 + y^2} dy = 2k \sqrt{\alpha} J_{(x+1)/2} \]

for \(\alpha = 2v - 1 \) \((v = 3, 4, 5, \ldots)\). If \(\alpha = 5 \), then we have from (5.22) to (5.27) and (5.31)

\[E_{x_0} \left[\log \left(1 + \frac{X^2}{5} \right) \right] = \frac{16}{3\pi} J_3 = \frac{16}{3\pi} \left(\frac{3}{8} I_1 - \frac{7}{32} \pi \right) \equiv 0.220 , \]

\[E_{x_0} \left[X^2 \log \left(1 + \frac{X^2}{5} \right) \right] = \frac{80}{3\pi} (I_2 - I_1) = \frac{80}{3\pi} \left(\frac{1}{8} J_1 - \frac{\pi}{32} \right) \equiv 1.477 , \]

\[E_{x_0} \left[\left\{ \log \left(1 + \frac{X^2}{5} \right) \right\} \right] = \frac{16}{3\pi} J_3 = \frac{16}{3\pi} \left(\frac{3}{8} J_1 - \frac{7}{16} \pi \right) \equiv 2.879 \]

hence from (5.15)

\[I_{(\theta, 0)} \equiv 27.700 \]

From (5.3), (5.4), (5.12) and Table 1 it follows that the asymptotic deficiency \(D \) is given by

\[D = \frac{1}{I_{(\theta)}^2} \left(I_{(\theta)} M_{(\theta)} - J_{(\theta)} \right) \equiv 0.444 (t^2 - 0.036) \]

for \(\alpha = 5 \).

6. Proofs

Here, the proofs of theorems in the previous sections, are given.

PROOF OF THEOREM 3.3. First we have

\[\sqrt{n} (\hat{\theta} - \theta) = \frac{1}{g} \sum_{i=1}^{g} \sqrt{n} (\hat{\theta}^{(i)} - \theta) + \frac{1}{g} \sum_{i=1}^{g} \sqrt{n} (\hat{\theta}^{(i)} - \theta) \]

\[= g \sqrt{n} (\hat{\theta}^* - \theta) - \sqrt{n} (g-1) \frac{1}{g} \sum_{i=1}^{g} \sqrt{n} (\hat{\theta}^{(i)} - \theta) . \]

Since
it follows from (3.4) to (3.7) that

\[
\frac{1}{g} \sum_{i=1}^{g} \sqrt{n-h}(\hat{\theta}^{(i)} - \theta) = \frac{1}{g} \sum_{i=1}^{g} \left(\frac{Z_{ii}^{(i)}}{I_{00}} \right) + \frac{1}{\sqrt{n-h} I_{00}} \left(Z_{ii}^{(i)} - \frac{3 J_{000} + K_{000}}{2 I_{00}} Z_{ii}^{(i)} \right) \\
+ \frac{1}{\sqrt{n-h} I_{00} I_{11}} Z_{ii}^{(i)} \left(Z_{ii}^{(i)} - \frac{J_{010} Z_{ii}^{(i)} - J_{011} Z_{ii}^{(i)}}{2 I_{11}} \right) + o_p(1)
\]

\[
= \frac{1}{I_{00}} \sqrt{n-h} Z_o + \frac{1}{I_{00} \sqrt{n-h}} \left(Z_o Z_{00} - \frac{3 J_{000} + K_{000}}{2 I_{00}} Z_o W_{00} \right) \\
+ \frac{1}{\sqrt{n-h} I_{00} I_{11}} \left(Z_o Z_{01} - \frac{3 J_{010} Z_o - J_{011} Z_o}{2 I_{11}} \right) + o_p(1)
\]

\[
= \frac{1}{I_{00}} \sqrt{n-h} Z_o + \frac{1}{\sqrt{n-h}} Q_o + \frac{1}{\sqrt{n-h}} Q_i - \frac{h}{(n-h)^{3/2}} \tilde{Q}_o - \frac{h}{(n-h)^{3/2}} \tilde{Q}_i
\]

\[+ o_p\left(\frac{1}{\sqrt{n}} \right),
\]

