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Asymptotic Deficiency of Estimators under Models
with Nuisance Parameters

Kei Takeuchi and Masafumi Akahira

1. Introduction

In many cases of statistical inference, there is often raised the prob-
lem of "model selection", that is, to specify the appropriate model for the

observed data. In typical situations we have observations X X .,

10 eees X
which are assumed to be independently and identically distributed with a

parameter © to be estimated and also "shape" parameters El, ceey Ek (Iy1).

If we choose a "large" model, that is, with many shape parameters, the model

Willﬂﬁe more accurate, or it ﬁiii include a disfribution which is close to
the "true" distribution. On the other hand, however, the presence of many
nuilsance parameters would lncrease the error of estimation of 86 due to

the errors of those estimated nuisance parameters. This problem can not be
approached when we only consider the first order asymptotic efficiency, since
the presence of nuisance parameters will not affect the asymptotic variance
of the estimator of © , provided that the parameters are orthogonal. Hence
we have to consider the second (or the third) order asymptotic expansion

and discuss the problem in terms of "asymptotic deficiency”. And in this
term we may consider the trade-off between "accuracy" and "simplicity" of
the model. This problem is similar in nature to those problems discussed
by Akaike in his introduction of the ATIC, but here we restrict our attention
to the estimation of one parameter € and the results are completely dif-

ferent.
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2. Results

Suppose that it is required to estimate an unknown quantity 6 (real
valued) based on a sample of éize n whose values are denoted by Xl’ X2,
ceey Xn. We assume that Xi's are 1.i.d. according to some distribution
absolutely continuous with respect to a non-atomic o-finite measure u. It
is too natural to assume that the density function of Xi depends on 0 ,
but the value of O alone does not necessarily determine the density func-

tion completely. Therefore, we may choose one among several "models" in

which the density function is assumed to have the form

fi(xaeani) » 1 =1,...5k s

where ni's are "nuisance" parameters in each of the models. What we are
supposed to do is to choose one of the k-models defined above, and assuming
as if the "model" chosen were "true", to estimate 6. In this paper asymp-
totic properties of such procedures will be discussed.

First let us consider the case where the models are in "hierachical

order, that is, the nuisance parameter ni has the structure

(2.1) n; = (El,...,gi) , i=1,...,k

and the density function can be expressed as

fi(x,e;ni) = fo(x, 0, gl,...,gi, 0,...,0) ,
that is, we denote instead of (2.1) that
N: = (El,...,Ei, 0,...,0) .

The "true" density is denoted by p(x,0) which may not necessarily be within

the model. We define the values of parameters (8 ) by

0i*Moi



f {1og fi(x,eoi,nOi)} p(x,0)du

= sup j {1og £, (x,6" )0} p(x,0)an ,
. i
8',n,
i
that is, the density fi(x,GOi,nOi) is the one which is closest to the
true density within the i-th model.

We assume the following:

(A.2.1) The models are "unbiased" in the sense that 6y; =8 for all
values of 0.

0.

e moNo 0 0 ,
(Av2.2) Mos = (El,...,Ei, 0,...,0) , that is, Np; 1s determined by
0] 0

the first i coordinates of Mok = (El,...,Ek).

In order to simplify the notation we introduce the k-th model for

which the density function is denoted by
£(x, 8, EpsenesEy)
with the condition that

f(x, e, gl,...,gk_l, O) = fO(X, es gl,...’Ek'-l) H

£(x, 8, EoynesBl_s ED) = p(x,0)

for k > 2. The "largest" model thus defined includes the "true" distribu-
tion and the i-th model assumed corresponds to the hypothesis that

£i+1 = ... = Ek = 0. We assume the "usual" set of regularity conditions:

(a.2.3) {x]£(x, o, gl,...,gk) > 0} does not depend on 8, E s woes Epet



(A.2.4) For almost all x[ul, f(x, 6, ELseen

continuously partially differentiable in 6, gl, ces

(A.2.5) For each 8 ¢ O

9 0
0< Iy, = E{{%g log f(Xi, 60, El,...

