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Excess-carrier recombination mechanisms in undoped BaSi2 epitaxial films grown by molecular

beam epitaxy on n-type silicon substrates have been studied by the microwave-detected

photoconductivity decay measurement. The measured excess-carrier decay is multiexponential,

and we divided it into three parts in terms of the decay rate. Measurement with various excitation

laser intensities indicates that initial rapid decay is due to Auger recombination, while the second

decay mode with approximately constant decay to Shockley-Read-Hall recombination. Slow decay

of the third decay mode is attributed to the carrier trapping effect. To analyze Shockley-Read-Hall

recombination, the formulae are developed to calculate the effective lifetime (time constant

of decay) from average carrier concentration. The measurement on the films with the thickness of

50–600 nm shows that the decay due to Shockley-Read-Hall recombination is the slower in the

thicker films, which is consistent with the formulae. By fitting the calculated effective lifetime to

experimental ones, the recombination probability is extracted. The recombination probability is

found to be positively correlated with the full width at half-maximum of the X-ray rocking curves,

suggesting that dislocations are acting as recombination centers. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4759246]

I. INTRODUCTION

Orthorhombic barium disilicide (BaSi2) is attracting

much attention as a novel active-layer material for thin-film

solar cells because it has an appropriate energy gap for single-

junction solar cells and a high absorption coefficient. The

energy gap is reported to be 1.3 eV,1,2 and it can be adjusted

to the ideal level (1.4 eV) by alloying with Sr.3 The absorption

coefficient is 3� 104 � 1� 105 cm�1 at 1.5 eV,1,2 which is

several ten times higher than that of crystalline silicon. The

abundance of the constituent atoms, Ba and Si, in earth’s crust

is also attractive from the viewpoint of large-scale production.

Photoresponsivity corresponding to the internal quantum effi-

ciency of more than 70% has actually been observed.4 In addi-

tion, n- and p-type doping of BaSi2, which is the prerequisite

to realize a BaSi2-based solar cell, has also been realized.5–7

Excess carrier lifetime is an important physical property

and influences the performance of most of electronic devices.

In particular, the quality of silicon for solar cells is often

evaluated by the minority-carrier lifetime. Thus, the carrier

lifetime in BaSi2 should be revealed to consider the potential

of BaSi2 as an active-layer material for solar cells. In addi-

tion, the knowledge of excess-carrier recombination proc-

esses can be extracted from the carrier lifetime, which

will contribute as a fundamental knowledge to improve the

material quality of BaSi2. The microwave-detected photo-

conductivity decay (l-PCD) method is widely used to deter-

mine the carrier lifetime in silicon. The aim of this paper is

to investigate the excess carrier lifetime by the l-PCD

method and to elucidate the carrier recombination mecha-

nisms in BaSi2.

We used the undoped BaSi2 films to reveal highest life-

times of BaSi2 epitaxial thin films. The undoped BaSi2
epitaxial film is n-type with the electron concentration of

5� 1015 cm�3.1 Since the majority-carrier concentration is

low and the absorption coefficient is high, it is difficult to sat-

isfy low-injection conditions in thin films and to determine

minority-carrier lifetime. Moreover, due to the large differ-

ence in work function between the BaSi2 layer and silicon

substrate, an internal electric field is formed in the BaSi2
layer. This electric field makes photoexcited electrons and

holes separated. Thus, the model considering high injection

and carrier separation is developed and the photoconductivity

decay data are analyzed.

II. EXPERIMENTAL METHODS

The a-axis-oriented BaSi2 epitaxial films were prepared

on Si(111) substrates (n-type, 1000 X � cm in resistivity) by

reactive deposition epitaxy (RDE; Ba deposition on hot Si)

followed by molecular beam epitaxy (MBE; co-deposition of

Ba and Si). An ion-pumped MBE system equipped with a

standard Knudsen cell for Ba and an electron-beam evapora-

tion source for Si was used. The RDE process was carried

out for the deposition of a BaSi2 template layer prior to the

subsequent MBE process. The details of the growth proce-

dure are described elsewhere.8

Excess carrier lifetime was investigated by the l-PCD

method using a semiconductor wafer lifetime measuring
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system (KOBELCO, LTA-1512EP). Carriers were generated by

a 5 ns laser pulse with a wavelength of 349 nm. More than 95%

of the light is absorbed within the BaSi2 layer. The spot size of

the laser is 2 mm in diameter. To investigate the effect of carrier

injection level on carrier lifetime, laser intensity was varied in

the range 1:1� 102 � 1:3� 105 W=cm2, corresponding to the

area photon density in the range 9:8� 1011 � 1:1� 1015 cm�2,

assuming no reflection at the BaSi2 surface. Photoconductivity

decay was monitored by the reflectivity of microwave with the

frequency of 26 GHz. High-sensitivity measurement was real-

ized by the differential detection of the reflected microwave in-

tensity between the areas with and without laser irradiation.

