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On the Achievable Rate Region in the Optimistic Sense for Separate
Coding of Two Correlated General Sources∗
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SUMMARY This paper is concerned with coding theorems in the opti-
mistic sense for separate coding of two correlated general sources X1 and
X2. We investigate the achievable rate region Ropt(X1, X2) such that the
decoding error probability caused by two encoders and one decoder can be
arbitrarily small infinitely often under a certain rate constraint. We give an
inner and an outer bounds of Ropt(X1, X2), where the outer bound is de-
scribed by using new information-theoretic quantities. We also give two
simple sufficient conditions under which the inner bound coincides with
the outer bound.
key words: correlated sources, general source, optimistic coding, achiev-
able rate region, information-spectrum methods

1. Introduction

In information-spectrum methods that originate from [3]
and are described in detail in [4], fixed-length coding of a
general source X = {Xn}∞n=1 is one of fundamental problems,
where, letting X be a finite or countably infinite alphabet,
Xn is defined as a random variable taking values in Xn. The
class of general sources includes vast classes of sources such
as memoryless sources, Markov sources, stationary ergodic
sources and stationary sources. Therefore, coding theorems
for the class of general sources are valid to such classes of
sources.

In coding of a general source we can formulate a new
kind of coding problem in the optimistic sense. We are inter-
ested in the infimum of the rate R such that there exists a se-
quence {(ϕn,ψn)}∞n=1 of pairs of an encoder ϕn and a decoder
ψn satisfying for any γ > 0 both 1

n log Mn ≤ R+γ and εn ≤ γ
with a subsequence n = ni, i ≥ 1, where Mn and εn denote
the number of codewords and the decoding error probability,
respectively. This problem was first formulated by Vembu,
Verdú and Steinberg [11] and was discussed by Chen and
Alajaji [1]. Results related to the optimistic coding problem
can be found in [5], [9]. Quite recently, the author defined
new information-theoretic quantities and clarified their op-
erational meanings in the optimistic sense [6].

In this paper we discuss the achievable rate region in
the optimistic sense for separate coding of a pair (X1, X2) =
{(Xn

1 , X
n
2)}∞n=1 of two correlated general sources, where for

each k = 1, 2 Xn
k ∈ Xn

k and Xk denotes a finite or count-
ably infinite alphabet. We consider two encoders ϕ(k)

n :
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Xn
k → {1, 2, . . . ,M(k)

n }, k = 1, 2, for coding of Xn
1 and

Xn
2 , respectively, and a decoder ψn that outputs an estimate

(X̂n
1 , X̂

n
2) ∈ Xn

1 × Xn
2 of (Xn

1 , X
n
2) from two transmitted code-

words I(1)
n and I(2)

n (see Fig. 1). We are interested in the
achievable rate region Ropt(X1, X2) in the optimistic sense,
which is defined as the collection of all the rate pairs (R1,R2)
such that there exists a sequence {(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 satisfy-

ing 1
n log M(k)

n ≤ Rk + γ (k = 1, 2) and εn ≤ γ for a subse-
quence n = ni, i ≥ 1, where γ > 0 is an arbitrarily small
constant and εn denotes the decoding error probability.

We give an inner and an outer bounds of Ropt(X1, X2),
where the outer bound can be expressed by using new quan-
tities introduced in [6]. In particular, it is shown that the
outer bound is easily treated by characterizing the unachiev-
able region in the strong sense [6]. We also give two simple
sufficient conditions under which the outer bound coincides
with the inner bound.

The problem of separate coding of correlated sources
was first formulated by Slepian and Wolf [10] for the mem-
oryless case. A simple proof using the bin coding is given in
Cover [2]. The achievable rate region for general sources X1
and X2 in the ordinary sense is given in Miyake and Kanaya
[8]. The achievable rate region in [8] is extended to the case
of ε-error by Han [4]. However, to the author’s knowledge,
no coding theorem in the optimistic sense is obtained so far.
Our approach using the inner and the outer bounds clarifies
a difference between coding in the ordinary sense and in the
optimistic sense.

2. Problem Setup

In this section we consider separate coding of two corre-
lated sources [10]. The block diagram is given in Fig. 1. Let
(X1, X2) = {(Xn

1 , X
n
2)}∞n=1 be two correlated general sources.