36°

2
K 0
= —E[-——-log f(Xi, 60, El,...

]

,Ek) is three times

2

- o 0
= —E{ 5 log f(Xi, 60, F,l,..

(13

¢

< oo

(o =1, ..., k).

N Ap9e . . 0
0<I = m[{%g;-log f(Xi, 60, SEEEE

0
&)

(A.2.6) The parameters are defined to be "orthogonal' in the sense

that

0

E 8 log f(X, 6 0 £) =0 (a=
Laeagu og ] 0°? gla"'a k - a =

E——af— log £(X e. 0 Ol =0 (
Lagaagg og ° 0° gl"."gk - O,

g = l,...,k§ o # B) .

This condition is not really restrictive since we may redefine the sequence

of parameters to satisfy it.



(A.2.7) There exist

a2
9 O\) 3_ 0 0
000 = F| 362 Log £(X, 8, 7. "51;9{39 log £(X, 6, ‘51’---"Ek§] ;

ey
1]
=

2
_ 9 0 0
JOOOL = EL 892 log f(X eo, g R 3 %{ag log f£(X, eo, gl,...,gk}J :
JOaO = EL gengx— log f(X, eo, El,... ,Ek}{ae log f(X 60, E . ,EK}J 5

_ 5 ‘
_ ) : 0 0 d 0 0
Jchs = EL<—__363£0(' log f(X, Y ‘51"""51@{_858 log f(X, 65> gl,...,gk}J ;

kag

_ 3 0 0,3 _7
KOOO = [{86 lOg f(X) eo’ El,'°°:£k§ } H

and the following hold:

T a0 = 1?[———Wlog £ 0O N R }{ae log £(X; 855 £yl N

E——BE— log f(X, © Eo g ) -K :
3 ~96 > Upr SpocceSy 39500 Koo 3
136
-3 ;
E 2 lOg f(Xa eoa £l$"‘,g ) an 9
13673¢
[0
3
9 0 0
E lOg f(X, e s E ,"'9‘2 )jl = =J 5
Laeagi 0° =1 k oo

(o =1, ..., k).

By (A.2.6) and (A.2.T7) we have for a # B
E——§—3——1 £(x, 0, g0 I ——f—l £(x, 6., £° 0y
368E 38, 08 T P00 Spoeeeoby 309 18 T Ogs Epseenfy

0 0
{BEB log f(X, eoa Els--°a£k§] =0 ;



3 2
E 5552;52g log f(X, GQ, El,...,Ek)} + El{%@gg;-log (X, 84> gl,...,gki}

. {%%—-log (X, eo, gi,...,gﬁ}}} =0 .

o

Hence we obtain

0B, (v, B=1,...,k)

~

For each m=1, 2, ..., © 1is called an m~th order asymptotically me-

dian unbiased (or m-th order AMU) estimator if for any (60, gg,...,gg) it

holds that

lim n(m—l)/2 |prif<e} - %—l =0 ;
n-+o

lim 2™ 1/2 b5 6} - =0
nre® a

for some neighborhood of (60, ES,... ,gg).

Here we define classes ¢ and ID of estimators as follows. We call
the class € the class of estimators é\ which are third order AMU and for
which the distribution of /5(@-6) admits the Edgeworth expansion up to

the order n - and

n
where I denote the Fisher informstion and Ln = 2 log f(Xi, 0, El,...,ik)
i=1
and Q 1s a quantity of stochastic order 1. We say the estimator 6 Dbelongs

to the class ID if in the sbove we have



oL
n 2| _
E[KQ_Q]-—O’

where E stands for the asymptotic mean.
Now we consider the asymptotic case when n tends to be large under
the sequence of "contiguous" distributions, that is, the sequence of "true"

parameters satisfies the condition that

g, = o(—L) (@ =1,...,k)
Ja

and we express it as

t
£ =24 o(—l—) (a=1,...,k) .

