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BEHAVIOUR OF JACKKNIFE ESTIMATORS IN
TERMS OF ASYMPTOTIC DEFICIENCY UNDER
TRUE AND ASSUMED MODELS

Dedicated to Professor Yukihiro Kodama on his 60th birthday
Masafumi Akahira*

The problem on jackknifing estimators is investigated in the presence of nuisance
parameters from the viewpoint of higher order asymptotics. It is shown that the
asymptotic deficiency of the jackknife estimator relative to the bias-adjusted maximum
likelihood -estimator (MLE) is equal to zero under true and assumed models. More-
over, the asymptotic deficiency of the MLE or the jackknife estimator under the as-
sumed model relative to that under the true model is given.
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1. Introduction

In higher order asymptotics the concept of asymptotic deficiency is very useful for
comparing asymptotically efficient estimators (e.g. Akahira, 1986). On the other hand,
resampling plans like jackknife and bootstrap have been recently studied by many authors
(e.g. Hinkley 1978, Efron 1982). So, it seems to be interesting to investigate the problem
on jackknifing estimators in terms of asymptotic deficiency from the viewpoint of higher
order asymptotics. In one parameter case, it was shown by Akahira (1983, 1986) that
the asymptotic deficiency of the jackknife estimator relative to the bias-adjusted MLE
is equal to zero. And also the asymptotic deficiency of the jackknife estimator relative
to the estimator in some class was given. Further, the asymptotic deficiency of the bias-
adjusted MLE under the assumed model relative to that under the true model was given
by Akahira (1986) under the unbiasedness condition.

In this paper, we consider the problem on jacknifing estimators in the presence of
the nuisance parameter. It is shown that the jackknife estimator has asymptotic de-
ficiency zero relative to the bias-adjusted MLE under the true and assumed models,
which means that the estimators are asymptotically equivalent up to the third order in
the sense that their asymptotic distributions are equal up to the order »~* under the models.
Further, the asymptotic deficiency of the MLE or the jackknife estimator under the
assumed mode] relative to that under the true model is given.

2. Notations and assumptions
Suppose that Xi, ---, X» are independent and identically distributed (1.i.d.) real
random variables with a density function f(x, 6, £) with respect to a o-finite measure g,
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where & is a real-valued parameter to be estimated and £ is a real-valued nuisance parame-
ter. We assume the following conditions (A.1) to (A.5).
(A1) The set {x: f(z, 0, £)>0} does not depend on & and £.
(A.2) For almost all z[u], f(x, 6, §) is three times continuously differentiable in 6 and &.
(A.3) For each ¢ and each &
0<Tw(0, §)=E[{k(0, §, X)}*1=—E[ln(0, £, X)]<oo ,
0<In(0, =E[{0(6, §, X)¥]=—E[lu(0, §, X)]<eo ,
where [i(0, £, x)=(0/00)1(0, &, &), lw(0, &, x)=(0%/06%)1(0, §, x)
1(0, &, %)= (0/9)0, £, ) and 16, £, x)= (040£31(6, &, z)
with (0, £, x)=log f(x, 0, £).
(A.4) The parameters are defined to be “orthogonal” in the sense that
Ellai(0,&, X)]=0
where lo1(0, &, x)=(0%/0608)i(0, &, x).
Note that the condition (A.4) is not necessarily restricted, because otherwise we can re-
define the parameter 5=g(0, &) so that we have the above orthogonality.
(A.5) There exist

Jow=E[lo(6, &, X)L(6, £, X)] , Joor=E[lo(6, £, X)01(6, £, X)] ,
Jow=E[l(6, £, X)lo(8, £, X)] , Jou=E[lnu(8, &, X)l:(0, £, X)],
]uo———E[Zu( £ )l 0 g X)] KcooZE[{lq(@, g, X)}J] B

35 o
Kon=E[{l(0, £, X)Y*h(0, £, X)),
Mooe=E[{ln(0, §, X)}*]— 15 ,
Moon=Ell(0, §, X)l:(0, €, X)] ,
Moa=E[{lu(0, §, X)}*],
and the following holds.
Elloo(0, €, X)]= =3 Jooo—Kowo , Ellos(0, €, X)]=—Jow,
Eflon(0, €, X)]=—Jou,
where looo(6, £, )= (0%/06%)(0, &, ), Loos(0, &, x)=(0°/06°0£)i(8, &, x) and
los(0, &, x)=(0°/06G0£%)1(0, &, x).
From the condition (A.5) it is noted that Koo = Joso— Joor. We put

1 n n
—_—— £ X 71;
Zo '\/7’1/ glo(ex b:AI) s \/ ; (6) g:A ) 3
Zuw=—= 3 {loo(6), £, Xo)+1 Zov=—= S 10s(6, £, X
00—~/ 2 0(0, & Xi)+Too) , 01—\/72 2 (0, £, Xz) ,

3. Asymptotic deficiency of the jackknife estimator under the true model

In this section we consider the true model where =0, and {=§&.. Henceforth, for
simplicity we denote by (8, £) the true model (6o, &) omitting subscript zero.