For each n ≥ 1 Xn
1 and Xn

2 take values in Xn
1 and Xn

2, respec-
tively, where X1 and X2 denote finite or countably infinite
alphabets. Denote by PXn

1 Xn
2

and PXn
k |Xn

l
the joint probabil-

Fig. 1 Separate coding of two correlated general sources.
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ity distribution of (Xn
1 , X

n
2) and the conditional probability

distribution of Xn
k given Xn

l for (k, l) = (1, 2) and (2, 1).
For each k = 1, 2 we define an encoder k as a determin-
istic mapping ϕ(k)

n : Xn
k → M

(k)
n

def
= {1, 2, . . . ,M(k)

n }. In
addition, we define a decoder as a deterministic mapping
ψn : M(1)

n ×M(2)
n → Xn

1 ×Xn
2. The decoding error probabil-

ity caused by the triplet (ϕ(1)
n , ϕ

(2)
n ,ψn) is defined by

εn = Pr
{
ψn(ϕ(1)

n (Xn
1), ϕ(2)

n (Xn
2)) ! (Xn

1 , X
n
2)
}
,

where throughout this paper Pr{ · } denotes the probability
with respect to the joint probability PXn

1 Xn
2
. Hereinafter, we

call a sequence {(ϕ(1)
n , ϕ

(2)
n ,ψn)}∞n=1 of the triplets of two en-

coders ϕ(1)
n and ϕ(2)

n and a decoder ψn a code for short.
Miyake and Kanaya [8] obtained the achievable rate

region under the requirement of εn → 0 as n→ ∞.

Definition 1: A rate pair (R1,R2) is called achievable in the
ordinary sense if there exists a code {(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 sat-

isfying

lim sup
n→∞

1
n

log M(k)
n ≤ Rk, k = 1, 2 (1)

and

lim
n→∞

εn = 0, (2)

where log(·) = log2(·) throughout this paper. Define the
achievable rate region in the ordinary sense by

R(X1, X2) = Cl ({(R1,R2) :

(R1,R2) is achievable in the ordinary sense}),

where Cl (·) denotes the closure of the set.

Theorem 1 ([8]): It holds that

R(X1, X2) = S(X1, X2),

where

S(X1, X2) =
{
(R1,R2) : R1 ≥ H(X1|X2),

R2 ≥ H(X2|X1) and R1 + R2 ≥ H(X1, X2)
}

and

H(X1, X2) = inf
{
α :

lim inf
n→∞

Pr
{

1
n

log
1

PX1
nX2

n (Xn
1 , X

n
2)
≤ α
}
= 1
}
,

H(Xk|Xl) = inf
{
α :

lim inf
n→∞

Pr
{

1
n

log
1

PXk
n |Xl

n (Xn
k |Xn

l )
≤ α
}
= 1
}

for (k, l) = (1, 2) and (2, 1).

It is important to notice that (1) and (2) require that for
any γ > 0 1

n log M(k)
n ≤ Rk + γ (k = 1, 2) and εn ≤ γ for all

sufficiently large n.
In this paper, we are interested in the achievable rate

region in the optimistic sense defined as follows:

Definition 2: A rate pair (R1,R2) is called achievable in
the optimistic sense if there exists a code {(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1

such that for any γ > 0 there exists a subsequence {ni}∞i=1
satisfying

1
n

log M(k)
n ≤ Rk + γ, k = 1, 2 (3)

and

εn ≤ γ (4)

for all n = ni, i ≥ 1. Define the achievable rate region in the
optimistic sense by

Ropt(X1, X2) = Cl ({(R1,R2) :

(R1,R2) is achievable in the optimistic sense}).
Note that in Definition 2 (3) and (4) require that for

any γ > 0 1
n log M(k)

n ≤ Rk + γ (k = 1, 2) and εn ≤ γ simul-
taneously for infinitely many n. Hence, it is obvious that
that R(X1, X2) ⊂ Ropt(X1, X2). While the formula of the
infimum achievable rate in the optimistic sense for fixed-to-
fixed length coding of a general source X is given in [1], no
result is known on the achievable rate region Ropt(X1, X2) in
the optimistic sense.

We also consider the following region.

Definition 3: A rate pair (R1,R2) is called unachievable in
the strong sense if for any code {(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 satisfying

(1) it holds that

lim inf
n→∞

εn > 0. (5)

Define the unachievable rate region in the strong sense by

U(X1, X2) = {(R1,R2) :

(R1,R2) is unachievable in the strong sense}.
Notice that (5) means that εn is positive for all sufficiently
large n. This U(X1, X2) is closely related to Ropt(X1, X2)
and facilitates characterization of Ropt(X1, X2).

The following proposition is easily obtained from the
definitions of Ropt(X1, X2) andU(X1, X2).

Proposition 1: Define U†(X1, X2) = Cl (Uc(X1, X2)),
where the superscript c denotes the complement. Then, it
holds thatU†(X1, X2) ⊂ Ropt(X1, X2).

Proof: If (R1,R2) ∈ Uc(X1, X2), there exists a code
{(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 satisfying (1) and lim infn→∞ εn = 0.

