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Abstract We focus on inference about high-dimensional mean vectors when
the sample size is much fewer than the dimension. Such data situation occurs
in many areas of modern science such as genetic microarrays, medical imaging,
text recognition, finance, chemometrics, and so on. First, we give a given-radius
confidence region for mean vectors. This inference can be utilized as a variable
selection of high-dimensional data. Next, we give a given-width confidence in-
terval for squared norm of mean vectors. This inference can be utilized in a
classification procedure of high-dimensional data. In order to assure a prespec-
ified coverage probability, we propose a two-stage estimation methodology and
determine the required sample size for each inference. Finally, we demonstrate
how the new methodologies perform by using a microarray data set.
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1 Introduction

Suppose we have independent and p-variate populations, πi, i = 1, ..., k, hav-
ing unknown mean vector µi = (µi1, ..., µip)T and unknown covariance matrix
Σi(> O) for each i. We do not assume that Σ1 = · · · = Σk. The eigen-
decomposition of Σi (i = 1, ..., k) is Σi = HiΛiH

T
i , where Λi is a diag-

onal matrix of eigenvalues λi1 ≥ · · · ≥ λip > 0 and Hi = [hi1, ...,hip] is
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an orthogonal matrix of corresponding eigenvectors. Having recorded i.i.d.
samples, xi1, ...,xini , from each πi, we have a p × ni (p > ni) data matrix
Xi = [xi1, ...,xini ], where xij = (xi1j , ..., xipj)T , j = 1, ..., ni. Then, Zi =
Λ

−1/2
i HT

i (Xi − [µi, ...,µi]) is a p × ni sphered data matrix from a distribu-
tion with the identity covariance matrix. Here, we write Zi = [zi1, ...,zini ] and
zij = (zi1j , ..., zipj)T , j = 1, ..., ni. Note that E(z2

ijl) = 1 and E(zijlzij′l) = 0
for i = 1, ..., k; j( ̸= j′) = 1, ..., p; l = 1, ..., ni. We assume that λip > 0 (i =
1, ..., k) as p → ∞ and the fourth moments of each variable in Zi are uniformly
bounded.

In this paper, we assume one of the following three assumptions for πi’s:

(A-i) πi : Np(µi,Σi) for i = 1, ..., k;
(A-ii) zijl, j = 1, ..., p are independent for i = 1, ..., k;

(A-iii) E(z2
ijlz

2
isl) = 1 and E(zijlzislzitlziul) = 0, j ̸= s, t, u, and {xijl −

µij}j∈N is a strictly stationary sequence and ρ-mixing for i = 1, ..., k.

Note that (A-i) implies (A-ii). The concept of ρ-mixing was first developed by
Kolmogorov and Rozanov (1960). See Bradley (2005) for a clear and insightful
discussion. Throughout this paper, we assume the following conditions for
Σi’s:

(A-iv)
tr(Σt

i)
p

< ∞ (t = 1, 2) and
tr(Σ4

i )
p2

→ 0 as p → ∞ for i = 1, ..., k.

We assume the following extra condition when applying (A-iii):

(A-v)
tr(ΣiΣj)

p
→ cij as p → ∞ for all i, j = 1, ..., k, where cij ’s are

positive constants.

Remark 1. If all λij ’s are bounded, (A-iv) trivially holds. For a spiked model
such as λij = aijp

αij (j = 1, ..., mi) and λij = cij (j = mi + 1, ..., p) with
positive constants aij ’s, cij ’s and αij ’s, (A-iv) holds under the condition that
αij < 1/2 for j = 1, ..., mi(< ∞); i = 1, ..., k. See Yata and Aoshima (2009b,
2010a) for the details of a spiked model. In an actual data analysis, one may
examine (A-iv) by using the cross-data-matrix methodology given by Yata
and Aoshima (2010a) or the noise reduction methodology given by Yata and
Aoshima (2011). As an interesting example, both (A-iv) and (A-v) hold for
Σi′ = ci′(ρ

|i−j|qi′

i′ ), i′ = 1, ..., k, where ci′ ’s, qi′ ’s and ρi′ ’s(< 1) are positive
constants.