& ‘/Hif T ’VIH 7

In reviewing these assumptions one can distinguish for the first k-1
parameters 515 cees gk-l and the last one Ek. For the first set, the
contiguity assumption is only natural, because otherwise the "smaller" mo-
dels would be surely rejected by any natural testing procedure. The last
assumption implies that the true distribution is close to the model assumed,
which is again natural when the sample size is large since otherwise the
model would be rejected; although it is difficult to discuss how to con-
struct a consistent test for the hypothesis for the "shape" of the distri-
bution. Here we simply assume it without any furthér detailed justification.

Let é, 21, ey ék be MLE's of 90, Eg, ey Eg under the true model
(60, Eg,...,&g). Since v

8 A A A _ .
ﬁlog f(Xia ea Ela"'agk) =03

e~

i=1

Il 113

a A ~ ~ _ _
3¢ log £(X;5 8, §15..008) =0 (a=1,...,k) ,
i=1l "“o



expanding them in the neighborhood of

(2.2)
0= z 55' Og f(X a gls"'agk)
i=1
_L1 7 0
= Z 35 log (X, 8, E15evnsE))

+

i=1\96

\2
aeaa log £(X,,

Z )

o=l i=1

+
In s

n 3
S Ak Tog—F{%: 5

0
(8, Eps -

1 B 2
E' 2 {;——-log f( 1, 09 El, ..,E :}/_(6 6] )

0
,Ek) we have

0 0 F 0
90> al,...,ak£>/ﬁ<aa-aa>

2

fa)

=640}
0

95&){n(6—

. .0 0 ~
0> al,...,aki}/5<e-eo)

0
5 Eﬂ et v
onva 1210963 i % k}
k k n 3
1
+ ) Z
2nvn o=1 B=1 i
k n 3
1 3 0
+—= ) 1 log £(X., 6., £0,...
n/n o=l i=1 30 ag i’ 707 71
3:1 a A ~ ~
(2.3) 0= =5 log £(X.5 8, E.5.0urE)
i=1 9%y * 1 k
1y 9 0
- /E iZl BEQ lOg f(Xla eoa gl’..',gk)
1 a 82 0 0 A 0
L (52 08 T B BB YRGS
o
1 B 3°
*= .Zl 555 Los T(X, 6
1§ fa3 0 0 2 0442
+ e 121 23 log £(X;, 845 Eqse.055, ) V0(E~E )]

o 1 3‘{33
onva i=1 aegaga

log £(X,, 6, gg,...,£§§{lﬁ(§-eo)}2

2 o]
0) (8,-E00} + o

1

n

/‘> ;

o5 g, o8 T 8o Eg»---asﬁg}{n<£a-a§><28-ag>}



((2.3) continued)

n 3
1 a O O ~ ~ o
+ — z log f(X., 8 > E 90'-35 i}{n(e‘e )(g -E )}
n/n i=l{368£§ i? 70* *1 k 0" a0,
co L),
P\/m
(@ =1,...,k)
Putting
n
= L 9 0 Oy .
ZO - /E lél 96 log f(Xi9 eo’ El’.'.’gk) 5
1 v 3 0 0
ZOL=—/-1_:1_— Z 35 108 T(X;5 845 £15e0008y) (0= 1,000 k)

o
n 2
= L 0 0 .
Zog = . ) {i log £(X;, 8, B serenby) + Ioé} :
n 1=

n .
-1 82 0 0 _ _
Zaa - /_ Z 2 Og f i? eo’ ng"'sEk) + Ia%} (a = l,...,k) H
. n _ u’
n 2 '
1 0 0
Zog = = L log £(X;, 85 Eqs-venfy) (@ = 1,...k) ,
Ca }/I_li=l BGBEOL 0 1 k

we see that they are asymptotically normal with mean 0. Since from (2.2)

and (2.3) we have

k

1 0
0 =7, + = (Zoo= ¥R Ipg) /a(8-6 o) * _/E 121 Zog, VR(E,-E,)
1 - A 2
+ ;/E (-3JOOO-KOOO){/H(9-GO)}

