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On the asymptotic construction of
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Institute of Mathematics, ‘University of Tsukuba, Ibamkz' 305-8571, Japan

Abstract

An asymptotically unbiased confidence interval is constructed from an unbiased test
up to the third order, and its application to the location parameter case is described.
Further, from the viewpoint of a posterior risk, the upper and lower confidence limits are
derived and, in practice, obtained up to the second order in case of the normal, uniform
and truncated normal distributions. The rela.tioriship between the loss function and a
confidence level is also discussed.

1. Introduction

Higher order asymptotics has been extensively investigated by Pfanzagl and We-
felmeyer (1985), Akahira and Takeuchi (1981), Ghosh, Sinha and Wieand (1980), Amari
(1985), Akahira (1986) and others (see also Ghosh (1994)). It is known that a bias-
adjusted maximum likelihood estimator has the third order asymptotic efficiency, but
there is not an uniform result on the third order asymptotic optimality in the case of
testing hypothesis. .

In this paper, we asymptotically construct an unbiased confidence interval from an un-
biased test up to the third order, and apply the result to the location parameter case. A
similar discussion is found in Takeuchi (1981). Further, from the viewpoint of a posterior
risk, we obtain the upper and lower confidence limits with the minimum posterior risk
up to the second order, and construct them in case of the normal, uniform and truncated-
normal distributions. We also discuss the relationship between the loss function and a
confidence level, and, in particular, consider how to determine the level from the loss
function.

2. Unbiased confidence intervals

Suppose that X3, X2,...,Xn,... 18 a sequence of independent and identically dis-
tributed (ii.d.) real random variables with a density function f(z,0) (6 € ©) with
respect to a o-finite measure y, where © is called a parameter space and assumed to be
an open interval of R'. We assume the following conditions.
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(A1) {z|f(z,0) > 0} does not depend on 6.
(A 2) For almost all z[u], f(z,6) is four times continuously differentiable in 6.
(A 3) For each 4

0 < I(6) = E,[{I"(6, X)}"] = ~Eol1(6, X)) < oo,

where 1)(6, z) = (6°/96')(8, z) (i = 1,2, 3) with [(9, z) = log f(z, 6), and I(0) is
three times differentiable in 6.
(A 4) There exist

J(6) = Ell(6, X) 120, X)],  K(6) = Eo[{1™(8, X},

L(9) = Eo[1™(8, X) 196, X)), M(6) = Eo[{1® (8, X)}?] - I*(6),
N(8) = Eg[{IM(8, X)}* 1P(6, X)] + I*(6),

and o

H(9) = E,[{I"(8, X)}*] - 3I°(0),

and both of J(0) and K (9) are differentiable in 6, and

Eo[1®(6, X)) = —3J(6) — K(6),

Eo[I™(8, X)] = —H(0) — 4L(6) — 3M(8) — 6N ().

In order to obtain unbiased confidence limits we consider an unbiased test ¢ with level
a + o(1/n) of the hypothesis 6 = 6o against the alternative hypothesis 8 # 6y, i.e.

Bulp(X)] < a -+ of1/n), “
Eolp(X)] > a+o(1/n)  for all 8 6,

where X = (X1,..., X,). When (8/80)Ey,(p) = o(1/n),

(2.1) o [p(X) =3 2 o8 f(Xi,Oo)] —o (%)

provided that the differentiation under the integral sign Ey,(y) is allowed. Putting

2(6) = w(T > Diogs(x,0),
we have from (2.1)
- Eg[Z(00)p(X)] = o(1/n).
Now we consider an unbiased test of type

(2.2) o(X) = 1 .f°f4 2(9.0) < agy, Z(6o) > be,,
0 otherwise,
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where ag, and by, are certain constants determined so that Fg,(¢) = a+o0(1/n) and (2.1)
hold. Let go(2) be an asymptotic density function of Z (). Since Eg,(¢) = a + o(1/n),
it follows that

b
(2.3) / 9o, (2)dz =1—a+o(1/n).

From (2.1) we have

b
(2.4) / 299, (2)dz = o(1/n).

First we shall obtain a and b satisfying (2.3) and (2.4). For each ¢ = 1,... ,n, we put

lOg f(Xz, 00)

= Vi

Then, for each i = 1,... ,n, the mean, variance, third and fourth order cumulants of Y;
are given by

Ea(¥) =0, V(%)=L ksa(¥) = Bul¥] = g
and
ka0, (Yi) = Eqo[Y] = 3{Vau (Y0)}* = ‘ZEZZ;

By the Edgeworth expansion of the distribution of Z(,) we have

Pi{Z(60) < 2} = @ 2 — 32)

()= ) { g = 1)+ g7

K2 . 1
+72I3n(z — 10z +152)}+0(ﬁ‘)’

where ®(z) = [°_¢(z)dz with ¢(z) = (1/v2m)e /%, I = I(6), K = K(8) and
H = H(6,). From the above it follows that the asymptotic density gg,(2) of Z(6p) is given
by