Let 6* and £* be the maximum likelihood estimators (MLEs) of § and ¢ based on a
sample X, -+, X» of size n, respectively. Then, we have the following.

THEOREM 3.1. Assume that the conditions (A.1) to (A.5) hold. Then the MLE §* of 6
has the following stochastic expansion undey the true model (0, £).
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— Zy 1 1 L
F ) =— = =W =
(3.1) ~n(0*=0) Ioo_’_«/nQo+ «/nQ +0P<«/%>
where
’_i 3]000+K000 2>
(3.2) Qo= VA <ZOGZO 2100 %
and
1 Joto Jou > Jou
| =l 1 o Zf N
(3.3) Q=7.It (‘Z " T AT

The proof is given in the paper by Akahira and Takeuchi (1982) and also in section
4.2 of the monograph by Akahira (1986). Let #f be the MLE bias-adjusted so that

E[/n(bt—60)]=0(1/~/n)

under the true model (0, £). Since the asymptotic covariance of @, and €. is equal to
o(1), i.e., symbolically Cov (€., @1)=0(1), we have the following.

THEOREM 3.2. Assume that the conditions (A.1) to (A.5) hold. Then the asymptotic
deficiency of the bias-adjusted MLE 0% under the true model (0, £) 1s given by

d=To{V(Qo)+V(Q1)}

=?1T(L,0Mmo~ T Lot Fo0)® |1

or T Teln

]éw ]gu >+ ]gn +0(1> )

<M B A Y AT

where V{-) designates the asymptotic variance.

The proof is given in the paper by Akahira and Takeuchi (1982) and also in section
4.2 of the monograph by Akahira (1986). It is noted that the term

Momx-‘(]gmlloo)“‘(](zm/zu)
in the above asymptotic deficiency, 4, is equal to zero if and only if
Loi(0, &, x)=0a0(0, §)+a:(0, £)1o(0, &, x)+a:(0, £)1:(0, &, ) a.e.[p1],

where a:(0, &) (¢=0, 1, 2) are certain functions of § and £, which are independent of x.

Next, we shall obtain asymptotic deficiency of the jackknife estimator of & in the
true model (6, £). We partition the sample X, ---, X» into ¢ blocks Xy, -+, Xy of
size A each such that n=¢h, that is,

4
{Xy, oo, Xny= U X and XinXi=¢ for i#7.
=1

For each 7=1, ..., 9, we denote {;: Xs€ X} by Ii. Further, for each =1, .-, g let
4 be the MLE of 8 based on the sample of size (g—1)4, where the i-th block, s, of size
h is deleted. For each ¢ we put i=gf*—(g—1)§>. Then we consider the jackknife
estimator
S
0=—316;.
0

From Theorem 3.1 we have for each ¢
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" A L
4 — (G —@) = (1) (1)
(3.4) VRO~ =4 \/7 =0 +\/v~Q +0P(¢n>’
where
1
()
(3.5) 2= 3 00,6, X0)
(3.6) Q= Iléo < 70 Zgiuﬂ%?—;%ﬁ?—"—zng) )
i 1 ; ]010 . ]ou . Jon 2
(Do~ 70 1y __ 1y @\ (i)
(3.7) Qo= (zm L g zl> S
with
W= 0, & Xi)+ 1o 2= L6, £ X
J k&?]t ( g ) 0} /\/’}7, ]1 ,%t ( g )
and

9= lo:(0, £, X&
»\/% A 1%1 0 ( g )

Then we have the following.