+—l—1f lf (=3 Mn(E -£2)(E,-£2)
2vn o=1 B=1 Oaf o “o’'”B ”B

il >3

(-3050)tn(B-00) (B-e9)} + o (L) 5

31 |-

o=1



+ == (=37

-K
> /1:1- oo T oot

Y V/R(E -EDYP + - (o3, ){Va(6-8)}
: 2vn

(800 (€00} + oy L)

n

1
+ = (-J
Ja oo

n

it follows that

(2.4)
A Z'O ZOZOO 1 k ZOLZOOL
/n(8-8,) = 3 +J_2+J_, ) =
00 n IOO n IOO o=1 o0
300 ¥ Xooo 2 1 ¥ ok 2028
- /— 3 ZO - /— z Z JOO(.B I T
2vn IOo 2vn IOO o=l R=1 a0 RB
Zo & Joao
- 2 ) T %t =
Vo IS o=l oo P\yn
00
A 1 (,, o000 * o002
IOO Ja I2 0700 2IOO 0
00
! § 24200 1 E % 5 Zofs %o E 000
vn Iyg \0<1 Toa 2 a=1 B=1 OaB IoaocIBB T00 021 Too
+ 0 (-L>
P\m
We put

o =L [gy _oo0” fo00 L2\ |
0 = 72\ 0o 2T, 0) 3
00

—

(2.5) _1 }f 26200, 1 lf li I %078 _ %o lz( J 000 7
: U =T T 5 L Joa8 T 1 T L al
=1 oo o=1 B=1 oo BR 00 o=1 “oo

10



Then we have

3.+ K
1 000 * Kooo 2
B(QyQy ) = 3 <%0Zoo - 2T Zo)

w
[t
+
=
~15
~15’
ey

- E(Z

L L
00 o=l R=1 IocaIBB
000 ¥ Ko00 % J000

2 LT
217, o=l “ao

3J

3
+ E(Zoza) .

Since

E(z 27 7 )=

0%0%00%00’ = Y000%00a ¥ Y000%00q

0 for a # B ;

E(2.2 2.7.)
0"a 8700 = .
IanOOO for a =8 ;

E(Z

>
0ZaZ00) = TooToaa 3

>
E(Z024%00) = To0%00q 3

0 a#B

2 2 _
E(zozazs) E(ZO)E(ZaZB) = L1 cor e .
: 00~ a0 >

3
E(ZOZa)

1]
o

H

11



we obtain

1

x v
o L A
B(Q%) = 37\ L T Uooona * Toa0’000)
IOO o=1 “00

o

0Qo I I _ 1 % JOocO 1 7
1 Iaa 000 a0 IOO 0=1 Iaa 00~ 00q,

L
T2

§ o
n

_ 3000 * Fogo § 1L
2Toy by Loq 0000

+ 2 00T q

39900 * Kooo ¥ Joun j}
= (6
o1 Io.

) I..I
KT

J + K k J

000 000 Z Qoo

3 o
hIOO 0=l oo

Since

000 * ®000 |

b=
O
|
1
N

=
e
0
N
3
~

it follows that the covariance of QO and Qk is given by

COV(QO,Qk) E(QpQ ) - E(QO)E(Qk)

=0 .

By a similar discussion to the one parameter case in the previous papers

(I31, [6], [7]1) we have the following theorems.

~

Theorem 2.1. Let 60 be the modified MLE of © din the class € and

any other estimator € of 0 in the class € , under the true model

12



(eo, gg,...,gﬁ). If the assumptions (A.2.1) ~ (A.2.7) hold, then the

following holds

Lim n[Pr{va|8,-0,| < a} - Pr{va|6-6,] < a}] 2 0

n->co

for all a > 0.

~

Theorem 2.2. Let eOO be the modified MLE in the class T and

any other estimator in the class D , under the true model (60, Eg,.