Such a code {(ϕ(1)
n , ϕ

(2)
n ,ψn)}∞n=1 satisfies, letting γ > 0 be

an arbitrary constant, 1
n log M(k)

n ≤ Rk + γ, k = 1, 2, for all
sufficiently large n and εn ≤ γ infinitely often. This means
Uc(X1, X2) ⊂ Ropt(X1, X2) because (R1,R2) ∈ Uc(X1, X2)
is arbitrary. Since Ropt(X1, X2) is defined as the closure, the
claim of this proposition follows. !
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Remark: In [4], [8] the achievable rate region R(X1, X2) is
defined without taking the closure. In this paper, however,
R(X1, X2) and Ropt(X1, X2) are defined as the closures so
that we can ensure technical soundness especially of Propo-
sition 1 and discussions in Sect. 4.1.

3. Main Results

Before giving inner and outer bounds of Ropt(X1, X2) and
U(X1, X2), we define the three events for R ≥ 0 as follows:

E(1)
n (R) =

{
(xn

1, x
n
2) ∈ Xn

1 ×Xn
2 :

1
n

log
1

PXn
1 |Xn

2
(xn

1|xn
2)
≥ R
}
,

E(2)
n (R) =

{
(xn

1, x
n
2) ∈ Xn

1 ×Xn
2 :

1
n

log
1

PXn
2 |Xn

1
(xn

2|xn
1)
≥ R
}
,

E(3)
n (R) =

{
(xn

1, x
n
2) ∈ Xn

1 ×Xn
2 :

1
n

log
1

PXn
1 Xn

2
(xn

1, x
n
2)
≥ R
}
.

Furthermore, define

A(X1, X2) =
{
(R1,R2) : for any γ > 0

lim inf
n→∞

Pr{E(1)
n (R1 + γ) ∪ E(2)

n (R2 + γ)

∪ E(3)
n (R1 + R2 + γ)} = 0 holds

}
(6)

and

B(X1, X2) =
{
(R1,R2) : for any γ > 0 all of

lim inf
n→∞

Pr{E(1)
n (R1 + γ)} = 0,

lim inf
n→∞

Pr{E(2)
n (R2 + γ)} = 0,

lim inf
n→∞

Pr{E(3)
n (R1 + R2 + γ)} = 0 hold

}
. (7)

In fact, B(X1, X2) can be written in the following form.

Proposition 2: B(X1, X2) = S∗(X1, X2), where

S∗(X1, X2) =
{
(R1,R2) : R1 ≥ H∗(X1|X2),

R2 ≥ H∗(X2|X1) and R1 + R2 ≥ H∗(X1, X2)
}

and

H∗(X1, X2) = inf
{
α :

lim sup
n→∞

Pr
{

1
n

log
1

PXn
1 Xn

2
(Xn

1 , X
n
2)
≤ α
}
= 1
}
,

H∗(Xk |Xl) = inf
{
α :

lim sup
n→∞

Pr



1
n

log
1

PXn
k |Xn

l
(Xn

k |Xn
l )
≤ α

 = 1

}

for (k, l) = (1, 2) and (2, 1).

Proof: We first prove B(X1, X2) ⊂ S∗(X1, X2). Let
(R1,R2) be an arbitrary element of B(X1, X2). Then, letting
γ > 0 be an arbitrary constant, we have

lim inf
n→∞

Pr{E(1)
n (R1 + γ)}

= lim inf
n→∞

Pr
{

1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
≥ R1 + γ

}
= 0,

which implies that

lim sup
n→∞

Pr
{

1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
≤ R1 + γ

}
= 1 (8)

for any γ > 0. Note that we can use ≤ instead of <
in (8). Hence, it holds that H∗(X1|X2) ≤ R1 owing to
the definition of H∗(X1|X2). Similarly, we can obtain
H∗(X2|X1) ≤ R2 and H∗(X1X2) ≤ R1 + R2. Thus, we ob-
tain (R1,R2) ∈ S∗(X1, X2). Since (R1,R2) ∈ B(X1, X2) is
arbitrary, B(X1, X2) ⊂ S∗(X1, X2) is established.

Next, we proveS∗(X1, X2) ⊂ B(X1, X2). Fix (R1,R2) ∈
S∗(X1, X2) arbitrarily. Since R1 ≥ H∗(X1|X2) is guaranteed,
for any γ > 0 it follows that

Pr{E(1)
n (R1+γ)} = Pr

{
1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
≥R1+γ

}

≤ Pr
{

1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
> H∗(X1|X2) +

γ

2

}

= 1 − Pr
{

1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
≤ H∗(X1|X2) +

γ

2

}
.

By taking the limit inferior of both sides, we have

lim inf
n→∞

Pr{E(1)
n (R1 + γ)}

≤ 1−lim sup
n→∞

Pr
{

1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
≤H∗(X1|X2)+

γ

2

}

= 0

due to the definition of H∗(X1|X2). Since Pr{E(1)
n (R1 + γ)} ≥

0 for all n ≥ 1, this establishes lim infn→∞ Pr{E(1)
n (R1+γ)} =

0. Similarly, we can prove lim infn→∞ Pr{E(2)
n (R2 + γ)} = 0

and lim infn→∞ Pr{E(3)
n (R1 + R2 + γ)} = 0. Thus, we obtain

(R1,R2) ∈ B(X1, X2). Since (R1,R2) ∈ S∗(X1, X2) is arbi-
trary, S∗(X1, X2) ⊂ B(X1, X2) follows. !