Since the difference in electron affinity is large between

BaSi2 (3.2 eV) and silicon (4.0 eV),9 band bending is sup-

posed to occur around the BaSi2=Si interface. To consider

the effects of band bending on carrier lifetime, the band dia-

grams of the sample structures studied were calculated with

the wxAMPS software,10 which is a solar cell simulation

tool. In the calculation, the effective mass of electrons and

the dielectric constant of BaSi2 were assumed to be the same

as those of silicon.11,12 The band diagrams were used to ana-

lyze the photoconductivity decay curves.

To compare with carrier lifetime, the crystalline quality

of the BaSi2 layer was investigated by the X-ray rocking-

curve measurement using a Bruker Discover D8 diffractome-

ter with a four-bounce Ge(220) monochromator. The 600

diffraction line of BaSi2 was used.

III. RESULTS AND DISCUSSION

A. Effects of laser intensity on photoconductivity
decay

The calculated band diagram of the undoped 130-nm-

thick BaSi2 film on n-type silicon is shown in Fig. 1. It is

seen that there is a constant electric field in the whole BaSi2

layer. The photoexcited carriers are, therefore, expected to

be separated in the BaSi2 film. It should also be noted that

the conduction type of BaSi2 around the interface is p-type

due to the migration of a large number of electrons into the

Si substrate. This fact that the BaSi2 layer consists of the pn

junction of BaSi2 will be used in the later analyses. In the

calculation, we have assumed that the effective mass of elec-

trons and the dielectric constant of BaSi2 are the same as

those of silicon. This assumption affects the magnitude of

the internal electric field.

Figure 2 shows the photoconductivity decay curves of

the 130-nm-thick BaSi2 film with excitation laser intensities

of 1:1� 102 � 1:3� 105 W=cm2. In all curves, decay rate

changes with time. With high laser intensities [Figs. 2(a) and

2(b)], decay can be divided into three modes in terms of

decay rate: Initial rapid decay (t < 10 ls), approximately

constant decay [t < 45 (a) and 35 ls (b)], and later slow

decay. In contrast, approximately constant decay is not

observed with low laser intensities [Figs. 2(c) and 2(d)]. Possi-

ble dominant recombination modes in BaSi2 with indirect band

gap13,14 are Shockley-Read-Hall (SRH) and Auger recombina-

tions while radiative recombination is less probable than the

others. In the following paragraphs, the recombination mecha-

nism corresponding to each decay mode will be discussed on

the basis of the laser intensity dependence of the decay curves.

In the early stage where carrier concentration is high, Au-

ger recombination can be a dominant process. Assuming that

the excitation light is fully absorbed in BaSi2 without reflec-

tion, the initial excess-carrier concentration at the surface is in

the range 8:9� 1017 � 1:0� 1021 cm�3, which is more than

two orders of magnitude higher than majority-carrier concen-

tration at equilibrium in undoped BaSi2 ð5� 1015 cm�3Þ.1
Another possible origin of the initial rapid decay is surface

SRH recombination. To investigate the origin, the early-stage

photoconductivity decay was measured with a small time

step, which is shown in Fig. 3. It is clearly observed that initial

decay rate becomes slow with decreasing the laser intensity

from 1:3� 105 W=cm2 [Fig. 3(a)] to 1:1� 102 W=cm2

[Fig. 3(d)]. This dependence of decay rate on the carrier-

injection level shows that the initial rapid decay is mainly ori-

ginated from Auger recombination.

Since there is an internal electric field in BaSi2 as shown

in Fig. 1, carrier separation probably occurs at the same time

FIG. 1. Band diagram of the 130-nm-thick BaSi2 film on n-type silicon cal-

culated by the wxAMPS software.10 The schematic figure of SRH recombi-

nation with schematic quasi-Fermi levels, EFn and EFp, is also shown.

FIG. 2. Photoconductivity decay curves of the 130-nm-thick BaSi2 film with

the laser intensities of (a) 1:3� 105, (b) 1:3� 104, (c) 1:1� 103, and (d)

1:1� 102 W=cm2.
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as Auger recombination. As a result, electrons and holes

become in high concentration around the surface and inter-

face, respectively. After carrier separation, Auger recombi-

nation would become slow, and next possible recombination

mode is SRH recombination. As schematically shown in

Fig. 1 together with the band diagram, SRH recombination

would occur mainly at the middle of the film, where both

types of carriers are in similar concentration.