If the assumptions (A.2.1) ~ (A.2.7) hold, then the following holds

6 be

ED.

Ei[__n*n’[*Bp{—a*g**‘Zﬁ’(*é\m-96)**<*b*}*’—W'P*I’*{-8.*<**‘lr;(*§’—’967>**<f*:b}] 0

o -

for all a > 0 and 311 b > 0.

Since JOaB = JOBa ,» 1t follows that
Qk:l %ZaZOa_;}f IZ{J ZocZB_l kJOocOZZ
I00 o=1 Iococ 2 a=1 B=1 OB IocoaIBB IOO o= Iowc 0o
1 [ % 31 1 % Youn 2
=7 N Ml o P
00 \a=1 oo o=1 T
QoL
where
o J
oo
W =2 ) —I—BZB (a0 =1,...,k)

o Oc. 8=0 Igg

Next we shall calculate the value of E(Qi). We have

k 2 k k J
2 1 1 1 Oao, 2
(2.6) E(QC) = — (E —ZW | +E — 7 W — 7
% Ig (oc-—z-l Tog @ a) <0t£1 Toa @ “)(azl 1° °‘>

13



Since for .a:i B
(2.7) E(Zaws) =0,

it follows that

Hence we have

/
(2.8) E k
ok

Since

it follows that

K Kk J
1 Oaa 2
(2.9) E{ 2 ——ZWXX -——z)=o.
<a=1 Taw Y \a=1 12 ©

Since

2

L 2y, 2
E(Za) = 3(E(Za)) =3I, 3

2.2, _
E(ZaZB) = I Tag (o # B) ,

it follows that

2

kK J k 2 [k g
(2.10) E(Z e 22>=2 ) °2°‘°°+<z S
o=1 Iaoz o=l I,, \&=1 "oa

1L



From (2.6) and (2.8) ~ (2.10) we have

: , ;
k k J k J
2 1 1 2 1 1
(2.11) E(Qk) == z -I—_E(woc) + 3 z 020La + Tf( Z Ianc)
Too (071 "o a=l Ty o=l “aa
Since
2
a J
2 00,8
E(WS) = E(Z -] z)
* O g2 Tgg P
2
=M % JOOLB
T TOoe 0o >
=0 Tgp
where
- ) 9o 0 0
MOOL’OOL = E[{aeaa@ log £(X, eo, gl,...,gka ]
(¢ = 1,...,k) , it follows that
2
k J
2 1 1 0
(2.12) B(Q) = 5 (L 7 | Mogeon I“B
- 1 o=l oo B=0 “BB
00
2 2
1 X JOOtOL 1 X oo
t 2 ) >ty )
a=1 I o=l oo
6761
2 2
-1 }chM Jan_;lfJoag
72 oy Toq \ 0000 Too 28=1 IBB
00
2
k
+;ﬁ_ z Ol
=1 oo
Since
1 % 1 oo 2
E(Qk) =1 _E ! T My T3 ) Ly
00 o=l oo o=1 I
oo
I Janc
- s
2IOO o=1 qu

15




it follows from (2.11) and (2.12) that the variance of Q. 1is given by

>
k k I
- L =+ g 1 Do
(2.13) v(q) = 2 21 T W&) t3 ail 2
00 T Toa
o
=_1_§_1_<M _f.%l_ifﬁt)
go o=1 Iococ 0o, 0o IOO 2 B=1 IBB