THEOREM 3.3. Assume that the conditions (A.1) to (A.5) hold. The the stochastic
expansion of the jackknife estimator 0 of 6 under the ture model (0, £) is given by

= ()
(3.8) Nn(b—0)= L,., = (Q0+Q )Fop NG
and, moreover, if h=o(n), then
Zo 1 ~ 1
«/‘(19 0)—}; %(Q0+Q1)+09<—ﬁ>
where
(3.9) @:—%—(WOWMWOQ ,
00 2]00
X 1 ]mo ]011 ]011
(3.10) Q= Tolns <W/ou— Ton Wor— T Wu) ZIUOI;WM
with

I/Voo‘——z Z Z 10(5 g X) Z Zo(@,g, Xk) 3

e IEI kte

Wol—~ 212030 (8, & Xx) :jl'll(@, g X},

z,-] kel

W11=‘—2 Z 2 Z1(§ g Xk) 2 ]1((9 g X

i#j kel; Ie[]

Wooo- 3 D3 2 Do(6, £ Xx) 3 {loo(0, & X)+Toc}

i#=j kel IeI]
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WDU‘—-‘—‘_‘Z SI50 L(0,8 Xx) 23 (8, €, Xx) .
i¥j ksl Pte
The proof is given in section 6. From the above it is seen that
E[Nn(@—0)]=0(1/+/n) ,
hence it is not necessary to make a bias-adjustment of #. This is essentially different
from that of the MLE #*. From Theorems 3.2 and 3.3 we have the following.
THEOREM 3.4. Assume that the conditions (A.1) to (4.5) hold. If h=o(n), then the
asymptotic deficiency of the jackknife estimator 6 under the ture model (0, £) is given by
d=Io{V(Qo)+V (@) }=Ioo{ V(Qo) + V(Q:)}

whose value has been further obtained wn Theorem 5.2, and so the asymptotic deficiency of the
jackknife estimator 0 velative to the bias-adjusted MLE 0% under the ture model is equal to zero.

The proof of this theorem is also given in section 6.

Remark 3.1. In the stochastic expansion (3.8) of the jackknife estimator  we
consider the case when A=cn, with 0<¢c=<1/2. Since

Valn—h)=1{(1—c)v/n}
if follows from (4.2) that, under the true model (6, §),

1 ~x o= 1
Vn(l— 0)——*+m(Qo+Qx)+op<7‘i>,

hence the asymptotic deficiency de of 8 is given by

IOO
(I—¢)

do= V(@) +V(@y)},

under the true model.
Then it is seen from (3.11) that, for the asymptotic deficiency d of § in the case k=o(xn),

d<d. for 0<c=<1/2.

Hence, if h=cn for 0<c=1/2, then it follows from Theorem 3.4 that the asymptotic
deficiency of 4 relative to the bias-adjusted MLE ¥ under the true model (6, £) is obtained

by

{ : 1_10)2 —1}JOO{V(Q0)+V(Q1)} ,

which is nonnegative, where the value of Io{V(@s)+V (@)} is given in Theorem 3.2.
This suggests that if the size, %, of each block of the sample in jackknifing is of the order
n, then the jackknife estimator @ is asymptotically worse than the bias-adjusted MLE &
in the third order, 7.e., the order #~*, under the true model.

4. Asymptotic deficiency of the bias-adjusted MLE relative to the jackknife estimator
under the assumed model

In this section we consider the assumed model (6o, 0). Henceforth, for simplicity
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we denote by (6, 0) the assumed model (6,, 0) omitting the subscript zero. Let 4 be the
MLE of 0 based on a sample X1, - -+, X» of size » under the assumed model. We assume

N
under the true (¢, §). Then we have the following.

THEOREM 4.1.  Assume that the conditions (A.1) to (A.5) hold. Then under the assumed
model (6, 0), the MLE by of 6 has the following stochastic expansion.

Zo

V) =7

+T/—Q°+J (L 0)+0p<717>,

where Qo 1s given by (3.2),

]010 _ ) ___Jcn
L= Ioo(Ioo o—Zo| and ¢c= Ioo R

and 0p(+) is taken under the distribution Po,c with the density f(x, 6, £).

The proof is given in section 6. It is noted that the linear term, L, of Z, and Zu
in the order #~/? is involved in the stochastic expansion of f4. The following additional
assumption is made.

(A.6) Jou=0.
The condition (A.6) holds true if, for example, @ is a location parameter, i.e. f(x, 0, §) =

flx—0, &) a.a.x[p] and f(z, §) has the symmetric property, i.e., f(2,8)=f(—z, &) a.a.x[u].
Let 8% be the MLE bias-adjusted so that

E[/n(85—0)]=0(1/~/n)

under the assumed model (6, 0).