It is seen in Fig. 2 that there are two decay modes for

SRH recombination with high laser intensities: approximately

constant and slow decays [Figs. 2(a) and 2(b)]. Similar slow-

down of decay has been reported for silicon and has been attrib-

uted to carrier trapping.15–17 That is, the carrier trapping which

does not lead to carrier recombination prevents carriers from

reaching recombination centers and lengthens carrier lifetime.

Slow decay with the carrier trapping effect starts at earlier time

with lower laser intensity [Figs. 2(a) and 2(b)]. This is probably

because there would not be many free (untrapped) carriers

which can reach recombination centers when the amount of

excess carriers is small. Thus, with even lower laser intensities

[Figs. 2(c) and 2(d)], slow decay starts soon after carrier separa-

tion without approximately constant decay.

SRH recombination at the interface between the holes in

BaSi2 and the electrons in silicon is also probable. Total amount

of this interface recombination is, however, restricted to the car-

rier amount in silicon (�4:5� 1012 cm�3 � 3:8� 10�2 cm

¼ 1:7� 1011 cm�2) and is smaller than the number of excess

carriers in BaSi2 under the present conditions.

B. Numerical analysis of SRH recombination

The above experimental results show that effective life-

time (seff ) is a function of time. In such a case, seff can be

obtained by differentiating the excess-carrier concentration

with respect to time.18,19 By assuming that the reflected

microwave intensity (I) of l-PCD is proportional to the

excess-carrier concentration, seff can be calculated as

1

seff

¼ � 1

I

dI

dt
: (1)

Though this assumption is usually valid under low-injection

conditions, it is a reasonable approximation also in this study

of high-injection conditions because the peak values of the

decay curves increase almost linearly with the increase in

laser intensity.

Figure 4 shows the seff values calculated for laser inten-

sities of 2:5� 104 � 1:3� 105 W=cm2 by means of Eq. (1)

as a function of I. Before differentiation, a moving average of

the decay curve was calculated to reduce noise. The seff value

increases with the decrease in I as a general trend. It is seen

that each series of seff can be divided into three parts, which

correspond to Auger recombination, and SRH recombinations

without and with the carrier trapping effect, according to the

decay curves. Of the three carrier-recombination modes, SRH

recombination without the carrier trapping effect reflects crys-

talline quality and usually determines the minority-carrier life-

time, which should be high to achieve high solar-cell

efficiency. Thus, this recombination mode is analyzed in

detail to extract the carrier-capture probability by recombina-

tion centers.

It should be recalled here that the pn junction of BaSi2 is

formed in the BaSi2 layer (Fig. 1). The SRH recombination

velocity (Rnp) can, therefore, be represented by that of the pn

junction as20

Rnp ¼
1

2
Cnpni exp

DEF

2kT

� �
� 1

� �
; (2)

with the assumption of one deep trap, the energy level of

which falls on the intrinsic Fermi level. In Eq. (2), ni is car-

rier concentration in an intrinsic specimen, DEF is the differ-

ence of the quasi-Fermi levels of electrons and holes, k is the

Boltzmann constant, and T is the temperature. Cnp denotes

the carrier capture probability by deep traps, which can also

be regarded as the recombination probability of electrons

FIG. 3. Early-stage l-PCD curves of the 130-nm-thick BaSi2 film with laser

intensities of (a) 1:3� 105, (b) 1:3� 104, (c) 1:1� 103, and (d) 1:1
�102 W=cm2. Microwave intensities were normalized by the peak values.

FIG. 4. Effective lifetime (seff ) of the 130-nm-thick BaSi2 film as functions

of the reflected microwave intensity (I). Five curves with different laser

intensities of 2:5� 104 � 1:3� 105 W=cm2 are displayed: � (black) for the

laser intensity of 1:3� 105 W=cm2; � (blue) for 8:8� 104 W=cm2; �

(green) for 6:1� 104 W=cm2; � (orange) for 4:3� 104 W=cm2; þ (purple)

for 2:5� 104 W=cm2. Red curve corresponds to the calculated seff curve fit-

ted to the experimental seff values of SRH recombination without the carrier

trapping effect.
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and holes injected into highly p-type and n-type specimens,

respectively.21 seff is obtained from Rnp as

seff ¼
nave

Rnp

; (3)

where nave is average carrier concentration in the BaSi2 film.