Now we assume that we do not know the "true" model, i.e., we assume
A¥ A% *

that £§ #0. For each i=1, ...,k , let 6 , El, cens El be the MLEs
0
i’

of 8, Eg, cees Eg under the assumed model (60, Eg,...,& ,...,0)5

Since

g a A¥ L% A%
I g log £(X;, 8, &1,.0085, 0,..0,0) = 03
J=1
n
) A% A% A% _ _
JZ BE log f(Xi’ ) s gl’.."gi, o,--o,O) =0 (a = l,...,k) s

expanding them in the neighborhood of (60, gg,...,g E .,Eg) we have

i+1°"°

n a ~
(2.14) o0 = jzl 35 108 £(X55 087, & 5.0 0085, 0,...,0)
1 ~% 0
= Zy + E (Zgg =V Iyp) V/a(e -6 o) * :/Eazl Zgy, VA(EL-E])
k
i 0 1 : ~ o
- ;%la=§+l ZogVm E)) + o (=33 500~Kp00) 1¥0(8-6)}
1 1 i . A% 0, ,0% 0
+ QJE azl BZi (—Joas){n(ga-ga)(gs-gs)}
= lf lf (~T00g) (0 &5 EQ) z< ){n(87-0,) (£ -£0)}
+ -J g + = =J e - -
o/f o=i+1 B=i+1 0B " /H ap 040 =
k
1 1
- L (~3050) (n(8"-8,)E0) + o (—)
/H u=§+l an " n )

16



In a similar way as in case (2.3) we obtain

(o o)

[}
=
-

| 7,
(2.15) /E(E E ) = I——-+ o
Qo

=1 |-

P

If gg = t,//n (0 = i+1,...,k) , then we have from (2.14) and (2.15)

(2.16)

A 3.+ K
s _ % 1 000 ¥ 000 2
vn(6 -8) = 7=+ 2 <?0Zoo - Zo>

olos, 1 i+ & alg Zo 3 Jo00
-zl L ) 2y

1
a IOo <06=l Iococ o=1 B=1 OB IaaIBB OO o=1 Iococ

where

0700 2T 0

30,,, + K
6y = = <z 7 . 0007 7000 2}
00

1 ¥ JOocO
(2.17) L; fgg.a=§+1 T Zo - Zgo) (1= 1se..k-1), I, =0 ;

NEEE N

J t 5, .
2IOO o=i+l B=i+1 0B "a’f

Since E(Wa) =0 (a=1,...,k) and

17



E~1He

S

i 72 72 i
1 o 00 1
i1 1 e Oap IaaIBB 00 o=1 Iaa

Za2g  Zy L Jpq0 ,
a=1 “od o=1 B=1 a

i i J
S 1 1 _Oaa 2
=71 <ZI Zoawoa+2£ 2 Za>’
it follows that

(2.19) E(LiQi) =0,

L %
where a = =—— t J .
Too q=fs1 * %0

Hence it ismseen,thatggQi,,andAWLImwarefasymptoticallywindependen+ We

also have
k J 2
(2.20) B(12) = +-e[{( § (€7 _z
i 2 ! o\ I 0 0o,
I =i+1 00
00
[ X 2
I
N 12 E (%ZO B =§+1 tocZOo;>
00 L
RV S
(2.21) E(L,Q;) = - 5 t J - t b M. ,
i1 Igo I00 o=isl O 0a0 a=i+l B=i+1 o B 0a<0B
where

2 2
_ 9 0 0 3 0 0
MOa'OB = E{{%@gg; log f(X, 60, El,...,gkg}{éeaas log £(X, 60> gl?...,gki}}

(0,8 =1,...,k)

From (2.13) we obtain

L

(2.22) v(a,) = =3
IO

2
1 <M _Jowo 1 15‘:‘ JOaB)
1 Too \ Oe0n T T 7T 2 gE T

| [l e ]

0

18



From (2.20), (2.21) and (2.22) we have

_ ' 2 2
(2.23) V(Bi+Li+c) = V(Qi) + E(Li) + ¢
2 ¢ 2
k
RV (M Toao 1 § Joag
2 I 00 T2 T,
IOO a=1 “oq \ 0%°00 IOO 2 B=1 IBB

1 < % )2 E ,%
- t J + t t .M
I A .
- o 000 a=iel p=ie1 O 80008

H 5 2
L I, ot
¥\ omfay peieg “00BT078

Since

X T 3T+ K
1 000 000 * Koo
E(Z L 2L gly 000 , _ _
(ZgLag) = = o\ 2 ta<I Z, Zo%) <%ozoo T Z,