Next we consider the jackknife estimator under the assumed model (6,0). For
each i=1, ..., g, let 6% be the MLE of 4 based on the sample of size (g—1)A, where the
1-th block, s, of size % is deleted. For each 7 we put

br=gbs—(g—1)0% .
Then the jackknife estimator is defined as
S e
0= 21 0Flg .
It is easily seen that

E[/7(Bx—06)]=0(1/~/7)

under the assumed model, hence a bias-adjustment of f, is unnecessary, which is essen-
tially different from that of the MLE b4. From Theorem 4.1 and (A.6) we have for each
1

L e o 1
(4.1 N = Aaav A v B

where Z§” and Q% are given in (3.5) and (3.6), respectively, and
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L(U.;Jf_(

00

L go—zip)

Then we have the following.

THEOREM 4.2. Assume that the conditions (A.1) to (4.6) hold. Then the jackknife
estimator, B4 of 0, has the following stochastic expansion undey the assumed model (6, 0).

where Qo is given by (3.9), and oy(-) is taken under the distribution P.¢ with the density f(z,
0,8). Moreover, if h=o0(n), then

Zo 1 =~ 1 1

P A il

The proof of this theorem is also given in section 6. From Theorems 4.1 and 4.2

VN (f—6)

we have the following.

THEOREM 4.3. Asswme that the conditions (A.I) to (A.6) hold. If E=tl~/n and
h=o(n), then the asymptotic deficiency, D(a, 1), of the bias-adjusted MLE, 03, relative to the
jackkwife estimator Oy, under the assumed model (0,0), is equal to zero so that G, has the

same asymptotic distribution as 0% at a point a up to the order n=.
The proof is given in section 6. From the above we have the following.

THEOREM 4.4. Assume that the conditions (A.1) to (4.5) hold. Suppose that 0 is a
location parameter, i.e., f(x, 0, E)=f(x—0, E)a.a.x[p) and f(x, £) has the symmetric property,
i.e., f(&, &) =f—=, Ea.ax(y]. If h=o(n), then the asymptotic deficiency of the MLE b,
(o7 jackknife estimator O.) under the assumed model relative to the MLE 6* (or jackknife
estimator 6) under the true model is given by

(4.2) D:'—lr<t2'—}1“> (IooMmM—]gm) .
00 11

The proof is given in section 6. It is noted that the symmetric property of f implies
unnecessity of bias-corrections of MLEs.

ReEMARK 4.1. In (4.2), the term # is derived from the asymptotic bias due to the
“incorrectness” of the assumed model, and 1/I.: represents the error due to the presence

of unknown nuisance parameter £. Since
TooMoro:— J5 =0,
it follows that the asymptotic deficiency (4.2) can be negative for £#<1//...

REMARK 4.2. In a similar manner as the Remark 3.1, it follows from Theorems 4.2,
4.3 and 4.4 that if A=cn for 0<¢=<1/2, then under the same conditions as Theorem 4.4, the
asymptotic deficiency of the jackknife estimator @, under the assumed model relative to
the jackknife estimator @ under the true model is given by

Lf, 1 ,
Igo {t - (1_0)21”1 (IOOMowx—]ow) .
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5. Example

Let fi{x) be a standard normal density, 1.e.,
fr(@)= (1~ 2m)e=="

for —oo <2< oo, and fo(x) be a f-distribution with a-degrees of freedom, i.e., with the

density
1
Jolz)= 2\ (at+1)/2
JEB(ﬁ, —1—> <1+—3~:~>
2’2 a
for —eo<<w<Coo, where a=1,2, -+, and B(a, b) denotes the Beta function. Then we

consider a mixture f(x, £) of densities fo(x) and fi(x), defined as
f(x, &) =CE{f1(x)}{fo(x)}—¢  for —eo<x< o0,
where 0=£<1 and C(§) is some constant with C(0)=C(1)=1. We also have

x? >(a+1)<e~x>/z

fle, o=@+

g—tm?/2 for —co<x <00

where 0=(=<1 and

K(E)=CE)1/2m{~ aB(a/2, 1/2)}" .