where $Q_o, Q_i, \tilde{Q}_o,$ and \tilde{Q}_i are given by (3.2), (3.3), (3.9) and (3.10), respectively. From (6.1) and (6.2) we obtain

\[
\sqrt{n}(\hat{\theta} - \theta) = g \left(\frac{Z_o}{I_{00}} + \frac{1}{\sqrt{n}} Q_o + \frac{1}{\sqrt{n}} Q_i \right) - \sqrt{\frac{n}{n-h}} (g-1) \left(\frac{1}{I_{00}} \sqrt{n-h} Z_o \\
+ \frac{1}{\sqrt{n-h}} (Q_o + Q_i) - \frac{h}{(n-h)^{3/2}} (\tilde{Q}_o + \tilde{Q}_i) \right) + o_p(1)
\]

\[
= \frac{Z_o}{I_{00}} + \sqrt{\frac{n}{n-h}} (Q_o + Q_i) + o_p\left(\frac{1}{\sqrt{n}} \right).
\]

If $h = o(n)$, then

\[
\sqrt{n}(\hat{\theta} - \theta) = \frac{Z_o}{I_{00}} + \frac{1}{\sqrt{n}} (Q_o + Q_i) + o_p\left(\frac{1}{\sqrt{n}} \right).
\]

This completes the proof.

Proof of Theorem 3.4. First, it is seen from Akahira and Takeuchi (1982) and Akahira (1986) that the asymptotic deficiency, \tilde{d}, of the jackknife estimator is given by $I_{00} V(\tilde{Q}_o + \tilde{Q}_i)$. Since $E(\tilde{Q}_o) = E(\tilde{Q}_i) = \text{Cov}(\tilde{Q}_o, \tilde{Q}_i) = o(1)$, it follows that

\[
\tilde{d} = I_{00} \left\{ E(\tilde{Q}_o^2) + E(\tilde{Q}_i^2) \right\}.
\]
Since
\[E(W_{oo0}) = I_{oo}M_{oo00} + J_{oo0}^2 + o(1) , \]
\[E(W_{00o}W_{oo}) = 2I_{oo}J_{oo0} + o(1) , \quad E(W_{oo}^2) = 2I_{oo} + o(1) , \]
it follows that
\[
E(\hat{Q}_0) = \frac{1}{I_{oo}} E\left[\left(W_{oo0} - \frac{3J_{oo0} + K_{oo0}}{2I_{oo}} W_{oo} \right)^2 \right]
\]
\[= \frac{1}{I_{oo}} \left(I_{oo}M_{oo00} - J_{oo0}^2 \right) + \frac{1}{2I_{oo}}(J_{oo0} + K_{oo0})^2 + o(1) , \]

Since
\[E(W_{d0}) = I_{oo}M_{001} + J_{d0}^2 + o(1) , \quad E(W_{d0}) = I_{oo}I_{11} + o(1) , \]
\[E(W_{d1}) = 2I_{11} + o(1) , \quad E(W_{011}W_{01}) = I_{11}J_{010} + o(1) , \quad E(W_{001}W_{11}) = o(1) \]
and
\[E(W_{011}W_{11}) = 2I_{11}J_{010} + o(1) , \]
we have
\[
E(\hat{Q}_1) = \frac{1}{I_{oo}I_{11}} E\left[\left(W_{011} - \frac{J_{010} W_{01} + J_{011} W_{11}}{2I_{11}} \right)^2 \right]
\]
\[= \frac{1}{I_{oo}I_{11}} \left(M_{0101} - J_{010}^2 - J_{011}^2 \right) + o(1) \]
\[= \frac{1}{I_{oo}I_{11}} \left(M_{0101} - J_{010}^2 - J_{011}^2 \right) + J_{011}^2 + o(1) . \]

From (6.3) and (6.4) we obtain
\[\hat{d} = \frac{1}{I_{oo}} \left(I_{oo}M_{oo00} - J_{oo0}^2 \right) + \frac{1}{2I_{oo}}(J_{oo0} + K_{oo0})^2 + \frac{1}{I_{oo}I_{11}} \left(M_{0101} - J_{010}^2 - J_{011}^2 \right) + J_{011}^2 + o(1) , \]
which coincides with \(J_{000}(V(Q_0) + V(Q_1)) \), by Theorem 3.2. This completes the proof.