Proposition 3: A(X1, X2) ⊂ B(X1, X2).

Proof: For any (R1,R2) ∈ A(X1, X2) it holds that

lim inf
n→∞

Pr{E(1)
n (R1 + γ)} = lim inf

n→∞
Pr{E(2)

n (R2 + γ)}

= lim inf
n→∞

Pr{E(3)
n (R1 + R2 + γ)} = 0

because all of E(1)
n (R1+γ), E(2)

n (R2+γ) and E(3)
n (R1+R2+γ)

are subsets of E(1)
n (R1 +γ)∪E(2)

n (R2 +γ)∪E(3)
n (R1 +R2 +γ).

Thus, the claim of this proposition follows immediately. !
Now, we are ready to state the main results.

Theorem 2: For any two correlated general sources X1 and
X2 we have

A(X1, X2)⊂U†(X1, X2)⊂Ropt(X1, X2)⊂B(X1, X2).

We use the following two lemmas in the proof of The-
orem 2.
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Lemma 1 ([4]): Let M(1)
n and M(2)

n be positive integers ar-
bitrarily given. Then, there exists a code {(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1

satisfying

εn ≤ Pr
{1

n
log

1
PXn

1 |Xn
2
(Xn

1 |Xn
2)
≥ 1

n
log M(1)

n − γ

or
1
n

log
1

PXn
2 |Xn

1
(Xn

2 |Xn
1)
≥ 1

n
log M(2)

n − γ

or
1
n

log
1

PXn
1 Xn

2
(Xn

1 Xn
2)
≥ 1

n
log M(1)

n M(2)
n − γ

}

+3 · 2−nγ (9)

for any γ > 0 and n ≥ 1.

Lemma 2 ([4]): Any code {(ϕ(1)
n , ϕ

(2)
n ,ψn)}∞n=1 satisfies

εn ≥ Pr
{1

n
log

1
PXn

1 |Xn
2
(Xn

1 |Xn
2)
≥ 1

n
log M(1)

n + γ

or
1
n

log
1

PXn
2 |Xn

1
(Xn

2 |Xn
1)
≥ 1

n
log M(2)

n + γ

or
1
n

log
1

PXn
1 Xn

2
(Xn

1 Xn
2)
≥ 1

n
log M(1)

n M(2)
n + γ

}

−3 · 2−nγ (10)

for all n ≥ 1 and γ > 0.

Proof of Theorem 2: Since Proposition 1 guaran-
tees U†(X1, X2) ⊂ Ropt(X1, X2), we have only to prove
A(X1, X2) ⊂ U†(X1, X2) and Ropt(X1, X2) ⊂ B(X1, X2).

First, we prove A(X1, X2) ⊂ U†(X1, X2). We use the
idea in [4, Theorem 7.4.1]. Fix γ > 0 arbitrarily. We first
show that (R1,R2) ∈ A(X1, X2) implies (R1 + 2γ,R2 + 2γ) ∈
Uc(X1, X2). Set M(1)

n = 2n(R1+2γ) and M(2)
n = 2n(R2+2γ).

Clearly, these M(1)
n and M(2)

n satisfy

lim sup
n→∞

1
n

log M(k)
n ≤ Rk + 2γ, k = 1, 2. (11)

Since Lemma 1 guarantees the existence of a code
{(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 satisfying (9). we have

εn ≤ Pr
{1

n
log

1
PXn

1 |Xn
2
(Xn

1 |Xn
2)
≥ R1 + γ

or
1
n

log
1

PXn
2 |Xn

1
(Xn

2 |Xn
1)
≥ R2 + γ

or
1
n

log
1

PXn
1 Xn

2
(Xn

1 Xn
2)
≥ R1 + R2 + 3γ

}

+3 · 2−nγ

≤ Pr{E(1)
n (R1 + γ) ∪ E(2)

n (R2 + γ)

∪E(3)
n (R1 + R2 + γ)} + 3 · 2−nγ.

Since (R1,R2) ∈ A(X1, X2) by assumption, by taking the
limit inferior of both sides we have

lim inf
n→∞

εn = 0,

which, together with (11), implies that (R1 + 2γ,R2 + 2γ) ∈

Uc(X1, X2). Since γ > 0 is arbitrary, by letting γ ↓ 0 we
can conclude that (R1,R2) ∈ U†(X1, X2). This completes
the proof ofA(X1, X2) ⊂ U†(X1, X2).