(25)  gw(2) = 8(2) + 8(2) {_6_[_/5%( ~82) + (et = 622 43)

+ S (28 — 152* + 452> - 15) ¢ + 0 1
7213n n)’

Then we have the following lemma. A
Lemma 2.1. Under the conditions (A 1) to (A 4), the constants a and b satisfying (2.3)
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and (2.4) are given by

K , K H 1
_a(00)——u+613/2\/7_lu +7213n(4u —15u)—24l2n(u -3u)+o -

K K? H 1
b—b(oo)—u+m 2 3n (4u ——15u)+24I2n(u —3U)+0(;),

where u denotes the upper 100(c/2)% point 4,/ of the standard normal distribution.
The proof is given in section 6. In order to obtain the confidence limits for 6 we
consider the acceptance region of the unbiased test ¢ with (2.2), i.e.

ag, < Z(0o) < bg,,
ie.
a0, v/ 1(60) < Z(80)v/1(60) < bs,\/T(Bo).
We put ag(d) = ag,\/1(8), bo(8) = bg,\/I(0) and Z1(8) = Z(8)\/I(). Since, for a

neighborhood U(6) of 6,

9,
a6 fzaoz log f(Xi, 60) + 0p(1),

it follows that for 8 € U(6,)

0

o, | g5 0)] = ~VAI(@0) + o),

hence the upper and lower confidence limits 8 and @ for 6 are obtained from the equations

(2.6) Z1(0) = a0(8),  Z:(8) = bo(9).

Let 851 be the maximum likelihood estimator (MLE) of 8. Then we have the following.
Theorem 2.1. Under the conditions (A 1) to (A 4), the upper and lower confidence
limits § and @ for 0 are given by

0= éML + A(éMLa U), 0= éML + A(éMLa —U),

whefe
u , % 3J+K, 2§ 15J+4K_ , T,
Alb,u) = Jia T Bt T Tern © T Tt T ez 2% T gt
1 2 2 1 3
| o 367 + 0K +5K%) - g (B 4L+ 6M) |

5K? H _3/2
{ 2417/2n3/2 ~ &]5/2n3/2 } u+o(n™*?),
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with v = u4/2 and
1 n
2 = 2(6) = 7= {1916, X) + 10}

Zsy = Z3(8) = -\/1—5 g{l@(e, X:) +3J(0) + K(60)},
I=1(0),J=J(), K =K(@6), H=H(),L=L(6), M=M(@),and N =N(6).

The proof is given in section 6.

3. Location parameter case

Suppose that X, X3, ... , Xy, ... isasequence of i.i.d. random variables with a density
function fo(z — ) (6 € R!) with respect to the Lebesgue measure. Then

(3.1) 10)= [~ (@Y /@,
and
(3.2) 16 = 0/2) [ U@F/fule)Yds,

provided that limg_, ;o0 { fo(7)}?/ fo(z) = 0. Note that
(3.3) J(0) = —K(6)/2
and the above amounts are independent of 8. Since

J'(6) = L) + M(§) + N(§) =0, K (8) = H(6) +3N(6) =0,
it follows that
(3.4)  N(0)=—H()/3, M(0) =—L(#) — N©®) = —L(6) + {H(8)/3}.
We also have

_ {fé(x)}‘* r — 32
HO= | {hap® 30

L(6) = —M() — N(0) = — {—j;‘;’%))—}?dz +2I% + 3;—{

We denote I(8), H(8), K(0) and L(6) by I, H, K and L, respectively, and using these
amounts we have the following.
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Corollary 3.1. Under the conditions (A 1) to (A 4), the upper and lower confidence

limits @ and @ for 4 are given by
0=06mr+ ABur,w), 0 =0mp+ Albur, —u),
where
Zs K VA "KZ, , Zs
Abw) = \/— e T " T gt t pgnt T ot

K H-4L\ , [ 5K H 1
“\72r 23 T gz )Y T\ sarinae T spge ) 0\ e ) -

The proof is omitted since it is straightforward from Theorem 2.1. Since Eo(Z3) =0
and Eg(Z3) = M = —L + (H/3), it follows from Corollary 3.1 that the expectation of the
length of the above confidence interval is given by

(3.5)
2% K* H-4L\ , (5K® 5H—24L 1
Bolf 8] = == {1 - (72I3n ~ 24rn ) wt (24I3n e, )} to (W) '

An estimator én based on a sample (Xj,...,X,) is called to be best asymptotically
normal (or BAN for short) if the asymptotic distribution of vnI(f, — 6) is standard
normal. Let D’ be the class of the all bias-adjusted BAN estimators 6, which are third
order asymptotically unbiased, i.e. Eg[\/n(f, —0)] = o(1/n) and asymptotically expanded
as