Proof of Theorem 4.1. Since
\[\sum_{i=1}^{n} l_0(\hat{\theta}, 0, X_i) = 0 , \]
we have by the Taylor expansion around \((\theta, \xi)\)
\[
0 = \frac{1}{\sqrt{n}} \left(\sum_{i=1}^{n} l_0(\theta, \xi, X_i) + \frac{1}{n} \sum_{i=1}^{n} l_{00}(\theta, \xi, X_i) \sqrt{n} (\hat{\theta}_x - \theta) \right)
\]
\[- \frac{1}{n} \sum_{i=1}^{n} l_{01}(\theta, \xi, X_i) \sqrt{n} \xi + \frac{1}{2n\sqrt{n}} \sum_{i=1}^{n} l_{000}(\theta, \xi, X_i) (\sqrt{n} (\hat{\theta}_x - \theta))^2 \]
\[+ \frac{1}{2n\sqrt{n}} \sum_{i=1}^{n} l_{011}(\theta, \xi, X_i) n\xi^2 - \frac{1}{n\sqrt{n}} \sum_{i=1}^{n} l_{001}(\theta, \xi, X_i) n(\hat{\theta}_x - \theta) \xi + o_n \left(\frac{1}{\sqrt{n}} \right) \]
\[= Z_0 + \frac{1}{\sqrt{n}} (Z_{00} - \sqrt{n} I_{10}) \sqrt{n} (\hat{\theta}_x - \theta) - \frac{1}{\sqrt{n}} Z_{10} \sqrt{n} \xi \]
\[- \frac{1}{2\sqrt{n}} (3 J_{000} + K_{000}) (\sqrt{n} (\hat{\theta}_x - \theta))^2 - \frac{J_{011}}{2\sqrt{n}} n\xi^2 \]
\[- 248 \]
and $o_p(\cdot)$ is taken under the distribution $P_{k,t}$ with the density $f(x, \theta, \xi)$. Letting
\[\xi = t/\sqrt{n}, \]
we obtain
\[
0 = Z_0 + \frac{1}{\sqrt{n}} (Z_{00} - \sqrt{n} I_{00}) \sqrt{n} (\hat{\theta}_* - \theta) - \frac{t}{\sqrt{n}} Z_{01}
\]
\[-\frac{1}{2\sqrt{n}} (3J_{000} + K_{000}) (\sqrt{n} (\hat{\theta}_* - \theta))^2 - \frac{J_{010}}{2\sqrt{n}} t^2 + \frac{J_{010}}{\sqrt{n}} \sqrt{n} (\hat{\theta}_* - \theta) + o_p \left(\frac{1}{\sqrt{n}} \right),
\]
hence
\[
\sqrt{n} (\hat{\theta}_* - \theta) = \frac{Z_0}{I_{00}} + \frac{1}{I_{00}\sqrt{n}} Z_0 Z_{00} - \frac{3J_{000} + K_{000}}{2I_{00}\sqrt{n}} Z_{01}^2
\]
\[+ \frac{t}{I_{00}\sqrt{n}} \left(\frac{J_{010}}{I_{00}} Z_0 - Z_{01} \right) + o_p \left(\frac{1}{\sqrt{n}} \right).
\]
This completes the proof.

