
JJIAM manuscript No.
(will be inserted by the editor)

Preference profiles determining the proposals in the
Gale-Shapley algorithm for stable matching problems

Noriyoshi Sukegawa · Yoshitsugu Yamamoto

Received: date / Accepted: date

Abstract Concerning the strategic manipulability of the the stable matching pro-
duced by the Gale-Shapley algorithm, Kobayashi and Matsui recently considered the
existence problem of a preference profile of women, that is, given a preference profile
of men, find a preference profile of women that makes the Gale-Shapley algorithm
produce the prescribed complete matching of men and women. Reformulating this
problem by introducing the set of proposals to be made through the execution of the
algorithm, and switching the roles of men and women, we consider the existence
problem of a preference profile of men and show that the problem is reduced to a
problem of checking if a directed graph is a rooted tree and it is solvable in poly-
nomial time. We also show that the existence problem of preference profiles of both
sexes when a set of proposals is given is solvable in polynomial time.

Keywords Stable matching · Gale-Shapley algorithm · Preference profile · Strategic
manipulability · Rooted spanning tree · Matroid intersection

1 Introduction

Those who triggered this work are Tomomi Matsui, who presented his work concern-
ing the strategic issue in the stable matching model, and Akihisa Tamura, who raised
an incisive question for his presentation. Matsui’s work has been published in [7],
where given a preference profile of men and a complete matching, they consider the
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problem of finding a preference profile of women such that the men-proposing Gale-
Shapley algorithm produces the given complete matching, and show that the problem
is solvable in polynomial time. They also consider several variations of the problem
in [8], and show that one of them results in NP-completeness.

Suppose that given a preference profile of women and a complete matching, we
are asked if there is a preference profile of men such that the men-proposing Gale-
Shapley algorithm produces the given complete matching. This problem has a trivial
solution, that is, each man just has to rank his assigned mate first in his preference list.
When we are given a preference profile of men, being given a complete matching is
equivalent to being given the set of women to whom each man proposes to during the
execution of the algorithm. Hence the problem that Kobayashi and Matsui consider
in [7], which is the first problem in [8], can be restated as “given a preference profile
of men and a set of proposals, find a preference profile of women such that during
the execution of the men-proposing Gale-Shapley algorithm each man proposes to
women prescribed by the set of proposals.” The aim of this paper is to answer the
question what if we switch the roles of men and women in this setting. We will show
that it reduces to a problem of determining if a directed graph is a rooted spanning
tree, hence is solvable in polynomial time.

The issue of strategical manipulability in the stable matching model has been
discussed in many publications such as [5], [10], and the references therein. To our
knowledge, the above problem setting is novel and will serve as a foundation stone for
further research on the strategical manipulability in the stable matching model. In the
next section, we describe the stable matching problem and the men-proposing Gale-
Shapley algorithm. In Section 3 we define the problem considered in this paper, and
then in Section 4 introduce the keystone of this paper named second suitor graph. The
solution as well as the polynomial solvability of the problem is shown in Section 5.
In Section 6 we discuss the existence of preference profiles of men and women when
a set of proposals is prescribed.

2 Stable matching and men-proposing Gale-Shapley algorithm

We denote the set of men and the set of women by M and W , respectively, and suppose
that they consist of the same number, say n, of persons, i.e., |M|= |W |= n. Each man
has a totally ordered list of all the women, which we call his preference list, and each
woman also has her preference list of all the men. We denote person u’s preference
list by Lu. We denote v�u v′ or v′ ≺u v when v is ranked prior to v′ in Lu, and v�u v′ or
v′ �u v when v = v′ or v�u v′. We will use the symbols Lu and �u interchangeably. We
also denote the set of preference lists of M and W by LM := [Lm]m∈M = [�m]m∈M and
LW := [Lw]w∈W = [�w]w∈W , and call them preference profile of men and preference
profile of women, respectively.

Definition 1 A complete matching is a mapping f : M∪W → M∪W such that

1. f (m) ∈W for all m ∈ M, and f (w) ∈ M for all w ∈W ,
2. w = f (m) if and only if m = f (w) for all (m,w) ∈ M×W .
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We say that f (u) is u’s mate in f and {u, f (u)} is a matched pair in f . We say {m,w}
with m ∈ M and w ∈W is an unmatched pair in f when w 6= f (m).