Here, average excess-carrier concentration was approxi-

mated by average carrier concentration considering high-

injection conditions. nave is derived from the integrations

with respect to energy (E) and position (x) of the product of

the density of states (D) and the Fermi-Dirac distribution

function (f) as

nave ¼
1

w

ðw

0

ð1
EC

DðE; xÞf ðE; xÞdEdx; (4)

where w and EC are the film thickness and the conduction

band minimum, respectively. As seen in Fig. 1, EC can be

approximated by a linear function of position, ax þ b. The

coefficient of determination (the goodness of fit) of the linear

fitting is 1.0000 for the 130-nm-thick BaSi2 layer. Under this

approximation, the integration with respect to x in Eq. (4)

can be analytically calculated and Eq. (4) results in

nave ¼
8p

3aw

2m�

h2

� �3
2
ð1

b

ðE� bÞ
3
2

1þ exp E�EFn

kT

� � dE

(

�
ð1

awþb

ðE� aw� bÞ
3
2

1þ exp E�EFn

kT

� � dE

)
; (5)

where h and EFn are the Planck constant and the quasi-Fermi

level of electrons, respectively. The effective mass of elec-

trons (m�) was assumed to be equal to that in silicon.11 It was

also assumed that the conduction and valence band levels did

not change by carrier separation. Now, by numerically solving

Eq. (5), EFn can be determined for a given nave value. And,

Rnp can be calculated by using Eq. (2) from EFn and the Cnp

parameter. In consequence, for a given Cnp value, seff can be

calculated using Eqs. (2), (3), and (5) as a function of nave.

In Fig. 4, seff of SRH recombination without the carrier

trapping effect is seen to be determined by I, and hence, nave,

regardless of the laser intensity. This is consistent with the

formulae developed above. To compare the calculated and

experimental seff values, I was assumed to be proportional to

nave, according to the approximations to calculate seff in Eqs.

(1) and (3). By optimizing the proportionality constant

between I and nave, and Cnp, the seff curve was fitted to the

experimental seff values of the SRH recombination without

the carrier trapping effect in Fig. 4. The optimized Cnp value

is 3 ns�1, which corresponds to the carrier lifetime of 0.3 ns.

This is the carrier lifetime of electrons or holes in a highly

p- or n-type doped specimen, and minority-carrier lifetime is

expected to be higher than this value.

Since we have made several assumptions, the obtained

Cnp value contains uncertainty. The effective mass of elec-

trons and dielectric constant of BaSi2 were assumed to be the

same as silicon in the band diagram calculation, which affect

the magnitude of electric field in the BaSi2 layer. In the

derivation of formulae, EC was assumed that it is not influ-

enced by the spatial separation of excess carriers. The error in

Cnp accordingly comes mainly from the uncertainty in a. We

thus calculated Cnp with changing a to assess the importance

of uncertainty in a. As a result, Cnp was found to change by

3.3–3.5 times when a changes by 10%, for example. The error

in Cnp is therefore expected to be large, and thus, we focus

only the relative difference of Cnp in later analyses.

C. Effects of BaSi2 film thickness on
photoconductivity decay

Effects of the BaSi2 film thickness (w) on carrier lifetime

were investigated for w¼ 50–600 nm. Figure 5 shows the pho-

toconductivity decay curves with the laser intensity of

1:3� 105 W=cm2. All films except 600-nm-thick one show

three decay modes similarly to the 130-nm-thick film in Fig.

2. In the 600-nm-thick film, constant decay is not observed

and the carrier trapping effect plays an important role soon af-

ter Auger recombination. This is possibly because the average

excess-carrier concentration is low in the thick film and not all

of the traps are filled by excess carriers.

It is clearly seen in Fig. 5 that thicker films exhibit

slower photoconductivity decay in SRH recombination with-

out the carrier trapping effect. This is because of the follow-

ing two factors. One is the increase of EFn with decreasing

w. For a given number of excess carriers, nave is the higher in

the thinner films, which corresponds to the higher EFn level.

Then, Rnp is the larger according to Eq. (2), and thus, seff is

the smaller for the thinner films. The other factor influencing

the decay rate of SRH recombination is the difference in the

amount of lattice defects acting as recombination centers.

To evaluate the relative amount of recombination cen-

ters, the analysis of seff was performed on the 50 -, 70 -, and

100-nm-thick films. Figure 6 shows seff of these films as a

function of I. All films show the increasing trend of seff with

the decrease of I. The seff curves of 70 - and 100-nm-thick

films are seen to oscillate for seff > 8 ls. This is because of

noise, which is distinct when I is small. By fitting the seff val-

ues calculated by Eqs. (2), (3), and (5) to the experimental

FIG. 5. l-PCD curves of the (a) 50 -, (b) 70 -, (c) 100 -, (d) 130 -, and (e)

600-nm-thick BaSi2 films with the laser intensity of 1:3� 105 W=cm2.