Proof of Theorem 4.2. First we have
\[
\sqrt{n} (\hat{\theta}_* - \theta) = g \left(\sqrt{n} (\hat{\theta}_* - \theta) - \frac{1}{g} \sum_{i=1}^{\varphi} \sqrt{n}(\tilde{\theta}_i - \theta) \right) + \frac{1}{g} \sum_{i=1}^{\varphi} \sqrt{n}(\tilde{\theta}_i - \theta)
\]
\[= g \sqrt{n} (\hat{\theta}_* - \theta) - \sqrt{\frac{1}{n-h}(g-1)} \frac{1}{g} \sum_{i=1}^{\varphi} \sqrt{n-h}(\tilde{\theta}_i - \theta).
\]
From (4.1) we obtain
\[
\frac{1}{g} \sum_{i=1}^{\varphi} \sqrt{n-h}(\tilde{\theta}_i - \theta) = \frac{1}{g} \sum_{i=1}^{\varphi} \left(\frac{Z_i^2}{I_{00}} + \frac{1}{I_{00}\sqrt{n-h}} \left(Z_i^2 Z_{00} - \frac{3J_{000} + K_{000}}{2I_{00}} Z_{01}^2 \right) \right)
\]
\[+ \frac{t}{I_{00}\sqrt{n}} \left(\frac{J_{010}}{I_{00}} Z_i^2 - Z_{01} \right) + o_p \left(\frac{1}{\sqrt{n}} \right)
\]
\[= \frac{1}{I_{00}} \sqrt{n-h} Z_0 + \frac{1}{I_{00}\sqrt{n-h}} \left(Z_0 Z_{00} - \frac{h}{n-h} W_{000} \right)
\]
\[-\frac{3J_{000} + K_{000}}{2I_{00}} \left(Z_i^2 - \frac{h}{n-h} W_{00} \right) + \frac{t}{I_{00}\sqrt{n}} \left(\frac{J_{010}}{I_{00}} \sqrt{n-h} Z_0 \right)
\]
\[-\sqrt{n-h} Z_{01} + o_p \left(\frac{1}{\sqrt{n}} \right)
\]
\[= \frac{1}{I_{00}} \sqrt{n-h} Z_0 + \frac{1}{\sqrt{n-h}} Q_0 - \frac{h}{(n-h)^{1/2}} \tilde{Q}_0 + \sqrt{n-h} L + o_p \left(\frac{1}{\sqrt{n}} \right),
\]
where Q_0 and \tilde{Q}_0 are given by (3.2) and (3.9), respectively, and $o_p(\cdot)$ is taken under the distribution $P_{k,t}$. From (6.5) and (6.6) it follows that
\[
\sqrt{n} (\hat{\theta}_* - \theta) = g \left(\frac{Z_0}{I_{00}} + \frac{1}{\sqrt{n}} Q_0 + \frac{1}{\sqrt{n}} L \right) - \sqrt{n-h} (g-1) \left(\frac{1}{I_{00}} \sqrt{n-h} Z_0 \right)
\]
\[+ \frac{1}{\sqrt{n-h}} Q_0 - \frac{h}{(n-h)^{1/2}} \tilde{Q}_0 + \sqrt{n-h} L + o_p \left(\frac{1}{\sqrt{n}} \right)
\]
\[= \frac{Z_0}{I_{00}} + \frac{\sqrt{n}}{n-h} \tilde{Q}_0 + \frac{1}{\sqrt{n}} L + o_p \left(\frac{1}{\sqrt{n}} \right).
\]
If \(h = o(n) \), then
\[
\sqrt{n} (\hat{\theta}_n - \theta) = \frac{Z_0}{\bar{I}_0} + \frac{1}{\sqrt{n}} \tilde{Q}_0 + \frac{1}{\sqrt{n}} L + o_p \left(\frac{1}{\sqrt{n}} \right).
\]

This completes the proof.

Proof of Theorem 4.3. First, it follows from Theorem 2.3.1 in Akahira (1986) that for \(-\infty < a < \infty\)
\[
P_{a, \xi} (\sqrt{n} I_0 (\hat{\theta}_n - \theta) \leq a) = P_{a, \xi} (\sqrt{n} I_0 (\hat{\theta}_n - \theta) \leq a) + o(n^{-1})
\]
if and only if the asymptotic deficiency \(D(a, t) \) of \(\hat{\theta}_n^* \) relative to \(\hat{\theta}_n^* \) is given by
\[
D(a, t) = I_0 \left(V(Q_0) + V(L) - \left\{ V(Q_0) + V(L) \right\} \right)
+ a \sqrt{T_0} \left(E(Z_0 L Q_0) - E(Z_0 L \tilde{Q}_0) \right)
= I_0 \left(V(Q_0) - V(\tilde{Q}_0) \right) + a \sqrt{T_0} \left(E(Z_0 L Q_0) - E(Z_0 L \tilde{Q}_0) \right).
\]