Definition 2 An unmatched pair {m,w} in a complete matching f is said to be a
blocking pair for f if and only if

w �m f (m) and m �w f (w).

Definition 3 A complete matching f is said to be a stable matching if and only if it
admits no blocking pairs.

Gale and Shapley [4] showed that there is a stable matching for any given pair of
preference profiles LM and LW . Their constructive proof is based on an algorithm
now known as the Gale-Shapley algorithm which repeats a proposal followed by
an engagement or a decline. The algorithm has two variations: men-proposing and
women-proposing depending on which sex proposes to the other sex. The version we
consider in this paper is the men-proposing Gale-Shapley algorithm (mGS for short)
described below, where k is the iteration counter which will be used in the proof of
Lemma 5.

Men-proposing Gale-Shapley algorithm (mGS)

Step 0: Set FM := M, FW := W , Π = /0, µ(u) = u for all u ∈ M∪W , and k := 0.
Step 1: If FM = /0, then output µ and Π , and stop.
Step 2: Choose m ∈ FM , let

w := max
�m

{
w′ ∈W | (m,w′) 6∈ Π

}
,

Π := Π ∪{(m,w)}.

Step 3:
3a: If w ∈ FW , then set

µ(m) := w and µ(w) := m,

FM := FM \{m} and FW := FW \{w},

and go to Step 4.
3b: If w 6∈ FW , let m′ := µ(w).

3b1: If m �w m′, then set

µ(m) := w and µ(w) := m,

µ(m′) := m′,

FM := FM \{m}∪{m′},

and go to Step 4.

3b2: If m ≺w m′, go to Step 4.
Step 4: Update k := k +1 and return to Step 1.
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In the execution of the algorithm each person is either engaged or free. In the
above description FM and FW are the sets of men and women who are free at the
current iteration, respectively, and Π is the set of ordered pairs of man m and woman
w such that m has proposed to w up to the current iteration. A man m who is free is
chosen in Step 2, and then let him propose to his most favorite woman w whom he
has not yet proposed to. If the woman w prefers the proposer m to her current mate m′,
she breaks her current engagement, sets her ex-mate m′ free and becomes engaged to
m in Step 3.

Definition 4 For a given pair of preference profiles LM and LW , we denote the
matching µ and the set of proposals Π that the mGS produces by µ(LM,LW ) and
Π(LM,LW ), respectively.

It is known that the matching µ(LM,LW ) as well as the set of proposals Π(LM,LW )
is independent of the choice of a man m ∈ FM in Step 2. See Theorem 1.2.2 in Gus-
field and Irving [5] or Lecture 2 in Knuth [6].

Definition 5 For a nonempty subset P of M×W let

PM(m) := {w ∈W | (m,w) ∈ P} for m ∈ M,

PW (w) := {m ∈ M | (m,w) ∈ P} for w ∈W .

We call P ⊆ M×W a set of proposals when PM(m) and PW (w) are nonempty for all
m ∈ M and w ∈W .

Since each man proposes to women who are successively less preferred by him,
and each woman who receives a proposal compares her current mate with the pro-
poser and becomes engaged to a more favorite man, we readily obtain the following
lemma.

Lemma 1 For LM := [�m]m∈M and LW := [�w]w∈W , let µ := µ(LM,LW ) and
Π := Π(LM,LW ). Then

µ(m) = min
�m

Π M(m) for m ∈ M,

µ(w) = max
�w

ΠW (w) for w ∈W ,

where min�m Π M(m) is the woman who is ranked lowest in the set Π M(m) according
to man m’s preference �m, and max�w ΠW (w) is the man who is ranked highest in
the set ΠW (w) according to woman w’s preference �w.

3 Problem description

We consider the following problem in this paper.

Input : A preference profile of women LW := [�w]w∈W and a set of proposals
P ⊆ M×W .