Next, we prove Ropt(X1, X2) ⊂ B(X1, X2). In view
of Proposition 2, it suffices to prove that any (R1,R2) ∈
Ropt(X1, X2) belongs to S∗(X1, X2), i.e., all of (a) R1 ≥
H∗(X1|X2), (b) R2 ≥ H∗(X2|X1), and (c) R1 + R2 ≥
H∗(X1, X1) are satisfied.

Hereinafter, we prove R1 ≥ H∗(X1|X2) by contradic-
tion. Assume that R1 < H∗(X1|X2) is satisfied. Then, there
exists a constant γ0 > 0 such that R1 ≤ H∗(X1|X2) − 3γ0. In
addition, we should note that H∗(X1|X2) can be expressed
in the following form:

H∗(X1|X2) = sup
{
β :

lim inf
n→∞

Pr
{

1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
≥ β
}
> 0
}

(see [6, Appendix]). Therefore, there exist a constant δ0 > 0
and an integer n0 such that

Pr
{1

n
log

1
PXn

1 |Xn
2
(Xn

1 |Xn
2)
≥ H∗(X1|X2) − γ0

}

≥ 2δ0 for all n ≥ n0. (12)

Furthermore, Lemma 2 tells us that for all n ≥ 1 any code
{(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 satisfies (10) with γ = γ0, which leads to

εn ≥ Pr
{1

n
log

1
PXn

1 |Xn
2
(Xn

1 |Xn
2)
≥ 1

n
log M(1)

n + γ0

}

− 3 · 2−nγ0 for all n ≥ 1. (13)

Now, assume that (R1,R2) is achievable in the opti-
mistic sense. Then, for any γ ∈ (0,min{γ0, δ0}) there ex-
ists a code {(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 with a subsequence {ni}∞i=1 sat-

isfying 1
n log M(1)

n ≤ R1 + γ ≤ H∗(X1|X2) − 3γ0 + γ ≤
H∗(X1|X2) − 2γ0 and εn ≤ γ for all n = ni, i ≥ 1. Then,
(13) leads to

εn ≥ Pr
{1

n
log

1
PXn

1 |Xn
2
(Xn

1 |Xn
2)
≥ H∗(X1|X2) − γ0

}

− 3 · 2−nγ0 for all n = ni, i ≥ 1, (14)

where the left side is less than γ for all n = ni, i ≥ 1, and
the right side is greater than δ0 (> γ) for all sufficiently large
n = ni due to (12). This is a contradiction.

Since this argument can be applied to establishing (b)
R2 ≥ H∗(X2|X1) and (c) R1 + R2 ≥ H∗(X1, X1) as well,
we can conclude that (R1,R2) ∈ S∗(X1, X2) provided that
(R1,R2) is achievable in the optimistic sense. This estab-
lishes Ropt(X1, X2) ⊂ S∗(X1, X2) because S∗(X1, X2) in-
cludes the boundaries. !

4. Discussions

4.1 Characterization of R(X1, X2)

So far, we have established an inner and an outer bounds
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of Ropt(X1, X2). In this subsection we revisit R(X1, X2) in
Definition 1 and characterize R(X1, X2) in the same manner
as Theorem 2.

To this end, define Ã(X1, X2) and B̃(X1, X2) by replac-
ing the limit inferiors in (6) and (7) with the limit superiors,
respectively. DefineW(X1, X2) by replacing the limit infe-
rior in (5) with the limit superior. Then, it is easily verified
that R(X1, X2) satisfies

Ã(X1, X2) ⊂W†(X1, X2) ⊂ R(X1, X2) ⊂ B̃(X1, X2)

similarly to the proof of Theorem 2, whereW†(X1, X2) de-
notes the closure of the complement ofW(X1, X2). We can
also verify that B̃(X1, X2) is expressed as S(X1, X2) in The-
orem 1 similarly to Proposition 2.

In the ordinary case, however, we can prove B̃(X1, X2)
⊂ Ã(X1, X2) as well and therefore W†(X1, X2) = R(X1,
X2) = S(X1, X2) without any assumption on (X1, X2). This
explains a reason why R(X1, X2) is expressed in a closed
form and is coincident with S(X1, X2).

In order to verify B̃(X1, X2) ⊂ Ã(X1, X2), let (R1,R2)
be an arbitrary element of B̃(X1, X2). By the definition of
B̃(X1, X2), it holds that lim supn→∞ Pr{E(k)

n (Rk + γ)} = 0 for
k = 1, 2 and lim supn→∞ Pr{E(3)

n (R1 +R2 + γ)} = 0. Then, we
have

lim sup
n→∞

Pr{E(1)
n (R1 + γ) ∪ E(2)

n (R2 + γ) ∪ E(3)
n (R1 + R2 + γ)}

≤ lim sup
n→∞

Pr{E(1)
n (R1 + γ)} + lim sup

n→∞
Pr{E(2)

n (R2 + γ)}

+ lim sup
n→∞

Pr{E(3)
n (R1 + R2 + γ)}

= 0, (15)

where the inequality follows from the union bound and
lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn for
any real-valued sequences {an}∞n=1 and {bn}∞n=1. Since the left
side is nonnegative, (15) implies that (R1,R2) ∈ Ã(X1, X2).
This establishes B̃(X1, X2) ⊂ Ã(X1, X2).