Vit -0 = 2+ —-00)+ 1r0) +0, (1),

where Q(0) = O,(1), R(6) = Op(1) and Ep[Z;(0)Q%(8)] = o(1), and the distribution of
vn(0, — 0) admits the Edgeworth expansion up to the order n=!. When the third order
asymptotic median unbiasedness is used instead of the third order asymptotic unbiased-

ness in the class, we denote the class by D (see Akahira, 1986). For any 6, in the class
D’, the asymptotic distribution of v/nl (én —0) is, in a similar way to Corollary 2.1.2 in
Akahira (1986), given by

(3.6)
F; (t) =P{VnI(6, - 0) < t}

~a(t) - L ‘?’3( 1)g(t) ~ S8

- %tqﬁ(t) +o0 (%) ,

{3J(9) + 2K(9)},

(t3 3t)p(t) — I% (t5 1083 + 15¢)4(t)

where

ﬁs(e) = -

1
13(9)
Ba(8) = Irgl(%{zJ(.e)) + K(0)}{J(6) + K(0)} — %@{w(a) +4L(8) + 12N(8)}.
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Then it follows from (3.6) that the asymptotic density of v I n(é, — ) is given by

BT) 13,0 =000+ LI~ 3)0(0) + (¢ =68+ 3)0(0
+ 7353( — 15t + 45t% — 15)¢(¢ )+—£1( - 1o (t)+o<%).
=¢(t>{1+ DT () + Gt ha(0) + phlt) + -ghz(t)} o(3).

In order to obtain an asymptotically unbiased confidence limits based on the estimator
6,, in the class D', it is enough to get the values a and b satisfying the conditions

(3.8) / oWt =1-a+to (%) ,

39) fin@) = ,0) ++0 (3

and put

(3.10) 9=6,—b/vnI and 8=6,—a/Vnl.

In a similar way to Section 2, we have the following.

Theorem 3.1. Assume that the conditions (A 1) to (A 4) on the density f(z,0) =
fo(z — 6) hold. Then the upper and lower confidence limits 6 and @ are given by (3.10),
where

by b 1 by by 1
(311) a = Ua/2+7_.’;z-——+ (n) , b—ua/2+ \/__+ + o0 (n>
with |
K H —-4L K?
by = — 2 _ —_ T3 —_
=i T k= gp (u” = 3u) — T3
and 7 = Vu(Q(6)).

The proof is given in Section 6. It is shown in Akahira and Takeuchi (1981) that the
MLE éM 1, of 6 has the stochastic expansion ‘

I
(2u® — 3u) + %u,

Vil 0= 20 4 TQO( )+ 7 {21(0)22( )+ 5 23(6)25(0) - I+ K)
-Z3(0)Z,(0) — (_?%(_)_23(9) — BT(H +4L+3M + 6N)Zf(0)} + 0, (-71;) :
where

Qo) = AOZO 372 E 72p)
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Then a modified MLE

J(éML) + K(éML)

0% = Oy + ,
ML ML 2n12(0ML)

belongs to the class D’. Using the modified MLE 6%, instead of 4, in Theorem 3.1, we
have the upper and lower confidence limits (3.10) with (3.11). Comparing the confidence
interval [0, 6] = [(;ML + A(éML, —Uqa/2), Orr + A(éML,ua/z)] given in Corollary 3.1 and
the confidence interval [8°, 8*] = (8%, — (b/vIn), 8, — (a/v/In)] with 63, instead
of 6, in Theorem 3.1 with respect to the length of the interval, we have from (3.5) and
Theorem 3.1

(3.12) Es[f — 6] — Eo[6* — 6"] = E4[6 - 6] - \/—(b —a)

~ 2 b2) ( 1 )
=FEl0 -0l - —=upo+— ) +o0
il —] \/I_’n(u /2
_ 2ug)2 K? +H 6L
~ In \4I3n
3K?+2H — 12L ( )
= u+
6I3VI ny/n

since, by (3.3) and (3.4),

H-3L ﬁ
33 814

= V(Qo(8)) = l4 {IM o %(J + K)2} _
Hence
Eyl0 — 6] Z Eolf* — 6°] + o(n~/?)
if and only if
3K? +2H Z 12L,

respectively. Since H — 3L = M > 0, it follows that H — 6L > 0 provided that L < 0. If
L <0, then, from (3.12), the asymptotic mean of the interval [*, §*] is asymptotically
shorter than that of [§, 6]. For example, if the density is given by fo(z) = 1/{x(1 +z2)},
then L = —3/4.

4. Another look of the confidence interval at the

minimum posterior risk

In this section, from the viewpoint of the posterior risk we shall construct the confi-
dence intervals. We assume that © = R!. For any interval [6, 0—] of ©, we define a loss
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function of # with respect to the interval by

2(6 - 9) for 9 <6<,
(4.1) L(6,0,6) =< 2(0—-6)+c(0—-6)?* for 6<8,
20 —0)+c(0—0)?2 for 6>6,

where c is some positive constant.