It is easily seen that

I
(5.1) K(0)= = <ﬁ T > gy <%> ,

272
Suppose that X7, -+, X are i.1.d. random variables with the density

—A)2 ) Cat1D(e~1)/2
*('.7:‘ ‘9) } ) /g—e(z—&ﬂ/z

52 Fla=6,8=K(@) 1+
for —oco <0,
Then we shall obtain the value of the asymptotic deficiency, D, of the MLE (or jackknife
estimator) under the assumed model (6, 0) relative to the MLE (or jackknife estimator)

under the true model as given by

(5.3) Dzi(tg—f:) (TosMoior— Jso)
(see Theorem 4.4).
Since
E=t/v/n
it is noted that
(5.4) Tee=1Iea(0, &) =1Ica(0, 0)F+0(1) (2=0,1),
(5.5) Moo=Mon(l, £)=Mon(0, 0)+o(1) ,
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(5.6) ]0103—‘]010(6, g)-‘:]om(@, O)+0(1> .
In order to obtain the value of deficiency as given by (5.3), it is sufficient to calculate
Ioo(@, O), Moml(@, O) and ]010(19, O) instead of Ioo, Mow: and ]010, respectively. It should
be noted that these variables are independent of & since & is the location parameter. Firstly

we can write from (5.2)
1=100,8 x)=log f(x—0, &)

=log K(£)+ “'2“ (E=1) log <1+£"’i@i> Sy

which implies

al a+1 x—0
(5.7 b(0,€ 2= Sp= = ) e i)
1+
a
and
04 a+1 x—6
(58) Zm(@, g, .’E)Z =— e +x“‘9
000§ o 1+ (z—0)
a
Next, we consider the case when =3, 4, ---.
Since
e a1 Z 1
B0, 0, X)1=" (=T 0 K0 a0,
1+ <1+ . )

the orthogonality condition (A.4) is satisfied. From (5.1), (5.7) and (5.8) we have

(5.9) L)o(e,0)=E[{1(9,o,X)y]:Sl(“:l)Z( ” >2< KO e

1+_‘§i 1+ﬁi>(a+l)/z

=K(0) (azzl)z S‘; <1+£§z crda

) (a+1)Jﬁr<g—>

=K(0) (a+3)1’<a§1>

_otl
a+3

(510) Mo (6,0)=EC0(6, 0, y1={" -1 1%_2 +af <1+§3{a+mzdx
B (a+1)¢‘ar<—‘;‘—) 2JZF<-Z£> a/“o?r<“gz>

O ) ) T e
=Tk
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(5.11)  Jou(8, 0)=Efle:(8, 0, X)lo(6, 0, X)]

x
I a+1 z o K(0)
_g*w<_ a ., & +x> x> 7\ s
1+ T 1+~>
04 04 (¢4
(e+ 1) anl %—) Janl »g—-)
:K@){_ STy
erar(45E) ()
2
T a+3

From (5.3) to (5.6) and (5.9), (5.10), and (5.11) it follows that, in the asymptotic deficiency
D7

(5.12) %;(IOOMW— ]zw):m(i(l%=ka (say) .
It is easily seen that 2.>0 for =3, 4, -+-. The numerical calculation for k.’s is given
as follows:

Table 1.

@ 3 4 5 6 7 8 9 10

Ra 2.251 0.840 0.444 0.276 0.188 0.136 0.103 0.080

«a 16 20 25 50 o

Ra 0.024 0.017 0.011 0.003 0

It is noted that, for a=1, 2, the value of (5.12) is, formally, infinity.
Next we shall calculate J..(6, 0). We put 2=K(0). Since

—co

it follows that

XZ
(5.13) c5(0)=—5§cg) . =logkv/2m+ 2(;‘_2) “+1Ef0[1og<1T-)] ,
614)  Cel0)=— gz f = (log kv/Zr)— (a"‘_zg*(‘jl T+ g g b/

(06+1) ot e [{10&(1+X2>H O‘HEf{X?log(H“Xo)]
_(a+1)<logk«/§?r+ >E10[10g<1+ Y)]

e el E]

where a>4 and Ey[-] denotes the expectation under the density fo(x). From (5.13)
and (5.14) welhave for a>4
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= C)

+1 X +1 X
+—-——-—‘;‘((Z_2))Efo[log<1+7>]——~“2 Efo[leog<l+ ﬂ

a

189

where Vyo(+) denotes the variance under the density fo(x).

In order to obtain the value
of (5.15), it is necessary to get

P . klog (l—i—%}
(5.16) Efo[log <1+';>:l =S 22\ Cat /2 ax.,
By
o
2\ 2
(5.17) Ey, [ {10g (1+_a”>} ]:S 2\ (at1)/2
e <1+_>
o

g e R 10g<1+%>
(5.18) E,,,[Xz log<1+ )}:S

M(;— <l+£>(a+1>/z
[0/

Using integration by parts we have for v=2, 3, -+

dx

ax .