Notice that we cannot use the same argument to estab-
lish B(X1, X2) ⊂ A(X1, X2) because only the opposite side
the inequality holds with respect to the limit inferior. In
Example 3 in Sect. 4.2 we will see an example of (X1, X2)
satisfyingA(X1, X2) ! B(X1, X2).

4.2 Sufficient Conditions forA(X1, X2) = B(X1, X2)

In this subsection, we investigate sufficient conditions on
(X1, X2) under which A(X1, X2) = B(X1, X2) holds. The-
orem 2 and Proposition 2 guarantee that Ropt(X1, X2) =
U†(X1, X2) = S∗(X1, X2) under such sufficient conditions.

We begin with the simple sufficient condition given in
the following proposition. This sufficient condition is shown
to be valid by using the argument given in Sect. 4.1.

Proposition 4: If H(X1|X2) = H∗(X1|X2), H(X2|X1) =
H∗(X2|X1) and H(X1, X2) = H∗(X1, X2), then it holds that
Ropt(X1, X2) = U†(X1, X2) = S∗(X1, X2).

Proof: Clearly, S(X1, X2) = S∗(X1, X2) holds by

the assumption. So far, we have already established that
B(X1, X2) = S∗(X1, X2) in Proposition 2 and B̃(X1, X2) =
S(X1, X2) in Sect. 4.1. Hence, S(X1, X2) = S∗(X1, X2) im-
plies B(X1, X2) = B̃(X1, X2). In addition, we should note
Ã(X1, X2) ⊂ A(X1, X2), which immediately follows from
their definitions. Then, in view of Theorem 2 it holds that

Ã(X1, X2) ⊂ A(X1, X2) ⊂ U†(X1, X2)

⊂ Ropt(X1, X2) ⊂ B(X1, X2) = B̃(X1, X2). (16)

Since we have proved that Ã(X1, X2) = B̃(X1, X2) in
Sect. 4.1, the claim in this proposition follows. !

Example 1: Let PX1X2 be a joint probability distribution
on X1 × X2 satisfying H(X1X2) < ∞, where H(X1X2) de-
notes the joint entropy of X1 and X2. Let X1 and X2
be two correlated stationary memoryless sources induced
by PX1X2 . Clearly, by the weak law of large numbers we
have H(X1|X2) = H∗(X1|X2) = H(X1|X2), H(X2|X1) =
H∗(X2|X1) = H(X2|X1) and H(X1, X2) = H∗(X1, X2) =
H(X1X2) for these sources, where H(Xk |Xl) denotes the con-
ditional entropy of Xk given Xl for (k, l) = (1, 2) and (2, 1).
Hence, Proposition 4 guarantees that

R(X1, X2) = Ropt(X1, X2)
= {(R1,R2) : R1 ≥ H(X1|X2),R2 ≥ H(X2|X1)

and R1 + R2 ≥ H(X1X2)}.

Next, we introduce a new class of correlated sources.

Definition 4: Let X1 and X2 be two correlated general
sources. We say that (X1, X2) is synchronizing if for any
γ > 0 and η ∈ (0, 1) there exists a subsequence {ni}∞i=1 such
that all of

Pr
{

1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
≥ H∗(X1|X2) + γ

}
≤ η, (17)

Pr
{

1
n

log
1

PXn
2 |Xn

1
(Xn

2 |Xn
1)
≥ H∗(X2|X1) + γ

}
≤ η, (18)

Pr
{

1
n

log
1

PXn
1 Xn

2
(Xn

1 , X
n
2)
≥ H∗(X1, X2) + γ

}
≤ η (19)

are satisfied for all n = ni, i ≥ 1.

Note that owing to the definitions of H∗(X1|X2),
H∗(X2|X1) and H∗(X1, X2), each of the above three inequal-
ities in Definition 4 is satisfied infinitely often. The synchro-
nizing property in Definition 4 actually requires that all the
three inequalities are satisfied simultaneously with the same
subsequence {ni}∞i=1.

The following proposition indicates that the synchro-
nizing property of (X1, X2) is another sufficient condition
forA(X1, X2) = B(X1, X2).

Proposition 5: If (X1, X2) is synchronizing, Ropt(X1, X2)
=U†(X1, X2) = S∗(X1, X2).