Suppose that X, ... , X, areii.d. random variables with a density function f (z,0) (0
©) with respect to the Lebesgue measure. Let 7 be a uniform distribution on the inter-
val [a,b] as a prior distribution, i.e. 7(8) = (§ —a)/(b — a). Then we shall obtain the
confidence limits § and § minimizing the posterior risk

H?=1 f(ﬂ?i, 9)
f: [Ti= f(z:,6)d0

Theorem 4.1. The confidence limits 8* and §* which minimize the posterior risk (4.2)

(42) 0,8 2)= [ 16,09

are given as follows.
(i) If a < 8 < @ < b, then §* and §* are given as solutions of § and 0 of the equations

6 n b n

(4.3) / @-6)[] #0086 = / 1 £z, 0)a0,
b n p n

(4.4) /9 6-0)]] £z, 00d0 = / I1 sz, 0)a0.

(i) If a < 8 < b < 6, then 6* = b and 8" is given as a solution of § of the equation (4.3).
(iii) If # < @ < 8 < b, then 8* = a and * is given as a solution of 6 of the equation (4.4).
Proof. (i) For a < § < 8 < b we have

@s) (6 8l2)=20-0)+ - 07 T] S 00

+/§ 6 — 5)2Ef(xi,6)d0}.

In order to minimize (4.5), it is enough to solve the equations dr (@, 6| )/88 = 0 and

ST £z, 0)do {/

or(8, 8] )/86 = 0. 1t is easily seen that the solutions are given as them of the equations
(4.3) and (4.4). The cases (ii) and (iii) can be quite similarly proved.

Corollary 4.1. If the prior distribution is taken as the Lebesgue measure, i.e. a — —00
and b — 0o, then the confidence limits 6* and #* minimizing the posterior risk (4.2) are
given as solutions of @ and @ of the equations

(4.6) /_ i(g _ ) I_nl f(z,0)d0 ] /_: ﬁ (a2, 0)d0 = 1/c,

(4.7) /o C0-8) 1 7t 00d8 / /_ " 1 f(z 6)d0 = 1/e.
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The proof is straightforward from (4.3) and (4.4) in Theorem 4.1. The application of
Corollary 4.1 is given in the next section.

9. The application of the confidence limits with the
minimum posterior risk

In this section we discuss the normal, uniform and truncated normal cases as the
application of Corollary 4.1, where the confidence limits with the minimum posterior risk
are given, and also their relationship to the confidence level is considered.

Example 5.1 (Normal case). Suppose that X,..., X, are i.i.d. random variables with
a normal distribution with mean @ and variance 1. Then it follows from Corollary 4.1
that the confidence limits §* and 6* minimizing the posterior risk (4.2) are given by the
solutions of the equations

(5.1) / @ - g)e—(n/2)(0—:)’dg / / e—(/2)(0-2)% jg _
(5.2) / (8 — 6)e=/2(0-2)*gg / / e~ (/2)(0-2) jg _

where Z =37, z;/n. Putting t = /n(0 — Z) and s = y/n(f — Z), we have from (5.1) and
(5.2)

Olb—‘ Qli—l

t®(t) + ¢(t) = vn/c,
(5.3) = 5(1 = ®(s)) + ¢(s) = V'n/c,

hence ¢t = —s. Letting s = d(c) be a solution of (5.3), we obtain 7 + (d(c)/+/n) as the
confidence limits with minimum posterior risk.

Next we consider the relationship of the above confidence limits to usual confidence
level. Since

> d(c) d(c)
Pys X — <0< X = 2®(d
{2- 42 <o<x+ 21 _npue) -
we have for 0 < o < 1, with ®(d(c)) = 1 - (a/2), d(c) = uq/2, where X = Y iy Xi/n and
Uq/2 denotes the upper 100(a/2)% point of the standard normal distribution. Since from

(5.3)

a n
—‘2‘ua/2 + P(uay2) = %,

it is seen that

(5.4) ¢ = Vn/{$(uas2) — (/2)uas2}-
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Conversely, if a value of c is given, then the confidence level 1 — a is determined from
(5.4). Hence we see that a large coefficient of \/n in c implies a small . For example, if
¢=50y/n and ¢ = 111y/n, then a = 0.1 and 0.05, respectively.

Example 5.2 (Uniform case). Suppose that Xj,...,X, are i.id. random variables
with a density function

£(z,0) = {1 for 6—(1/2) <z <0+ (1/2),

0 otherwise.

Putting U = max;<;<n Xi — (1/2) and V = min;<;<n Xi + (1/2), we have

- 1 for U<O<V,
[[r(x:.6) = {
=1

0 otherwise.

Then it follows from Corollary 4.1 that the confidence limits with the minimum posterior

Q*=U+,/%(V-U), é*:v—,/%(v—U).