Microwave intensities were normalized by the peak values.

083108-4 Hara et al. J. Appl. Phys. 112, 083108 (2012)

Downloaded 17 Dec 2012 to 130.158.56.100. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



values, Cnp and the proportionality constant between I and

nave are determined. The a and b coefficients used in Eq. (5)

were obtained by linear fitting with the coefficients of deter-

mination not less than 0.9997. The determined Cnp values

are plotted as a function of w in Fig. 7. Error bars indicate

the standard deviations calculated from the analysis results

for nine different points on the film surface. It is seen that

Cnp of the 50-nm-thick film is the largest, while the Cnp

values of the 70 -, 100 -, and 130-nm-thick films are similar

to each other. This result suggests that the 50-nm-thick film

contains larger number of the lattice defects which act as car-

rier recombination centers.

To investigate the origin of the difference in the Cnp

values, the X-ray rocking curves were measured for the 50 -,

70 -, 100 -, and 130-nm-thick films. Figure 8 shows the full

width at half-maximum (FWHM) of the rocking curves as a

function of w. The FWHM value of the 50-nm-thick film is

larger than the others, indicating that the crystal orientation

fluctuation is larger in the 50-nm-thick film than the others.

Mosaic structure usually involves dislocations at the bound-

ary, which is the origin of the orientation fluctuation. Thus,

the 50-nm-thick film has higher density of dislocations.

Interestingly, the dependency of the FWHM values on w
agrees well with Cnp in Fig. 7. The inset of Fig. 7 shows Cnp

as a function of the FWHM of rocking curves. A positive

correlation between Cnp and FWHM of rocking curves is

observed, which suggests that the dislocations act as recom-

bination centers.

Although the uncertainty in a causes a significant error

in Cnp, the analysis result that Cnp of the 50-nm-thick film is

larger than the other films is not influenced. We assessed

the influence of the uncertainty in a by calculating Cnp with

intentionally changed a values (up to 50% increase and

decrease). As a result, we obtained similar results that

Cnp of the 50-nm-thick film is significantly larger than

the others, though the absolute values change by up to sev-

eral hundred times. Therefore, the conclusion that Cnp is

largest in the 50-nm-thick film and is correlated to the dis-

location density is not affected by the assumptions used.

Developed formulae, thus, enable us to evaluate the relative

difference of Cnp between the BaSi2 thin films with differ-

ent thickness.

FIG. 6. Effective lifetime (seff ) of the (a) 50 -, (b) 70 -, and (c) 100-nm-thick BaSi2 films as functions of the reflected microwave intensity (I). Five curves with

different laser intensities of 2:5� 104 � 1:3� 105 W=cm2 are displayed for each film: � (black) for the laser intensity of 1:3� 105 W=cm2; � (blue) for

8:8� 104 W=cm2; � (green) for 6:1� 104 W=cm2; � (orange) for 4:3� 104 W=cm2; þ (purple) for 2:5� 104 W=cm2. Red curves correspond to the calcu-

lated seff curves fitted to the experimental seff values of SRH recombination without the carrier trapping effect.

FIG. 7. Recombination probability (Cnp) as a function of the BaSi2 film

thickness (w). The inset shows Cnp as a function of the FWHM of X-ray

rocking curves. The dashed line is the least-square fit to the data.

FIG. 8. Full width at half-maximum (FWHM) of the rocking curve of the

BaSi2 600 diffraction as a function of the BaSi2 film thickness (w).
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IV. SUMMARY

We have investigated the excess carrier lifetime in

undoped BaSi2 epitaxial films grown by molecular beam epi-

taxy on high-resistivity n-type silicon by the microwave-

detected photoconductivity decay method under high-injection

conditions. The photoconductivity decay in undoped BaSi2

epitaxial film was divided into three parts from the viewpoint

of the decay rate. Initial rapid decay was attributed to Auger

recombination. SRH recombination at the middle of the film

prevails in the second part after Auger recombination. Decay

becomes slower due to the carrier trapping effect, which corre-

sponds to the third decay mode. To analyze SRH recombina-

tion, the formulae were developed to calculate the effective

lifetime from average carrier concentration in BaSi2. The

experimental result that the thicker films show the longer

lifetimes is consistent with the formulae. By comparing

the calculated effective lifetime with experimental results, the

recombination probability was extracted. According to the

X-ray rocking curve measurement, the dislocation density was

shown to be correlated with the recombination probability,

which suggests that dislocations act as recombination centers.
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