Proof: In view of Theorem 2, it suffices to establish



KOGA: ON THE ACHIEVABLE RATE REGION IN THE OPTIMISTIC SENSE FOR SEPARATE CODING
2105

B(X1, X2) ⊂ A(X1, X2). Fix (R1,R2) ∈ B(X1, X2) arbitrar-
ily. Then, Proposition 2 tells us that all of R1 ≥ H∗(X1|X2),
R2 ≥ H∗(X2|X1) and R1 + R2 ≥ H∗(X1, X2) are satisfied.
Since (X1, X2) is assumed to be synchronizing, for any con-
stants γ > 0 and η ∈ (0, 1) there exists a subsequence {ni}∞i=1
satisfying

Pr{E(1)
n (R1 + γ)}

= Pr
{

1
n

log
1

PXn
1 |Xn

2
(Xn

1 |Xn
2)
≥ R1 + γ

}

≤ Pr
{

1
n

log
1

PX1
n |X2

n (X1
n|X2

n)
≥ H∗(X1|X2) + γ

}

≤ η for all n = ni and i ≥ 1.

Similarly, we have Pr{E(2)
n (R2+γ)} ≤ η and Pr{E(3)

n (R1+R2+
γ)} ≤ η for all n = ni, i ≥ 1. Therefore, it holds that

Pr{E(1)
n (R1 + γ) ∪ E(2)

n (R2 + γ) ∪ E(3)
n (R1 + R2 + γ)}

≤ Pr{E(1)
n (R1 + γ)} + Pr{E(2)

n (R2 + γ)}
+ Pr{E(3)

n (R1 + R2 + γ)}
≤ 3η for all n = ni and i ≥ 1,

which means that the limit inferior of the left side is equal to
zero. Since (R1,R2) ∈ B(X1, X2) is arbitrary, B(X1, X2) ⊂
A(X1, X2) follows. !

The notion of synchronizing property in Definition 4
leads to an interesting implication on inner bounds of
Ropt(X1, X2). Assume that for any γ > 0 there exists a
subsequence {ni}∞i=1 such that (17) and (19) hold for all
n = ni, i ≥ 1. Then, we can show that

V1(X1, X2) =
{
(R1,R2) : R1 ≥ H∗(X1|X2),

R2 ≥ H(X2|X1) and R1 + R2 ≥ H∗(X1, X2)
}

is a subset of Ropt(X1, X2). This fact is verified by check-
ing V1(X1, X2) ⊂ A(X1, X2) as follows. Fix (R1,R2) ⊂
V1(X1, X2) arbitrarily. Then, we have

Pr{E(1)
n (R1 + γ)} + Pr{E(3)

n (R1 + R2 + γ)} ≤ 2η

for all n = ni and i ≥ 1, and

Pr{E(2)
n (R2 + γ)} ≤ η for all sufficiently large n.

Thus, there exists an integer i0 such that

Pr{E(1)
n (R1 + γ) ∪ E(2)

n (R2 + γ) ∪ E(3)
n (R1 + R2 + γ)} ≤ 3η

for all n = ni and i ≥ i0,

which means the limit inferior of the left side is equal to
zero. On the other hand, we can similarly prove that

V2(X1, X2) =
{
(R1,R2) : R1 ≥ H(X1|X2),

R2 ≥ H∗(X2|X1) and R1 + R2 ≥ H(X1, X2)
}

is a subset ofA(X1, X2) with no assumption on (X1, X2).
Example 2: Let P(1)

X1 X2
and P(2)

X1X2
be the joint probability dis-

tributions on X1 ×X2 satisfying H(X(1)
1 |X

(1)
2 ) ≤ H(X(2)

1 |X
(2)
2 ),

H(X(1)
2 |X

(1)
1 ) ≤ H(X(2)

2 |X
(2)
1 ) and H(X(1)

1 X(1)
2 ) ≤ H(X(2)

1 X(2)
2 ) <

∞. Define (X1, X2) = {(Xn
1 , X

n
2)}∞n=1 as the pair of general

sources satisfying

PXn
1 Xn

2
(xn

1, x̃
n
1) =




∏n
i=1 P(1)

X1X2
(xi, x̃i), if n is odd,

∏n
i=1 P(2)

X1X2
(xi, x̃i), if n is even,

where xn
1 = (x1, . . . , x2) and x̃n

1 = (x̃1, . . . , x̃n). Since it holds
that H(X1|X2) = H(X(2)

1 |X
(2)
2 ), H(X2|X1) = H(X(2)

2 |X
(2)
1 ), and

H(X1X2) = H(X(2)
1 X(2)

2 ), we have

R(X1, X2) =
{
(R1,R2) : R1 ≥ H(X(2)

1 |X
(2)
2 ),

R2 ≥ H(X(2)
2 |X

(2)
1 ) and R1 + R2 ≥ H(X(2)

1 |X
(2)
2 )
}
.