Output : If there is a preference profile of men LM such that Π(LM,LW ) = P,
then output LM . Otherwise, return “none exists.”
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Now for given LW := [�w]w∈W and P ⊆ M×W , let

α(w) := max
�w

PW (w) (1)

for w ∈ W . If α(w) = α(w′) for different women w and w′, the mGS would not
produce P no matter what preference profile of men is given. Henceforth we assume
that α : W → M is an injection, i.e.,

α(w) 6= α(w′) whenever w 6= w′. (2)

Since M and W are of the same cardinality, the woman w such that α(w) = m is
uniquely determined for each m ∈ M, hence we denote it by α−1(m). If the mGS
produces P for some LM := [�m]m∈M , it satisfies the conditions

α−1(m) = min
�m

PM(m), (3)

and
α−1(m) �m w′ for all w′ ∈W \PM(m). (4)

Namely, the preference list of m should be as shown in Table 1.

Table 1 Man m’s preference satisfying (3) and (4)

PM(m)\{α−1(m)} �m α−1(m) �m W \PM(m)

A natural question would be whether such a preference profile of men LM always
gives the prescribed set of proposal P. In other words, “are the conditions (2), (3) and
(4) on LM sufficient for the mGS to produce P? If not, what other conditions are
needed?” The following small example shows that the conditions (2), (3) and (4) are
not sufficient.

Example 1 Let M := {1,2}, W := {a,b}, LM and LW be given in Table 2, and
P := {(1,a),(1,b),(2,a),(2,b)}. The underlined elements denote the prescribed pro-
posals P and the boldfaced figure in each row of LW is α(w), and the boldfaced al-
phabet in each row of LM is α−1(m). Note that this instance satisfies the conditions
(1), (2), (3) and (4). The mGS, however, will produce Π(LM,LW ) = {(1,b),(2,a)},
which is different from the prescribed proposals P.

Table 2 LM and LW

m LM
1 b a
2 a b

w LM
a 1 2
b 2 1
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4 Second suitor graph

Definition 6 For woman w ∈W with |PW (w)| ≥ 2 let

β (w) := max
�w

(PW (w)\{α(w)}) .

Definition 7 Let G(LW ,P) be a directed bipartite graph with node set (M∪{r})∪W
and arc set consisting of the following three disjoint arc sets:

A := {(w,α(w)) ∈W ×M | |PW (w)| ≥ 1},
B := {(β (w),w) ∈ M×W | |PW (w)| ≥ 2},
R := {(r,w) ∈ {r}×W | |PW (w)| = 1}.

We call G(LW ,P) the second suitor graph for LW and P.

Definition 8 For an arc (u,v) of a directed graph, we call u and v endpoints of the
arc, and we say that the arc emanates from node u and terminates at node v. The
arc (u,v) is an outgoing arc of node u and an incoming arc of node v. The indegree
of node u, denoted by indeg(u), is the number of incoming arcs of node u, and its
outdegree, denoted by outdeg(u), is the number of outgoing arcs.

Lemma 2 Suppose that (2) holds. Then the second suitor graph G(LW ,P) has the
following properties.

1. indeg(r) = 0,
2. indeg(w) = outdeg(w) = 1 for all w ∈W, and
3. indeg(m) = 1 for all m ∈ M.

Proof Each node w ∈W has only one outgoing arc (w,α(w)), and only one incoming
arc which is either (β (w),w) or (r,w) depending on the cardinality of PW (w). Thus
both of indeg(w) and outdeg(w) are one. The indegree of node m ∈ M is clearly one
from (2). ut

Definition 9 A sequence of arcs a1,a2, . . . ,a` of a directed graph is said to be a path
when ` ≥ 2, and ai has one endpoint in common with ai−1 and its other endpoint in
common with ai+1 for i = 2,3, . . . , `−1. A path is said to be a cycle when the two end
nodes of the path are the same node. When arc ai+1 emanates from the node that ai
terminates at for i = 1,2, . . . , `−1, we call them a directed path and a directed cycle,
respectively.

Example 2 The second suitor graph G(LW ,P) for the preference profiles of Exam-
ple 1 consists of two components: one being the root r alone, and the other being a
directed cycle passing the nodes a,1,b,2 and a in this order.