IOO o=i+1 00 00
1 i )
- 37 t J - + (I M . + 2J J ) s
Igo 000 0=l o 0ol o=+l o700 000 000" 0at0
k
where a = u=§+1 taJOQO /IOO and 4 = (3JOOO4-KOOO)/(EIOO) , it follows

AR
that E(ZOLQO) is not generally zero. Hence it is seen that the MLEs g,
N ~¥
gl, cees Ei belong to the class € but not the class D.

In (2.17) the term ¢ represents the asymptotic bias due to the
"incorrectness" of the assumed model, and since we can not assume that
ta(a = i+l,...,k) are known, there is no way of adjusting the bias. But in

many situations we may assume the following:

(A.2.8) g 0 (0,8 =1,...,k)

OaB =

which simplifies the matter.
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The above condition holds true if, for example, 6 is the location para-
meter and the density function is symmetric about the origin while El’ cees
gk are all "shape" parameters (including the scale) properly defined.

From (2.4), (2.5), (2.16), and (A.2.8) we have

| A Z0 1 1
(2.24) Ja(6-8,) = w2+ Lg + L Q,K fo (—) ,
00 v/n /n
A~ Zo 1 1 1
(2.25) v/n(6 —60) =T+ = Qo — (Q +L ) + o (—) ,
00 v/n n /n
where
i i J
1 1 1 000 2
Q ==—| J =zwu += ¥ /
+ IOO <a=1 Iaa oa 2 o=1 12 a>
Qo
with
J J
W= 2o, - 000 Zy - Qo 7z, (a=1,....k)
00 oL
and»

K 7
1 000 s _
L =7 §+1 ta<I Zg - ZO&) (1=1,00k-1), T = 0.

Also from (2.13), (2.23), (2.24), and (2.25) we have

2 2

k J J
_ 1 1 00,0 Caa | .
(2.26) v(Q) = 5~ Z T (Mo(,.od I T oI ) ’
00 = 00 ool

and
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(2.27)

2
2
- lf _ Jooo ,
oy a\ Oa IOO 0
k k
k 2
1) ) 1
= v(q) + 5 t_t,M -—-—< Y t.J >
2 . s o B Oae0B 3 _~ o 0a0
IO0 o=i+1l B=i+1 IOo o=i+1
1
= V(Qk) + i__-(dll d21) ®
00
where =
1 k k
(2.28) dpy = T a=§+1 B=§+l tybgMogeog (1 = Lseeesk=1), @ =0
1 k 2
(2.29) dgi T 1—2_ a=§+1 tonOaO (1= l""’fk'l)’ dek =0.
0]

It is to be remarked that when we consider only the symmetric intervals

and calculate the asymptotic value of probability of
Pr{/a|8-8| < a}

the term in the third cummulant does not affect the value of the probabi-
lity up to the order n*.

Hence it follows from (2.26) and (2.27) that in the asymptotic ex-
pansion of the probability for symmetric intervals differences are produced
only by the term Iob{V(Qi+Li) - V(Qk)} = d,,+d,; which corresponds to
asymptotic deficiency defined by Hodges and Lehamnn [5] (also see. [1], [2],

and [4]). TFurther, it is seen from (2.28) and (2.29) that dy; is an
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increasing function of i and dli is a decreasing function of i. From

the above it is calculated whether it is a plus or a minus to increase the

number of parameters in the model. Hence we have the following:

Theorem 2.3. Under the assumptions (A.2.1) ~ (A.2.8), if Eg = ta//ﬁ

~¥
(o = i+1,...,k) , then the asymptotic deficiency of the MLE 6 under the

A

0
assumed model (60, Eg,...,ii, 0,...,0) relative to the MLE 6 wunder the

0 0 . .
true model (60, El,...,Ek) is given by dli+d2i'
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