In addition, since (X1, X2) is synchronizing and satisfies
H∗(X1|X2) = H(X(1)

1 |X
(1)
2 ), H∗(X2|X1) = H(X(1)

2 |X
(1)
1 ), and

H∗(X1X2) = H(X(1)
1 X(1)

2 ), we have

Ropt(X1, X2) =
{
(R1,R2) : R1 ≥ H(X(1)

1 |X
(1)
2 ),

R2 ≥ H(X(1)
2 |X

(1)
1 ) and R1 + R2 ≥ H(X(1)

1 X(1)
2 )
}
.

Figure 2 shows R(X1, X2) and Ropt(X1, X2) in this example.

Example 3: Suppose that P(1)
X1X2

and P(2)
X1X2

satisfy

H(X(1)
1 |X

(1)
2 ) ≤ H(X(2)

1 |X
(2)
2 ), H(X(1)

1 X(1)
2 ) ≤ H(X(2)

1 X(2)
2 ) < ∞,

and H(X(2)
2 |X

(2)
1 ) ≤ H(X(1)

2 |X
(1)
1 ) in Example 2. In this case,

we can easily verify from Theorems 1 and 2 that

R(X1, X2) =
{
(R1,R2) : R1 ≥ H(X(2)

1 |X
(2)
2 ),

R2 ≥ H(X(1)
2 |X

(1)
1 ) and R1 + R2 ≥ H(X(2)

1 X(2)
2 )
}

and

V(X1, X2) ⊂ Ropt(X1, X2) ⊂ S∗(X1, X2),

whereV(X1, X2) = V1(X1, X2) ∪V2(X1, X2),

Vi(X1, X2) =
{
(R1,R2) : R1 ≥ H(X(i)

1 |X
(i)
2 ),

R2 ≥ H(X(i)
2 |X

(i)
1 ) and R1 + R2 ≥ H(X(i)

1 X(i)
2 )
}

for i = 1, 2 and

Fig. 2 R(X1, X2) and Ropt(X1, X2) in Example 2.
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Fig. 3 S∗(X1, X2), V(X1, X2) and R(X1, X2) in Example 3. The broken
(purple) line and the dotted (green) line correspond to the boundaries of
V1(X1, X2) andV2(X1, X2), respectively.

S∗(X1, X2) =
{
(R1,R2) : R1 ≥ H(X(1)

1 |X
(1)
2 ),

R2 ≥ H(X(2)
2 |X

(2)
1 ) and R1 + R2 ≥ H(X(1)

1 X(1)
2 )
}
.

Figure 3 shows the relationship of S∗(X1, X2), V(X1, X2)
and R(X1, X2) in this example.

In Example 3, we can actually prove that Ropt(X1,
X2) = V(X1, X2) by using a contradiction argument.
Suppose that (R1,R2) ∈ S∗(X1, X2)\V(X1, X2) is achiev-
able in the optimistic sense. Then, there exists a code
{(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 satisfying 1

n log M(k)
n ≤ Rk + γ, k = 1, 2,

and εn ≤ γ for any γ > 0 with some subsequence {ni}∞i=1. We
first note that we can choose a sufficiently small γ0 ∈ (0, 1

3 )
such that (R1 + 2γ0,R2 + 2γ0) ∈ S∗(X1, X2)\V(X1, X2).
Then, the code {(ϕ(1)

n , ϕ
(2)
n ,ψn)}∞n=1 satisfies 1

n log M(k)
n ≤

Rk + γ0, k = 1, 2, and εn ≤ γ0 for a subsequence {ni}∞i=1.
However, since (R1,R2) ∈ S∗(X1, X2)\V(X1, X2) implies
that R2 + γ0 ≤ H(X(1)

2 |X
(1)
1 ) − γ0 and R1 + R2 + γ0 ≤

H(X(2)
1 X(2)

2 ) − γ0, due to the weak law of large numbers it
holds that Pr{E(2)

n (R2 + γ0)} ≥ 1− γ0 for all sufficiently large
odd n and Pr{E(3)

n (R1 + R2 + γ0)} ≥ 1 − γ0 for all sufficiently
large even n, which yields Pr{E(1)

n (R1 + γ0)∪ E(2)
n (R1 + γ0)∪

E(3)
n (R1 +R2+γ0)} ≥ 1−γ0 for all sufficiently large n. Then,

we can prove that εn ≥ 1 − γ0 − 3 · 2−nγ0 ≥ 1 − 2γ0 for
all sufficiently large n similarly to (13) and (14) by using
Lemma 2. This contradicts εn ≤ γ0 for all n = ni, i ≥ 1,
because γ0 ∈ (0, 1

3 ).

5. Conclusion

In this paper the achievable rate region Ropt(X1, X2) in the
optimistic sense for separate coding of two general sources
(X1, X2) is discussed. We have given an inner and an outer
bounds of Ropt(X1, X2), where the outer bound is described
by using new information-theoretic quantities. We have
clarified two sufficient conditions under which the inner
bound coincides with the outer bounds.

We conclude this paper by pointing out that extension

of the obtained results to the case of m (≥ 2) correlated gen-
eral sources is straightforward.
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