Let µ =
∑k

i=1 biµi, where bi’s are known and nonzero scalars. Let us
write that T n =

∑k
i=1 bixini , where n = (n1, ..., nk) and xini =

∑ni

j=1 xij/ni.
One choice of making inference on µ is to construct a confidence region by
Rn = {µ ∈ Rp : ||T n −µ|| ≤ d}, where || · || denotes the Euclidean norm. Let
θ = (µ1, ...,µk,Σ1, ...,Σk) for given k. Then, the requirement is given by

Pθ(µ ∈ Rn) ≥ 1 − α (1)
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for given and fixed d (> 0) and α ∈ (0, 1). There are many literatures related
to this problem when p is fixed less than ni. One may refer to Ghosh et al.
(1997), Aoshima and Mukhopadhyay (1998), Aoshima et al. (2002), Aoshima
and Takada (2004), Aoshima (2005), Yata and Aoshima (2009a) and Aoshima
and Yata (2010) among others in which Stein (1945)-type two-stage proce-
dures were proposed in a typical multivariate context. Especially, Aoshima
and Yata (2010) provided a general methodology to make a Stein-type two-
stage procedure asymptotically second-order consistent for a variety of mul-
tivariate inference problems such as multiple comparisons and bioequivalence
tests. For the concept of second-order efficiency, refer to Ghosh et al. (1997).
In an extreme high-dimensional case, those methodologies tend to satisfy the
probability requirement such as (1) excessively by taking overly samples. Yata
(2010) created a new-type two-stage procedure that meets the equality in (1)
approximately with a smaller sample size when p is extremely large. Note
that E(||T n − µ||2) =

∑k
i=1 b2

i tr(Σi) (= Σn, say). Thus ||T n − µ||2 behaves
around a certain positive quantity, Σn. Since it holds that Σn = O(

∑k
i=1 p/ni)

under (A-iv), one cannot claim (1) for a fixed span d (< ∞) when having
ni = o(p), i = 1, ..., k, that are fewer observations than the dimension. To
overcome this inconvenience, Aoshima and Yata (2011) have recently created
a new confidence region called “given-bandwidth confidence region” in a high-
dimension, low-sample-size context.

A common feature of high-dimensional data is that, while the data dimen-
sion is high, the sample size is relatively small. This is the so-called “HDLSS”
or “large p, small n” situation where p/n → ∞; here p is the data dimension
and n is the sample size. The HDLSS asymptotics, where only p → ∞ while
n is fixed, were studied by Hall et al. (2005), Ahn et al. (2007) and Yata and
Aoshima (2012). They explored conditions to give a geometric representation
of HDLSS data. The HDLSS asymptotics usually regulate either the popu-
lation distribution by the normality or the dependency of the random vari-
ables in the sphered data matrix by a ρ-mixing condition. However, Yata and
Aoshima (2010b) developed the HDLSS asymptotics without assuming either
the normality or a ρ-mixing condition. Yata and Aoshima (2009b) succeeded
in investigating the consistency properties of both eigenvalues and eigenvec-
tors of the sample covariance matrix in more general settings that include the
case when all eigenvalues are in the range of sphericity. In addition, Yata and
Aoshima (2010a) developed the cross-data-matrix methodology that provides
effective inference on PCA and clustering for HDLSS data. Recently, Aoshima
and Yata (2011) have developed a variety of inference for HDLSS data such as
a given-bandwidth confidence region, two-sample tests, classification, variable
selection, regression, pathway analysis and so on.

In this paper, we focus on inference about high-dimensional mean vec-
tors for HDLSS data. In Section 2, we give a given-radius confidence region
for mean vectors. In Section 3, we give a given-width confidence interval for
squared norm of mean vectors. In order to assure a prespecified coverage prob-
ability, we propose a two-stage estimation methodology and determine the re-
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quired sample size for each inference. In Section 4, we demonstrate how the
new methodologies perform by using a microarray data set.

2 Given-Radius Confidence Region for Mean Vectors

In this section, we consider a confidence region for the loss function, ||T n−µ||2,
defined by

Rn,W = {µ ∈ Rp : ||T n − µ||2 ≤ W}. (2)

Aoshima and Yata (2011) showed that for a given confidence coefficient, Rn,W

does not exist in the HDLSS context that ni/p → 0 as p → ∞ if W is fixed free
from p. We assume that W = W (p) → ∞ as p → ∞ and W/ min1≤i≤k tr(Σi) =
o(1). Our goal is to construct Rn,W satisfying

Pθ(µ ∈ Rn,W ) ≥ 1 − α (3)

for given W (> 0) and α ∈ (0, 1/2).