Definition 10 A node v of a directed graph is called a root if all the nodes are reached
by directed paths starting from v. A rooted spanning tree is defined as a spanning tree
that has a root. For each node u of a rooted spanning tree, there is a unique directed
path from the root to u. The number of arcs on this directed path is called the height
of node u and denoted by h(u). The node right prior to u on this directed path is called
a predecessor of u and denoted by pred(u), and the node right after u on this directed
path is called a successor of u and denoted by succ(u).
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The following lemma is among the equivalent characterizations of rooted span-
ning tree1 given in Berge [1].

Lemma 3 (Theorem 13 in Chapter 3, Berge [1]) A directed graph is a rooted span-
ning tree with root v if and only if

1. indeg(v) = 0,
2. indeg(u) = 1 for all nodes u 6= v, and
3. the graph contains no cycles.

Lemma 4 The second suitor graph G(LW ,P) is a rooted spanning tree with root r
if and only if it contains no directed cycles.

Proof Since the “only if” part is trivial, we prove the “if” part. Suppose G(LW ,P) is
not a rooted spanning tree. Then by Lemma 2 and Lemma 3 it contains a cycle, say C.
If C contains the root r, whose indegree is zero, C has a node whose indegree is more
than one. This contradicts Lemma 2. Then the node set of C is contained in M ∪W .
Since the indegrees are one for all the nodes of M∪W by Lemma 2, this implies that
the cycle C is a directed cycle. ut

5 Existence of men’s preference profile

Lemma 5 Suppose that for a given set of proposals P ⊆ M ×W there is a prefer-
ence profile of men LM such that P = Π(LM,LW ). Then the second suitor graph
G(LW ,P) is a rooted spanning tree.

Proof We will show that the existence of a directed cycle in the second suitor graph
G(LW ,P) would lead to a contradiction. Denote a directed cycle by

(w1,m1),(m1,w2), . . . ,(mi−1,wi),(wi,mi),(mi,wi+1), . . . ,(w`,m`),(m`,w1).

Then mi = α(wi) for i = 1,2, . . . , ` and mi = β (wi+1) for i = 1,2, . . . , `−1 and m` =
β (w1) by the construction of G(LW ,P). Let pi be the tally of the iteration counter k
when mi proposed to wi, and let ri be the tally of k when mi−1 was rejected by wi in
the execution of the mGS, where we use the convention that r1 denotes the tally of k
when m` was rejected by w1. Then

pi > ri+1 for i = 1,2, . . . , `−1,

p` > r1,

ri ≥ pi for i = 1,2, . . . , `.

The first and the second inequalities follow from (3). The third inequality is due to the
fact that wi rejects mi−1 = β (wi) only because of the engagement to or the proposal
from mi = α(wi). Then we obtain

p1 > r2 ≥ p2 > r3 ≥ p3 > · · · ≥ p`−1 > r` ≥ p` > r1 ≥ p1,

which is a contradiction. ut
1 A rooted spanning tree is called an arborescence in [1].
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Remark 1 The rotation in a complete matching, one of the key components intro-
duced in [5], should be defined as follows when the roles of men and women are
switched. Let f denote a complete matching, and let

s f (w) := max
�w

{m ∈ M | w �m f (m)} and next f (w) := f (s f (w)).

Then a sequence of matched pairs (w0,m0),(w1,m1), . . . ,(wr−1,mr−1) should be called
a rotation in f if

wi+1 = next f (wi) for i = 0,1, . . . ,r−1

with the convention that wr = w0. When the graph G(LW ,P) contains a directed cycle
(w0,m0),(m0,w1),(w1,m1), . . . ,(wr−1,mr−1),(mr−1,w0), we will see that the reverse
sequence (wr−1,mr−1),(wr−2,mr−2), . . . ,(w1,m1),(w0,m0) of woman-man pairs cor-
responds to a rotation in the complete matching α−1. Since we lack men’s prefer-
ence profile LM , we replace the condition w �m f (m) in the definition of s f (w) by
w∈PM(m)\{α−1(m)}. Note that this condition is equivalent to m∈PW (w)\{α(w)}.
By the construction of the second suitor graph G(LW ,P),

mi = β (wi+1) = max
�wi+1

(PW (wi+1)\{α(wi+1)}) ,

which means that mi = s f (wi). Hence we obtain

next f (wi+1) = f (s f (wi+1)) = f (mi) = wi,

implying that (wr−1,mr−1),(wr−2,mr−2), . . . ,(w1,m1),(w0,m0) is a rotation.