(5.19) Smy2(1+y2)‘” log (1+y%)dy

0

1 “ 21— 2 —I—_Sw 2 2\—v,
=5y, Arvlog rdy Iy

Since
(5.20) So (1+y*)log (1+y*)dy

—SO (1+y*™log (l—i—y’*)dy—i—g ¥ 14y log (1+vy%)dy ,
Q

it follows from (5.19) that

(6.21) SO (1+vy*)vlog (1+y2)dy
— 29—3 (= 2\1—v 2 __._,1 Sw 2 2\—v
—2(1,_”&, (1+y7)~log (1+y*)ay—- =) v (1+v")dy

2v—3 (= 2 1—v 2 -
21|, G+ log (L4

1 3 3
2(1)—1)3(”_5’ 2) .
Putting

IU=S (14+vy*)log (1+y3)dy ,
0

we obtain from (5.21)
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2v—3 1 3 3
3 —_ — e ——
(022) I’u—z(v_l).{v—l 2(0—1)B<v 2, 2> 5
and also
© log (1+%%)
5.23 Ii=\ —————"dy= 2.
( ) go 1492 y=mlog

From (5.16), (5.22) and (5.23) we can calculate the value of

X —(* log (1+4y* —
(524) Efo {log (1"{—"0‘—)} 22}8«/06 So FEW&Z@J:Zk«/aI(aH)/z
for a=2v-—1 (v=3, 4,5, ---). From (5.20) we have
g v (1+yylog 1+v2)dy=Iv1—1Iv,

0

hence, from (5.18) and (5.22),

= ytlog (1437
0 (1'+y2>(a+l)/2
:2ka’\/—a—{l(a—l)/2_1(a+l)/2}

(5.25) EfO[XZ log <l+§>] =2kaJ-oc_S

for ¢=2v—1 (v=3,4,5, --+). Putting
JvZS (14+y>{log (1+y3)}dy (v=1,2,---)
0
we have by a similar procedure as above that

29—3 1 3 3
(5-26) Jo= 2(7)—-1)]1’_1— v—1 B<v—~?, ?)

forv=23, ---,
By the transformation x=1/(1+4¥%*), we obtain

(5.27) I

Il

1
%g (1 z)- /2 (log 2 |
0

Since
1

B(p, g):& rr (1—-x)ide for »,¢>0,

0

it follows that

2 1
(5.28) aasz(p, g)=g xr(1—z)(log x)dw ,
0
and also
5.29 O Bp,q)=B )H L 1og I'(p)— 2= log I'(p+ )}
(5.29) ot (v, )=B(p,q)| {7,z o8 L(p)— 7= log L(p+g
+{_d‘lo I'( )—ilo I'(p+ )}Z}
ip gL ip gL (pv+gq ,
where
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I(p) =S oz .
0
Putting
W)= log I'(x)
iz 8 ’

we have from (5.29) and the numerical table of polygamma functions

=7 ()2 0} o (3) o)

=5.2127 .

2

op

(5.30) ~B(v, )

From (5.27), (5.28) and (5.30) it follows that
P S (3w )]
=2.6067 .

From (5.17) we obtain

(5.31) E; Hlog <1+ X )} :I Zk«/agj Wdy-—-%ﬁ]mwz

for o=2v—1 (v=3,4,5, ---). If a=5, then we have from (5.22) to (5.27) and (5.31)

X 16 16 )
5)} Ty= ( Ii— £ )-70.220,

Ey, log <1+ 3 P

- X 80 3
Efo _Az log <1+"é—>} 25;(12—.[3):'—7;‘<_11—“’“> %1477,

i X2\1?] 16 16 /3 7\
jlog(l—}- 5 )} ]_37; 3—-37T<8 1— 167r>—.—2.879

114(6, 0)=27.700

Ey

©

hence from (5.15)

From (5.3), (5.4), (5.12) and Table 1 it follows that the asymptotic deficiency D is given by

:i<t2 = )(L,,,Mom— Ji) =0.444(°—0.036)
11

00

for a=5.

6. Proofs

Here, the proofs of theorems in the previous sections, are given.

Proor oF THEOREM 3.3. First we have

61 rl-0)=o{Val—0)— D0 +

:gﬁ(9*~0)—«/ * (9—1)—3.% n—h(P—0) .