2.1 Asymptotic Normality and Sample Size Determination

For the loss function ||T n −µ||2, Aoshima and Yata (2011) gave the following
result.

Theorem 2.1(Aoshima and Yata, 2011). Assume either (A-ii) or (A-iii)
with (A-v). Then, we have as p → ∞ and ni → ∞, i = 1, ..., k, that

||T n − µ||2 − Σn√
2
∑

i,j b2
i b

2
j tr(ΣiΣj)/(ninj)

⇒ N(0, 1), (4)

where “⇒” denotes the convergence in distribution and N(0, 1) denotes a ran-
dom variable distributed as the standard normal distribution.

From the fact that tr(ΣiΣj) ≤
√

tr(Σ2
i )tr(Σ

2
j ), it holds that

√
2
∑
i,j

b2
i b

2
j tr(ΣiΣj)/(ninj) ≤

k∑
i=1

b2
i

√
2 tr(Σ2

i )/ni.

Let zα be a constant such that P (N(0, 1) > zα) = α. By using (4), we consider
ni’s such that

min
(
(W/p)

k∑
i=1

ni

)
subject to

W − Σn∑k
i=1 b2

i

√
2 tr(Σ2

i )/ni

≥ zα
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as p → ∞. Then, we find the sample size for each πi as

ni ≥
1
W

|bi|
√

tr(Σi)
k∑

j=1

|bj |
√

tr(Σj) +
zα

√
2

W
|bi|
√

tr(Σi)
k∑

j=1

|bj |

√
tr(Σ2

j )
tr(Σj)

(= Ci, say). (5)

Note that Ci = W−1|bi|
√

tr(Σi)
∑k

j=1 |bj |
√

tr(Σj) + o(p/W ) = o(p) under
(A-iv). Thus it holds that Ci/p → 0 as p → ∞, i = 1, ..., k. We have the
following theorem.

Theorem 2.2. Assume either (A-ii) or (A-iii) with (A-v). For ni’s satisfying
(5), we have as p → ∞ that

lim inf Pθ(µ ∈ Rn,W ) ≥ 1 − α.

We emphasize that Rn,W meets requirement (3) in the HDLSS context that
ni/p → 0 as p → ∞.

Remark 2. One can claim Theorem 2.2 even for a constant W such that W < ∞
as p → ∞. However, since one has that 0 < Ci/p < ∞ in such a case, Rn,W

cannot meet requirement (3) in the HDLSS context that ni/p → 0 as p → ∞.

2.2 Two-stage procedure

Since Σi’s are unknown, it is necessary to estimate Ci’s in (5) with some
pilot samples. Along the line of Mukhopadhyay and Duggan (1997, 1999), we
suppose the following assumption: There exists a known and positive lower
bound σi⋆ for tr(Σi) such that σi⋆/tr(Σi) ∈ (0, 1), i = 1, ..., k, as p → ∞. We
proceed the following two steps:

1. Let τ⋆ = min1≤i≤k |bi|
√

σi⋆

∑k
j=1 |bj |

√
σj⋆. Having a fixed integer m0 (≥

4), define
m = max

{
m0,

[ τ⋆

W

]
+ 1
}

, (6)

where [x] denotes the largest integer less than x. According to (6), take pilot
samples xij , j = 1, ..., m, of size m from each πi. Let m1 = [m/2] + 1 and
m2 = m − m1. Let xim =

∑m
j=1 xij/m, xim(1) =

∑m1
j=1 xij/m1 and xim(2) =∑m

j=m1+1 xij/m2. Then, we calculate

Sim =

∑m
j=1(xij − xim)(xij − xim)T

m − 1
,

Sim(1) =

∑m1
j=1(xij − xim(1))(xij − xim(1))T

m1 − 1

and Sim(2) =

∑m
j=m1+1(xij − xim(2))(xij − xim(2))T

m2 − 1
(7)
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for each πi. Define the total sample size for each πi by

Ni = max

{
m,

[
1
W

|bi|
√

tr(Sim)
k∑

j=1

|bj |
√

tr(Sjm)

+
zα

√
2

W
|bi|
√

tr(Sim)
k∑

j=1

|bj |

√
tr(Sjm(1)Sjm(2))

tr(Sjm)

]
+ 1

}
.