Now suppose that we are given LW and P such that the second suitor graph
G(LW ,P) is a rooted spanning tree. Then indeg(m) = 1 for each node m ∈ M, that is,
α(w) 6= α(w′) whenever w 6= w′. Therefore the mapping f̂ : M∪W → M∪W defined
as follows is a complete matching:

f̂ (w) := α(w) for w ∈W

f̂ (m) := α−1(m) for m ∈ M.

Note that α−1(m) = pred(m), the predecessor of m in G(LW ,P). For the complete
matching f̂ defined above, let L ∗

M = [�∗
m]m∈M be an arbitrary preference profile of

men satisfying the following two conditions (compare with Table 1):

w �∗
m f̂ (m) for all w ∈ PM(m)\{ f̂ (m)}, (5)

f̂ (m) �∗
m w′ for all w′ ∈W \PM(m). (6)

Lemma 6 Suppose that the second suitor graph G(LW ,P) is a rooted spanning tree.
Let L ∗

M := [�∗
m]m∈M be a preference profile of men satisfying the conditions (5) and

(6), and let f ∗ := µ(L ∗
M,LW ). Then it holds that

f ∗(m) �∗
m f̂ (m) for all m ∈ M.
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Proof Since the complete matching f ∗ is a men-optimal stable matching (see, e.g.,
Theorem 1.2.2 in [5]), it suffices to show that f̂ is a stable matching with respect
to L ∗

M and LW . Let {m,w} be an arbitrary unmatched pair in f̂ and suppose that
w �∗

m f̂ (m). Then by (5) we see that w ∈ PM(m), which implies that m ∈ PW (w).
Therefore f̂ (w) = α(w) = max�w PW (w)�w m. This means that there are no blocking
pairs for f̂ , hence f̂ is stable. ut

Theorem 1 Let LW be a preference profile of women, and P ⊆ M ×W be a set of
proposals. There is a preference profile of men L ∗

M such that Π(L ∗
M,LW ) = P if

and only if the second suitor graph G(LW ,P) is a rooted spanning tree. In this case,
Π(L ∗

M,LW ) = P holds if and only if L ∗
M satisfies (5) and (6).

Proof We have seen that if there is L ∗
M such that Π(L ∗

M,LW ) = P, then G(LW ,P)
is a rooted spanning tree, and also that L ∗

M satisfies (5) and (6). We then suppose that
G(LW ,P) is a rooted spanning tree, and will show that µ(L ∗

M,LW ) = f̂ for any L ∗
M

satisfying (5) and (6). This implies the desired result that Π(L ∗
M,LW ) = P by the

construction of L ∗
M .

Denoting µ(L ∗
M,LW ) by f ∗ for the sake of simplicity, we will prove f ∗(u) =

f̂ (u) by the induction over the height h(u) of node u on G(LW ,P). Note that h(u) is
odd when u ∈W , and even when u ∈ M.

– For w ∈W with h(w) = 1:

Let m′ := f ∗(w). Then by Lemma 6 we have w = f ∗(m′) �∗
m′ f̂ (m′). This means

that w ∈ PM(m′) by (6), hence m′ ∈ PW (w). Since h(w) = 1, i.e., an arc comes in
from the root r, PW (w) is a singleton set of f̂ (w) by Definition 7. Therefore we have
m′ = f̂ (w).

– For m ∈ M:

Suppose that f ∗(w) = f̂ (w) for all w ∈W with h(w) = h(m)−1 as the induction
hypothesis. Let w := f̂ (m). Then h(w) = h(m)−1 and we have f ∗( f̂ (m)) = f ∗(w) =
f̂ (w) = f̂ ( f̂ (m)) = m. Since f ∗ is a complete matching, we obtain f̂ (m) = ( f ∗ ◦
f ∗)( f̂ (m)) = f ∗( f ∗( f̂ (m))) = f ∗(m).