Since
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_gl}_ézgi):\/n;]zzo’ zl,‘é-'z © \/n—hzm ,
—;— % 2929 = 20200~ nﬁ oo ,
%iézngg?— T h “Wou,
%zi; 2029= 7,74 W,
it follows from (3.4) to (3.7) that

_1- 4 s ¢ {Z(l) 1 ( @ 7y 3]000+K000 (I)‘L>
6.2 an RGP —0)= g T T\ B

g
AL DA . J‘“" 70— Jos (i) 1
+4/% hIoqu < 112l )}’*‘Qt’(ﬁ)

_ 1 n—nh 1 _ _3]009+K000 71 h

——~—IOO " ZO+I§9 pr— {ZoZoo — Wooo T <Zo ')’I,—]’LWW)}
, 1 ]m / A
T ,\/mIOOI“ ‘IZ!ZOI n— ]1 I/I/OII [00 \ZIZO h W01>

i;:(f "hWn)}wp( )

1 A N
_m 7 ZO‘*‘J QG+.\/% hQ (%-}’l/)s/z QO (%——]Z)slz Ql

w77

where Qo, @1, Qo, and @, are given by (3.2), (3.3), (3.9) and (3.10), respectively. From
(6.1) and (6.2) we obtain

+J = (Qo+Q1)— *(——557;(@ QI)}+O”<M«}77>
J1z

]oo %——h

(Qo+@Q: )+0p< j% ) .

If h=o0(n), then

i (i—0)= IZO ﬁ(@ﬁ@)m;( j‘%)

This completes the proof.

Proor oF THEOREM 3.4. First, it is seen from Akahira and Takeuchi (1982) and
Akahira (1986) that the asymptotic deficiency, d, of the jackknife estimator is given by
InV(Qo+Q)). Since E(Qs) =E(Q:)=Cov (@, @1)=0(1), it follows that

d=I{E(@)+E(Q?)Y} .
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Since
E(Wiw)=IooMoooo+ Jin+o0(1),
E(W000W00)22I00]000+0(1) s E(W%o)i21&+0(l) )
it follows that
~ 00 0 2
(6.3) E(Q§)=%—E[<Wooo—8—]°é%£{f—3Woo> ]
=T (IooMoooo Jiw)+ 2]4 = (Jooo+Kowo)2+0(1) ,
Since
E(Wiuw)=TwMow+ Jou+o(l), EWa)=Inluto(l),
E(Wh)=2h+o(1), E(WouWo)=1IuJonwto(l), E(WouWi)=o0(1)
and
E(Wou:Wu)=2I1Jou+0(1),
we have
~ 1 ]010 __]011 - >
(6.4) E@)=pg B | (Woum Lo wu— Lt
— 1 ]010 ]mx >
~ Tl <M°“” T ~20.) T
1 i T, T
uqu <M0101 IOO Ill + ZI(Z)OI';'l +0(1) '
From (6.3) and (6.4) we obtain
] B i), T
= oo Jo) ot K (Moo= = P2 o

which coincides with Too{ V(Q0) +V (@)}, by Theorem 3.2.

Proor orF THEOREM 4.1. Since

Sy, 0, X:)=0,
i=1

we have by the Taylor expansion around (4, &)

n

3!H§\{

’V/ Zlou(@ g Xz)%gz A/—-

—Zu (Zoo ﬁ[uo}'\/;’;(é*‘—e)"

«/
— 2\/;; (3]000+K000){ﬁ(é*'—6)}2

SIh(0, £ Xo)+ i’%zno(e, £ X/ 7 (0s—0)

é In(g, £, X )fg+~7=~zzooo(0 £ X (VT (0p—0))
1

zzm(e £ Xn(b, 6).§+op<

T Zon/nE

]ou ngz
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]010 A . < 1 >
RVl (O —0)e+0p Tn
and op(-) is taken under the distribution P, with the density f(x, 0, £). Letting
E=i/v/n,

we obtain

o=zo+71=<zoo—J%loo)Jﬁ(é*—e)— j~ Zon

(3 Just Ko/ a6 = L2 5, >+0p< «/1%>

2J
hence
4 _Zo 3 Jooo+Kooo ,,
Vb O)= T T
¢ Jowo . Joun < 1 >
Ioo¢n<Ioo “ Z‘“) o/ PO\ V)

This completes the proof.

Proor oF THEOREM 4.2, First we have
— — A 12 — A 9 A
65 Al—0)=0 |V Oum0) =5 DA -0+ 1 VA (0—0)
=1

1
g i=1
=0/ (B 0) ) =)

2 /AR —0) .