(8)

Let N = (N1, ..., Nk).
2. Take additional samples xij , j = m+1, ..., Ni, of size Ni −m from each

πi. By combining the initial samples and the additional samples, calculate
xiNi =

∑Ni

j=1 xij/Ni for each πi. Then, define RN,W according to (2) with

TN =
∑k

i=1 bixiNi
.

We have the following theorem.

Theorem 2.3. Assume either (A-ii) or (A-iii) with (A-v). For the two-stage
procedure given by (6)-(8), we have as p → ∞ that

lim inf Pθ(µ ∈ RN,W ) ≥ 1 − α.

Remark 3. Assume either (A-ii) or (A-iii). It holds as p → ∞ that Ni/Ci =
1 + op(1), so that Ni/p = op(1) for i = 1, ..., k. It should be noted that the
result given by Theorem 2.3 can be claimed in a HDLSS situation.

Theorem 2.4. Assume (A-i). For (6)-(8), it holds as p → ∞ that

lim sup |Eθ(Ni − Ci)| ≤ 1 and V arθ(Ni) = O(1).

Remark 4. We emphasize that the result given by Theorem 2.3 can be claimed
as long as σi⋆/p > 0 as p → ∞ for i = 1, ..., k. In that sense, the two-stage
procedure is quite robust for the misidentification of σi⋆.

Remark 5. Yata (2010) considered an estimator of tr(Σ2
i ) by tr(Sim(1)Sim(2)).

Note that Eθ(Sim(1)Sim(2)) = tr(Σ2
i ) and tr(Sim(1)Sim(2)) ≥ 0 w.p.1. Under

either (A-ii) or (A-iii), it holds as p → ∞ and m → ∞ that

V arθ

(
tr(Sim(1)Sim(2))

tr(Σ2
i )

)
=

8
m2

(1 + o(1)) + O
( tr(Σ4

i )
tr(Σ2

i )2m

)
.

On the other hand, Bai and Saranadasa (1996) and Srivastava (2005) consid-

ered an estimator of tr(Σ2
i ) by tr(Σ̂2

i ) = c−1
m {tr(S2

im)−tr(Sim)2/(m−1)} with
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cm = (m− 2)(m + 1)/(m− 1)2. Then, it holds under (A-i) that Eθ(tr(Σ̂2
i )) =

tr(Σ2
i ) and

V arθ

(
tr(Σ̂2

i )
tr(Σ2

i )

)
=

4
m2

(1 + o(1)) +
8tr(Σ4

i )
tr(Σ2

i )2m
(1 + o(1))

as p → ∞ and m → ∞. One might consider tr(Σ̂2
i ) for tr(Sim(1)Sim(2)) in (8).

It should be noted that tr(Σ̂2
i ) is not unbiased unless (A-i) holds. In addition,

it does not hold that V arθ(tr(Σ̂2
i )/tr(Σ2

i )) < ∞ when the eighth moments of
each variable in Zi are not uniformly bounded. The unbiased estimator given
by Yata is quite robust in a non-Gaussian situation when compared to the
estimator by Bai and Saranadasa (1996) and Srivastava (2005).

2.3 Simulation

In order to study the performance of the two-stage procedure given by (6)-(8),
we took resort to computer simulations. We set k = 2, p = 1600, b1 = b2 = 1
and W = 40. Our goal was to construct a 95% upper-bounded confidence
region, RN,W . In other words, we set α = 0.05. Independent pseudoran-
dom normal observations were generated for πi : Np(µi, Σi), i = 1, 2.

We considered the covariance matrix such as Σ1 = c1B(ρ|i−j|1/3

1 )B and

Σ2 = c2B(ρ|i−j|1/3

2 )B, where ci > 0 and ρi ∈ (0, 1), i = 1, 2, and

B = diag
(√

0.5 + 1/(p + 1),
√

0.5 + 2/(p + 1), ...,
√

0.5 + p/(p + 1)
)

. (9)

We considered the following three cases: (i) (c1, c2) = (1, 1) and (ρ1, ρ2) =
(0.3, 0.3), i.e., Σ1 = Σ2; (ii) (c1, c2) = (1, 1) and (ρ1, ρ2) = (0.3, 0.4), i.e.,
tr(Σ1) = tr(Σ2) and tr(Σ2

1) ̸= tr(Σ2
2); (iii) (c1, c2) = (1, 1.5) and (ρ1, ρ2) =

(0.3, 0.3), i.e., Σ2 = 1.5Σ1.
Table 1 gives the findings obtained by averaging the outcomes from 2000