– For w ∈W with h(w) ≥ 3:

Let m := pred(w) in G(LW ,P). Then m 6= f̂ (w), since otherwise the graph G(LW ,P)
would contain a directed cycle (w,m),(m,w), contradicting the assumption. Since f̂
is a complete matching, f̂ (m) 6= w. Since m ∈ PW (w), we have

w ∈ PM(m)\{ f̂ (m)}.

Therefore by (5) we obtain
w �∗

m f̂ (m).

By the induction hypothesis f ∗(m) = f̂ (m), which we have seen is different from
w. This means that m was rejected by w in the execution of the mGS. Therefore
f ∗(w)�w m. Namely, letting M�wm := {m′ ∈ M | m′ �w m}, we have f ∗(w)∈ M�wm.

Now let m∗ := f ∗(w) and we will show that m∗ 6= f̂ (w) leads to a contradiction.
Since M�wm ∩PW (w) = { f̂ (w)} and m∗ ∈ M�wm, we have that m∗ 6∈ PW (w), which
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implies w 6∈ PM(m∗). Then by (6) we have

f̂ (m∗) �∗
m∗ w = ( f ∗ ◦ f ∗)(w) = f ∗( f ∗(w)) = f ∗(m∗).

This contradicts Lemma 6. Thus we have the equality that f ∗(w) = f̂ (w). ut

Example 3 Let M := {1,2,3,4,5,6,7} and W := {a,b,c,d,e, f ,g}, and let LW be
given in the left table of Table 3, where the elements of PW (w) are underlined and
α(w) is in bold face for each w ∈W . An example of men’s preference profile L ∗

M sat-
isfying (2), (3) and (4) is given in the right table. The second suitor graph G(LW ,P)
is shown in Figure 1.

Table 3 LW and L ∗
M

w LW
a 1 2 3 4 5 7 6
b 6 2 1 3 4 7 5
c 3 1 6 5 2 7 4
d 7 4 3 6 2 5 1
e 2 7 5 1 6 3 4
f 4 1 3 6 7 2 5
g 1 7 6 4 5 3 2

m L ∗
M

1 d a b c e f g
2 d g b a c e f
3 a b d e g c f
4 b g d a c e f
5 a d g e b c f
6 e g f a b c d
7 a g b c d e f

1

4

2

3

5

6

7

a

d

b

c

e

f

g

r

M W

Fig. 1 Second suitor graph for LW and P
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6 Existence of preference profiles of men and women

We have considered the existence problem of a preference profile of men LM when a
preference profile of women LW and a set of proposals P are given in the preceding
sections. A natural question to pose would be whether there is a pair of LM and LW
that makes the mGS produce P and/or a complete matching f . We will first show in
the following subsection that the problem is solvable in polynomial time when f as
well as P is given. Then we will show it is still polynomially solvable when P alone
is given.

6.1 Case where f and P are given

Corollary 1 Let LM and LW be preference profiles of men and women, respectively,
and let µ := µ(LM,LW ) and Π := Π(LM,LW ) be the output of the mGS. Let L ∗

M =
[�∗

m]m∈M be an arbitrary preference profile of men such that

w �∗
m µ(m) �∗

m w′ for all w ∈ ΠM(m)\{µ(m)} and w′ ∈W \ΠM(m) (7)

holds for all m∈M. Then µ(LM,LW )= µ(L ∗
M,LW ) and Π(LM,LW )= Π(L ∗

M,LW ).

Proof The second suitor graph G(LW ,Π(LM,LW )) is a rooted spanning tree by
Theorem 1. Then, by the same theorem, the mGS produces Π(LM,LW ) as well as
µ(LM,LW ) for any preference profile of men L ∗

M satisfying (7). ut

Now suppose that we are given a complete matching f and a set of proposals P
such that

(m, f (m)) ∈ P for all m ∈ M. (8)

If there is a pair of preference profiles LM and LW that makes the mGS produce f
and P, LM must satisfy

w �m f (m) �m w′ for all w ∈ PM(m)\{ f (m)} and w′ ∈W \PM(m). (9)

Now let L ∗
M be an arbitrary preference profile of men satisfying (9), and consider the

existence problem of Kobayashi and Matsui [7] or the first problem in [8]. If their
polynomial time algorithm provides a preference profile of women L ∗

W that together
with L ∗

M makes the mGS produce f , we are done. If not, by Corollary 1 we conclude
that there are no preference profiles of women for any preference profile of men
satisfying (9). Namely, no pairs of preference profiles of men and women make the
mGS produce the prescribed complete matching f or the prescribed set of proposals
P. Thus we obtain the following theorem.