‘Ql)—*

From (4.1) we obtain

g 1.2 (zZ% 1 3 Jooo+ Koo
/ (D Q) — @y @y SJ P70 TR0 g
2= (0 o= g Z{ Loo Ioo«/’n— <Z 2% 21 4 >

=1 =1 00

T (= ol )

_ 1 [n—h 1 h
=1 " ZO+I§0/\/%—}Z {ZoZoo Wooo

_~3]000+K000 - h 13 Jow [n—h
2]00 (ZO 71r—hW00>}+Iuo«/;%— < Ioo \/ n ZO
n—nh 1
"‘x/ n ZOI>+0p< J%)
/\/77/

_ 1 Ju—"h 1 _ I3 1
=TV w2t T (n—h.)a/z‘””r L“’”(Jﬁ)’

where @, and @, are given by (3.2) and (3.9), respectively, and op(-) is taken under the
distribution Ps,;. From (6.5) and (6.6) it follows that

el 3 ) o
+ «/nl—]z o (%—];1)3/2 Qo+ */7;"]1[,} +0p< «/lﬁ >

N
Ioo n—th+ m/‘ L+Op< n )

(6.6)

Q |
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If h=o0(n), then

] _Zs 1 ~ 1 1
'\/_7—’5_(0*—6)——70‘0“‘{‘ \/;{; Q0+ ’\/"—"—7; L+Op<*"—*—'\/;[:> .

This completes of the proof.
Proor oF THEOREM 4.3. First, it follows from Theorem 2.3.1 in Akahira (1986)
that for —co<a<eo
Po,e{ /o0, £) (0 —0)Sa}=Po.{~/nIoo(0, E) 01— 6) Sa}+o(n™)
if and only if the asymptotic deficiency D(a, #) of 6} relative to 8, is given by
(6.7) Dia, t)=Io[V(Qo)+V(L)~{V(Q)+V(L)}]

+an/To{ E(Z:LQs) —E(ZoL&o)}
=Too{ V(Qo) =V (Qo)}+a~'Too{ E(Z:LQo)— E(Z:LQ0)} .

Since

sy | L 3 Jooot+Kooo ,,
E(Z360) —E{Lﬁo Zo<ZuZoo ~or ZO)}

3

=%l (Jooo+Kooo)+o0(1),

E(ZOZO)QD) :E[I]; ZoZoi(ZoZoo—‘?ligo—ZOIifggB&ZO:'

1
I

{]ooMoool—%]010(5]0004‘3[{000)} +o(1),

it follows that

(6.8) E(ZOLQo)Z?%O—E [z(ffw" zomZ(,l) Qo]

¢
:}T(]“WJOIO_‘IOOMOOM) +O(1) .
00

Since
E(ZoWooo)zZ.[ocJooo—f-O(l) s E(ZSVVOO)=2I&)+O(1) s
E(ZoZmWooo):IooMoooi+]010]uoo+0(l) s E(ZoZmWoo)=2L)0]010+0(1) s

it follows that

(6.9) E(ZLQ)=-1F [Z< T 7, o L2128 o0 £ Koo) 7
Igo IOO 2[00

-—-ZoxWooo*l*MZmWoo)
2100

(Jooo Joro—"TooMoo01)+0(1) .

=
e

Since V(Qo) =7V (Qo)+0(1), we have from (6.4) to (6.9) D(a, {)=0, which completes the

proof.
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Proor oF THEOREM 4.4. Since f has the symmetric property, it follows that
(6.10) Jooo= Jo1=Moo:=0,

hence, by (6.8) and (6.9), E(ZoLQs)=FE(ZoL&s)=0(1). Then the asymptotic deficiency
dw(dy) of the MLE 8% (jackknife estimator fy) is given by

dy=dy=ILo{V(Qo)+V (L)} .
Since
V(L)=E(L*)+o0(1)

_ £ [ Jouo 2
_E[Igo < Ton Zo*Z(u) :'-I—O(l)

t2
Z‘}’H‘“(IOOMMM‘—J%)]Q) +0(1) ,
00

it follows from Theorems 3.2, 3.4 and (6.10) that the asymptotic deficiency D of the MLE
b4 (or jackknife estimator ) under the assumed model relative to the MLE 6% (or jack-

knife estimator §) under the true model is given by
D=d,—d=d.,—d
=Too{V(Qo)+ V(L) }—Loo{ V(Qo)+ V(Q:)}
=Lo{V(L)=V (@)}

1
=T<52""}‘1‘> (IOOMOIOI“‘J(ZHO) .
00 11

This completes the proof.
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