Next, we obtain ¢ such that a conditional level is equal to 1 — o, i.e.

p,,{Uﬂ/%(v—U) gogv—,/%(v—U)

where R = 1—(V —U). Putting M = (U +V)/2, we see that the conditional distribution
of M given R = r is a uniform one on the interval (0 — %, 0+ 1;—’) Then

hence

risk are given by

R=r}_>_1—a,

(5.5) c>8/{(1-r)a?}.

Conversely, if ¢ is chosen as in (5.5), then the conditional level is equal to 1 — . For
example, if ¢ = 800/(1 —r) and ¢ = 3200/(1 — r), then the conditional levels are equal to
0.9 and 0.95, respectively.

Further, we obtain ¢ such that an unconditional level is equal to 1 —a+O(1/4/n), i.e.

Pg{Uﬂ/%(v-U)503V~,/-25(V—U)} 21-a+o(\/iﬁ>.

Since the density of R is given by

n(n—1)r"21-r for 0<r <1,
falr) = (n=1)r"*(1-r) .
0 otherwise,
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it follows that

Po{U+m$0§ m}_l—n_l) 2ﬂF{rfzJE3l/)2)

Since, by the Stirling formula,
[(n+1)/T(n+ (3/2)) = 1/vn+ O(n™%?),

it follows that

Po{U+mSHSV—\/%}=1_@+O(%)

i-avo (L),

hence
(5.6) c>2n/a’.

Conversely, if c is chosen as in (5.6), then the unconditional level is equal to 1 — . For
example, if ¢ = 200n and ¢ = 800n, then o = 0.1 and a = 0.05, respectively.

Example 5.3 (Truncated normal case). Suppose that Xi,..., X, are i.i.d. random
variables with a density function

kexp{—(z — 6)%/2 for —-1<z-0<1,
fn.0) = {Fow(=@ =07/ .
0 otherwise,

where k is some positive constant. Putting U = maxigi<n X;—1and V = min;<;<, X;+1,
we have

otherwise.

Hf(X,,a) {’“ exp{— 2" (Xi —0)?/2)} for U<O<V,

Then it follows from Corollary 4.1 that the confidence limits §* and 6* minimizing the
posterior risk (4.2) are given by the solutions of the equations

(5.7)
() 0 v
0 / exp{—n(6 — )2/2}d0 — / 0 exp{—n(0 — £)2/2}d = % / exp{—n(0 — 7)?/2}d6,
(5.8)
ﬁ 6 exp{—n(8 — 7)2/2}d — § / exp{—n(0 — £)?/2}d6 = % / exp{—n(8 — 7)2/2}d.
] [’}

u
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g T
/ exp{—n(0 — 7)?/2}df = 2;{%/5(@ - z)) — ®(v/n(u - 7))},
/ fexp{—n(0 — 7)?/2}d0 = \/% {62(v/n(8 — 7)) — u®(Vn(u — 7))

1 Vvn(8-%)
Vi J -

[ expl-n(o - 2712300 = [T (@0 - 7)) - @(Vilu - ),

@(t)dt} ,

it follows that
(5.9)

Vvn(8-%) 1
(-0t -a)+ = [~ ei= (@il - 2) - (- D)}

Now we obtain asymptotically the solution of 8 of (5.9). Since

VA(8-3) 1 1
[ ai0at = ot - D)VAE~ 0 + oAl - DHVAE- 0 40y (7).

vn(u—2)

it is seen that

2 - I)) - n(u—Z S
\/_qb(\/—(u z){vn(@ —u)}* = {@(\/ﬁ(v )) — ®(v/n( N}+O0p (n2) ,
hence

ey, L [ryRE(Ae - 2) - A =a)} | o (1
G0 F=uroys o(V/n(u—1)) +0, (77m)

In a similar way to the above we have

o1 [nyR(e(/ae—2) - a2} , , (1
G =Ty Sl —7) +0r (7).

Since
By ) ~ Bilu — 7)) = S={n(v ~ ) = n(u = )}/ ~0) +0, (%)

L
T)) = n(T — —n{u — T — 0 —L
/(0 2) = p(E —0) {1+ Z=nlu = 0)Vii(a —0) + (=)}
it follows that

RO - Ja;)();%@u i) SEPA {1 ‘o, (7%) } ,
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hence, by (5.10)

0—*___2}_%”2?71 (v—u)+ 0, (n\/_>

In a similar way to the above we have from (5.11)

Next, we obtain c such that the confidence level is equal to 1 — a + O(1/n), i.e.