Theorem 2 Given a set of proposals P and a complete matching f satisfying (8), the
existence problem of preference profiles LM and LW such that P = Π(LM,LW ) and
f = µ(LM,LW ) is solvable in polynomial time.
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6.2 Case where P alone is given

Definition 11 For a given set of proposals P let H(P) = ((M ∪{r})∪W,E) be the
undirected graph with the node set (M∪{r})∪W and the edge set E defined by

E :=
{
{m,w} | (m,w) ∈ P

}
∪

{
{r,w} | w ∈W, |PW (w)| = 1

}
.

For each node v ∈ (M∪{r})∪W let δ (v) denote the set of edges incident to v and let
deg(v) := |δ (v)| and call it the degree of v.

Lemma 7 If H(P) has no spanning tree such that

deg(w) = 2 for all w ∈W, (10)

there are no pairs of LM and LW such that Π(LM,LW ) = P.

Proof Suppose that there are LM and LW such that Π(LM,LW ) = P. Then the
undirected version of the second suitor graph G(LW ,P) is a spanning tree of H(P)
satisfying the degree constraint (10) from Lemma 2 and the proof of Theorem 1. ut

Now suppose that the graph H(P) has a spanning tree T satisfying the degree
constraint (10). Give orientations to the edges of T so that it becomes a rooted
spanning tree with r as the root. We denote this rooted spanning tree by T ∗. Then
indeg(w) = outdeg(w) = 1 for each w ∈ W , hence its predecessor pred(w) and suc-
cessor succ(w) in T ∗ are uniquely determined. Now let �∗

w denote an arbitrary pref-
erence list of w ∈W satisfying

succ(w) �∗
w pred(w) �∗

w m for all m ∈ PW (w)\{succ(w),pred(w)} (11)

and collect them to make a preference profile of women, which we will denote by
L ∗

W .

Lemma 8 If H(P) has a spanning tree satisfying the degree constraint (10), then
there is a pair of LM and LW such that Π(LM,LW ) = P.

Proof As discussed above, the second suitor graph G(L ∗
W ,P) turns out to be a rooted

spanning tree for the preference profile of women L ∗
W being a collection of prefer-

ence lists �∗
w satisfying (11) and the given set of proposals P. Then by Theorem 1

there is a preference profile of men LM such that Π(LM,L ∗
W ) = P. ut

The problem of fining a degree-constrained spanning tree T in the graph H(P)
reduces to a matroid intersection problem of two matroids defined on E. One matroid
is the graphic matroid, whose independent sets are cycle-free sets of edges; the other
is the partition matroid, where a subset I of E is independent if and only if

|I ∩δ (w)| ≤ 2 for all w ∈W .

Clearly, a common basis, if any, is a spanning tree of H(P) satisfying the degree
constraint (10), and vice versa.
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Theorem 3 Given a set of proposals P, the existence problem of a pair of LM and
LW such that Π(LM,LW ) = P is solvable in polynomial time.

Proof Since the matroid intersection problem of a graphic matroid and a partition
matroid is solvable in polynomial time, we obtain the theorem. ut

See [2], [3] and [9] for algorithms for the matroid intersection problem and their
computational complexity.

7 Conclusion

According to [8], one of the open questions as to the strategic manipulability in the
stable matching model is described as “given a pair of preference profiles LM and
LW , is there a preference profile of women KW such that µ(LM,KW ) is a stable
matching with respect to LM and LW and is different from the pessimal stable match-
ing µ(LM,LW )?” Switching the roles of men and women yields a question “is there
a preference profile of men KM such that µ(KM,LW ) is a stable matching with re-
spect to LM and LW and is different from µ(LM,LW )?” It would be satisfying if
the results in this paper make a dent in these problems.
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