Since
\[
E(Z_0 Q_0) = E \left(\frac{1}{I_0} Z_0 \left(Z_0 Z_0 - \frac{3J_{000 + K_{000}}}{2I_0^2} Z_0^2 \right) \right)
= -\frac{3}{2I_0^2} (J_{000} + K_{000}) + o(1),
\]
\[
E(Z_0 Z_0 Q_0) = E \left(\frac{1}{I_0} Z_0 Z_0 \left(Z_0 Z_0 - \frac{3J_{000 + K_{000}}}{2I_0} Z_0^2 \right) \right)
= \frac{1}{I_0} \left(\frac{1}{2} J_{010} (5J_{000} + 3K_{000}) \right) + o(1),
\]
it follows that
\[
E(Z_0 L Q_0) = \frac{t}{I_0} E \left(Z_0 \left(\frac{J_{010}}{I_0} Z_0 - Z_0 \right) Q_0 \right)
= \frac{t}{I_0} \left(J_{000} J_{010} - I_0 M_{0001} \right) + o(1).
\]

Since
\[
E(Z_0 W_{000}) = 2I_0 J_{000} + o(1), \quad E(Z_0^2 W_{000}) = 2I_0^2 + o(1),
E(Z_0 Z_0 W_{000}) = I_0 M_{0001} + J_{010} J_{000} + o(1), \quad E(Z_0 Z_0 W_{000}) = 2I_0 J_{010} + o(1),
\]
it follows that
\[
E(Z_0 L \tilde{Q}_0) = \frac{t}{I_0} E \left(Z_0 \left(\frac{J_{010}}{I_0} Z_0 W_{000} - \frac{J_{010} (3J_{000} + K_{000})}{2I_0} Z_0 W_{000} \right) \right.
\]
\[
\left. - Z_{01} W_{000} \left(\frac{3J_{000} + K_{000}}{2I_0} Z_{01} W_{000} \right) \right) \right)
= \frac{t}{I_0} \left(J_{000} J_{010} - I_0 M_{0001} \right) + o(1).
\]

Since \(V(Q_0) = V(\tilde{Q}_0) + o(1) \), we have from (6.4) to (6.9) \(D(a, t) = 0 \), which completes the proof.
PROOF OF THEOREM 4.4. Since f has the symmetric property, it follows that

\[(6.10) \quad J_{00} = J_{01} = M_{001} = 0, \]

hence, by (6.8) and (6.9), $E(Z_0 L Q_0) = E(Z_0 L Q_0) = o(1)$. Then the asymptotic deficiency $\hat{d}_* (\hat{d}_*)$ of the MLE $\hat{\theta}_*$ (jackknife estimator $\hat{\theta}_*$) is given by

\[
\hat{d}_* = \hat{d}_* = I_{00} \{ V(Q_0) + V(L) \}.
\]

Since

\[
V(L) = E(L^2) + o(1) = E \left[\frac{t^2}{I_{00}} \left(\frac{J_{01} Z_0 - Z_{01}}{I_{00}} \right) \right] + o(1) = \frac{t^2}{I_{00}} (I_{00} M_{0101} - J_{00}) + o(1),
\]

it follows from Theorems 3.2, 3.4 and (6.10) that the asymptotic deficiency D of the MLE $\hat{\theta}_*$ (or jackknife estimator $\hat{\theta}_*$) under the assumed model relative to the MLE $\hat{\theta}_*$ (or jackknife estimator $\hat{\theta}$) under the true model is given by

\[
D = \hat{d}_* - d = \hat{d}_* - d = I_{00} \{ V(Q_0) + V(L) \} - I_{00} \{ V(Q_0) + V(Q_1) \} = I_{00} \{ V(L) - V(Q_1) \} = \frac{1}{I_{00}} \left(\frac{t^2}{I_{11}} \right) (I_{00} M_{0101} - J_{00}).
\]

This completes the proof.

References