(5.12) Pg{U+%,/27"n(v—U) gogv-%,/%"n(v—tf)} > 1—a+0(%)

Putting Uy = n(U — 0) and V;, = n(V — ), we have

(5.13) {U+—\/g£n(V U) <0<V——\/37—ln(v U)}

2 2 -
=F {UOS - ?n(Vo*'Uo), Vo > —n(Vb—Uo)}
2 2N 2
=F UoZ‘—(VB—Uo), Ve >—VB—U0)
=F {U2 > ?(Vo —U), ViE> ?(Vo -U), UZ> Voz}

2 2
+ Py {U& > =(o—Up), V2 “(V%o-Us), UE< V&}
C 12 C 2
= - < — > .
PO{ 2nV° ths UO} +P°{2nU0 +Uo 2 Vb}
Since the asymptotic joint density of (Up, Vp) is given by

k2ekvo—uo) [1 4+ L {1 4 2k(vp — up) + % ((uo + vo)? + (vo — u0)?)
—& (vo — u0)? — 2(vo — uo)}] +0(2)

In\Up, Vo) =
(%o, vo) for uy < @ < vy,

0 otherwise,

where h = —ke/2 (see Akahira (1991), page 191), it follows that

1
P {——Vo +Vp < U} / / e *-Vgyudy + 0 =
sy n

1
=1- _, /2 s
1 5 kmn/c+ O (n) ,
0 (cu?/(2n))+u
P, {iUg +Up2 Vo) = / / e o~ gyay + 0 (1
- 2n —0Jo n

=1- %\/2k7rn/c+ o (%) ,
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hence, by (5.12) and (5.13)

nlos b B -0 <oz Zoy -0} ~2- Va0 (7)

n C

which implies
(5.14) ¢ > 2kmn/(1+ ).

Conversely, if ¢ is chosen as in (5.14), then the confidence level is equal to 1 —a+O(1/n).
For example, if ¢ = 3.03n and ¢ = 3.33, then a = 0.1 and o = 0.05.

6. Proofs

In this section we give the proofs of Lemma 2.1 and Theorem 2.1.
Proof of Lemma 2.1. From (2.3) and (2.5) we have

(6.1) l—-a= / 9o, (2)dz

_ i K 3 3 H 4 6 2 3
—/a [¢(z)+¢(z){m(z = z)+2412n(z —62°+3)
2
+7£3 (2° — 152" + 452° — 15)} +o (-lﬁ)] dz

6]3/2\/— / hs(2)(2)dz + 5 / ha(2)¢(2)dz

b / ho(2)8( z)dz+o(1>

h,.(z>=(__) HoE)  (G=012...),

=®(b) — ®(a) + 5=

where

which are called Hermite polynomials. Since

/  h(@)@)de = —hya(D)e(z) (G =1,2...),

—0o0

it follows from (6.1) that
6.2)
1~ 0= 80) - o)+ = a(@)6(0) ~ a0 + gy (s(@9(a) = ha(BOO)}

K? ‘ 1
o {ha(p(a) ~ hs(0)o®)} + 0 (5.




From (2.4) and (2.5) we also have
63 0= / ', [¢(z)+¢(z){6—ﬁf{/—ﬁ(z3—3z) . 472 (24 — 622 +3)

75: (2% — 152% + 4522 — 15)} +o0 (i—)] dz
_ / ’ eb()dz + S / 2ha(2)9(z)dz + - 4?271 / ’ ha(2)$(2)dz

K* * 1
+ m/a- zhs(z)qb(z)dz +o0 (E) .

Since
| ahi@0()dz = ~{hy(a) + s o6 (=2.3,...),
it follows from (6.3) that

64)  0=0(a) ~ ) + gr={(ha(a) +3m(@))dla) = (ha®) + 3 (5)(0)

241}12 {(h4(a) + 4h2(a))¢(a) (h4(b) + 4h2(b))¢(b)}

%{(he(a) + 6ha(a))é(a) — (he(b) + 6hy(b))(B)} + 0 (;1;) ,
Putting
S et C
we have
a2
®(a) = &(—u) + %45(11) + C;—245(11) + ﬁhl(u)db(u) +o (%) ,

2
B(E) = B(u) + ~=o(u) + %(u) - () +o(1),
hy(@)$(a) = hy(—u)p(w) — ~Zhyn(~ u>¢(u>—% jr1(—u)e(u)

2

+ SEhjsa(—u)g(u) + 0 (%) (G=23,...),

By (D)6(b) = hy(w)(u) — ”7 (06— Zhya(w)(w)

2
+gihas) +o (1) (=23,

hence, by (6.2), letting u = u,/, we have

K
613/2n

H K? 1
~ Topen3(Uar2) = gz hs(tapa) +o (n)

1 1 1
(6.5) 0 =ﬁ(bl —ap)+ ;(bz —az) — 2—7;(@ +a})ha(uas2) +

(a1 + bl)h3 (’U,a‘
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a1 as ay 1
6l0) = 900) + L w60) + i) + S ha)o(w) +0 7).

B(b) = b(u) —’}—m( W)$(u) — Zhy(w)(u) + Eha(u)g(u) + 0 (%

b

hence, by (6.4)

153

(66) 0 "-=—\/_ a; + bl hl(u) n(az + bQ)hl(U) + %(ag -— b%)hg(u) — mhs u
_ —613/2n‘(a1 — by)ha(u) — —"—]3/2\/5’“(") - _—2[3/2\/;;(“1 — by)ha(u) + o (ﬁ)

where u = uq/2. From (6.5) we have
(67) a; = bl.

From (6.7) and the term of the order of 1/4/n in (6.6) we obtain

20,1h1(U) —_ 3—;§75{h3(u) -+ 3h1(U)} = 0,

hence

K
(68) a; = 6—1,375'11,
Since, by (6.6), (6.7) and (6.8)
(69) b2 = —a9,
it follows from (6.5), (6.7) and (6.9) that

K H K?
0= —2(12 —_ afhl( ) 313/2a1h3( ) 12I2h3( ) 36I3h5(u)’
hence
2 H

(6.10) as = K ——(4u® — 15u) — —— (u® — 3u).

7213 2412

From (6.7) to (6.10) we have

K K? H 1
+——6I3/2\/ﬁ =T (4u® — 15u) — oY —(u? —3u)+o(n)

2
b=u+ K u? — K (4u® — 15u) + il (u3—3u)+o(;1i).

61%/2\/n 7213 241%n

Thus we complete the proof.
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Proof of Theorem 2.1. Putting § = ), we see that Z;(6) = 0. Now we define Z,(0)
and Z3(0) as

Z5(0) = IZ{W log f(X;, 0)+I(0)}
o?
Z3(0) := "ﬁ 2:1: {ﬁ log f(X;,0) +3J(6) + K(o)} .

Putting § :=  + A, we have by the Taylor expansion
- A~ 7, A 1 ", n ", n
(6.11) 20) = 2:0) + DA+ 32 0)0° + L2, D)8 + 0,(V ")
= —vnl(0)A + Z,(0)A - ﬁ(w(é) + K(0)A? + lz:,,(é)A2
‘/_(H(e) +4L(6) + 3M(0) + 6N (6)) A% + 0,(v/nA®),

since (1/n) Y"1 ,(8*/06*) log f(X;, ) converges in probability to —H () — 4L(6) — 3M(6)
— 6N (0). On the other hand we obtain by the Taylor expansion

(6.12) a0(8) = ao(6) + @ (6) A + %ag (6) 47 + 0,(22).

Since I'(8) = 2J(0) + K(8), J(8) = L) + M(6) + N(6) and K'(9) = H(6) + 3N(9),
it follows from Lemma 2.1 that

o5(0) = 2T ¢ e (O +3NENI0) - KO)(I(0) + KO))

().

" u 9
ao(0) = — \/I(_{H(()) +2L(0) + 2M(6) + 5N (0)} + 1T572(5) —ma12J(0) + K(0)} + o(1).
From (6.12) we have
(6.13)
an(8) = —uIV/? K(9) u? — uA{2J(9) + K(§)} K*(9) 3_5y

olf) = —ul (0) HOON. 211/2(f) * 7215/2(é)n(4” 5u)

B H(6) o — 3u u?A A ~ U A A
s 3 s R UOHE) +3N0) - KORIG) + K6))
uA? o o o - uA?

{H(9) +2L(6) + 2M(0) + 5N ()} +

2 o(L
an/zg) 813729 { J(8) + K (6)} +o(n).



Letting Z,(0) = ao(#), we have from (6.11) and (6.13)

(6.14) A ) )
L %0 4 3IO)+KO) . Z:(6)_ _Z0)
i@ V@) 21(6) 2v/nl(f)
1 . o K@) 2J(8)+ K(8)
o106 ){H( 9) + 4L(6) + 3M(§) + 6N (8)} A3 — G )+ NIl ud
L KO gy HO sy,
72nf17/2(“) (= 15u) + o e
6n[3( ){I( 9)(H(0) +3N(0)) — K(6)(2J(6) + K(9))}u°A
1 A ; 5 e (2J0)+ K@)
+ WA {H(6) +2L(0) + 2M () + 5N () }uA s URT0) )
A2 s
+Op (ﬁ) + Op(A ),

hence, putting A = u/y/nI(f) + A" with A" = O,(1/n), we have

(615) A = Z,(0) L 30 )+K(9)u2+ Z3(0) Au_3J(é)+K(é)Z2(é)u2

nI3/2(B) 6n12() ny/nIs2(8) 6ny/nl3(d)

O K(e) (6p + {4J(0) + K(H)H{37(8) + K(6)} o3
on/nl?(6) % 12n/nl7/2()
Zs(0)u? u?
+ o —{H(O) +4L(6) + 3M () + 6N (6)} RT)
— _% U3 —_— u (0) u3 — U
T N Syl @)

1
6n/nl7/2(9)

1
+ _—_—
4ny/nI5/?(6)

1

5112,,3 L
ey O - KPP o (107).

{I(0)(H(6) + 3N (6)) - K(6)(2J(8) + K(O)}v’

{H(0) + 2L(6) + 2M (8 9) + 5N (8 9)}ul
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From (6.14) and (6.15) we obtain

Aol %0) 3O +KO) , _Z0) 1576 +4K@), o
nl(6) nI%2(0) 6n12(f) n\/—Is/z(g) 6nv/nl*(0) 2
Z3(0) 2 _ 1 " . .
t o Tl gn\/_p(g) {24n\/ﬁl5/2(é) (H(6) +4L(0) + 6N(0))
- 1 2/A A R 9, A 5
Tanvariag) o) 6) + 30J (K () + 5K (o))} u

5K2(0) H(0) ' ( 1 )
+ =~ = — U+ 0| ——=
24n/nI?/%2(0)  8n/nI%/%(6) nyn
=A(0,u) (say).
Hence we have as the upper confidence limit
6=06+A00,u),

where § = éML and © = u,/2. In a similar way to the above we obtain as the lower
confidence limit

0="0+ A, —u).

Thus we complete the proof.

Proof of Theorem 3.1. From (3.7) and (3.8) we have

(6.16)
1-a= [ 60) {1 DB ht) + et + o) + 1) +0 (D } *
Since

[ m@s0d = -ha@ee)  G=12.),

it follows from (6.16) that
(6.17)

1—a=<I>(b)—<I>(a)+Iﬁﬂ3

6v/n
+ D8 hy(8)6(6) + hs(@)6(0)} + - {=ma(8)8(8) + ha(@)0(a)} + 0 ( 1)

234

{=h2(b)¢(b) + ha(a)(a)} + S~ {—hs(5)$(b) + ha(a)$(a)}
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From (3.7) and (3.9) we obtain
(6.18)

IVIg I?B4
0= 6(6) ~ 9(0) + L2 ha(b)olb) — hs@)e(@)} + 5y (raBoL0) ~ (e}
+ D2 h0)6(0) — ha(a)6(@)} + - (ha0190) ~ ala)@)} +0 (1)
We put
oo (1) pius (L
(6.19) a=—u+%+;+o(g>, b= +\/ﬁ+n% (n),

where u = uqy/2. Since

B(0) = (-1 + 20w + 20 + o) +o 1),

n

30) = 0 + 20w + 20(0) — Srhu(wotw) +o (5).

1o (@)80) = —)9() — s (0)o(0) — s (0)0(0) + 5L hysa(—1)6(0
+o (%) G=23,...),

O0) = (600 — Ty (W8(0) = Zhys (W800) + 52016

+o(%) (1=23,...),

620)  0=—=(by — )+ (br — a2) = 5= (8 + aDu(w) +

it follows from (6.17) that

IVIBs
6n

(b1 + a1)hs(u)

Since

ol6) = 6000 + Sha(0)o(e) + Z80) + fra()ol) +0 (7).

B(b) = 6(w) — Zhy(w)g(u) ~ Eha(w)b(u) + ;—;hz(uﬁb(u) +o (%) ,

it follows from (6.18) that

(6.21) 0 =%(a1 + b1)hy(u) + %(a2 + bo)hy (u) + %(af — 6 ho(u)
IVIps IVIps 1
END ha(w)é(u) — —— (a1 — b1)ha(u)g(u) + o (ﬁ) :
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From (6.20) we have a; = ;. Considering the order of 1/y/n in (6.21), we obtain

a; = I——‘/ﬁjﬁ:}-(u2 - 3),

hence

(6.22) a; =b = @( 2-3).
Substituting (6.22) in (6.21) we have

(6.23) as = —b,.

Using (6.22) and (6.23), we obtain from (6.20)

0 = 2b, — b2hy(u) + . ‘/gﬁ%lhg,(u) _1 2ﬂ4h3( ) — 1333 “h(u) - —hl( )
hence
(6.24) 3ﬂ3( 2 _ g2, _ 3ﬂ3 25802 _ 3)(u® — 3u) + 2ﬁ“( 3 _ 3u)
I% (u 10u® + 15u) + {2111
= "3’63(23 3)+Iﬂ“( 3)+I7Tu

since hy(u) = u, hy(u) = u® — 3u and hs(u) = u® — 10u® + 15u. Since, by (3.3) and (3.4)

Br(6) = — (3T +2K) =~

B:(6) = 75(2J+ K)(J + K) - %(3H+ sL+12n) =2 ;44L,

it follows from (6.22) and (6.24) that

H—-4L

(6.25) bl = - 2412

(u2 - 3), b2 =

(u — 3u) — (2u — 3u) + %u

K
1211 144]3

From (6.19), (6.22), (6.23) and (6.25) we get the conclusion.
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