(= R, say) replications. We set m = 20 for each case. The findings for case
(i) were given in the first block and the ones for cases (ii) and (iii) followed
after the block. Under a fixed scenario, suppose that the rth replication ends
with Ni = nir (i = 1, 2) observations and the corresponding confidence region
with nr = (n1r, n2r) for r = 1, ..., R. Let ni = R−1

∑R
r=1 nir and V ar(ni) =

(R−1)−1
∑R

r=1(nir−ni)2. Then, n (= n1+n2) estimates C = C1+C2 defined
by (5) with its estimated variance V ar(n), computed analogously. In the end
of the rth replication, we checked whether µ does (or does not) belong to the
corresponding confidence region and defined Pr = 1 (or 0) accordingly. Let
P = R−1

∑R
r=1 Pr, which estimates the target coverage probability, having its

estimated standard error s(P ) where s2(P ) = R−1P (1 − P ).
Let us explain, for example, the entries from the second block for case

(ii). We had C1 = 86.93, C2 = 86.93 and C = 173.86 from (5). From 2000
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Table 1 Required sample size and the coverage probability by (6)-(8) with W = 40

n n − C V ar(n) P s(P )

Case (i): (c1, c2) = (1, 1) and (ρ1, ρ2) = (0.3, 0.3)

C 172.20 173.10 0.90 2.44 0.946 0.00505
C1 86.10 86.54 0.44 0.79
C2 86.10 86.56 0.46 0.73

Case (ii): (c1, c2) = (1, 1) and (ρ1, ρ2) = (0.3, 0.4)

C 173.86 174.82 0.95 3.77 0.953 0.00473
C1 86.93 87.42 0.49 0.95
C2 86.93 87.40 0.47 1.31

Case (iii): (c1, c2) = (1, 1.5) and (ρ1, ρ2) = (0.3, 0.3)

C 213.07 214.02 0.94 3.84 0.949 0.00491
C1 95.77 96.26 0.48 0.96
C2 117.30 117.76 0.46 1.38

independent replications, we observed n1 = 87.42 (n1 − C1 = 0.49), n2 =
87.40 (n2 − C2 = 0.47), n = 174.82 (n − C = 0.95) and p = 0.953 together
with V ar(n1) = 0.95, V ar(n2) = 1.31, V ar(n) = 3.77 and s(p) = 0.00473.
Throughout, we observed that the required confidence regions were successfully
constructed.

3 Given-Width Confidence Interval for Squared Norm of Mean
Vectors

In this section, we consider constructing a confidence interval for ||µ||2 defined
by

Rn,δ = {µ ∈ Rp : max{−δ + T̃n, 0} ≤ ||µ||2 ≤ max{δ + T̃n, 0}} (10)

for given δ (> 0). We consider an estimator of ||µ||2 as T̃n = ||T n||2−Σ̂n, where
Σ̂n =

∑k
i=1 b2

i tr(Sini)/ni with Sini =
∑ni

j=1(xij −xini)(xij −xini)
T /(ni−1).

It is shown that Eθ(T̃n) = ||µ||2 and

V arθ(T̃n) = 2
k∑

i=1

b4
i tr(Σ

2
i )

ni(ni − 1)
+ 4

∑
i>j

b2
i b

2
j tr(ΣiΣj)

ninj
+ 4

k∑
i=1

b2
i µ

T Σiµ

ni

= 2
∑
i,j

b2
i b

2
i′tr(ΣiΣi′)

nini′
+ 4

k∑
i=1

b2
i µ

T Σiµ

ni
+ O

( k∑
i=1

tr(Σ2
i )

n3
i

)
.

Our goal is to construct a confidence region Rn,δ such that

Pθ(µ ∈ Rn,δ) ≥ 1 − α (11)

for given α ∈ (0, 1). We assume that δ/ min1≤i≤k tr(Σ2
i )1/2 = o(1).
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3.1 Aysmptotic Normality and Sample Size Determination

For T̃n, we have the following theorem.

Theorem 3.1. Assume that µT Σiµ/(tr(Σ2
i )/ni) = o(1), i = 1, ..., k. Assume

either (A-ii) or (A-iii) with (A-v). Then, it holds as p → ∞ that

T̃n − ||µ||2√
V arθ(T̃n)

⇒ N(0, 1).

From Theorem 3.1, we consider ni’s such that

min
(
(δ/p1/2)

k∑
i=1

ni

)
subject to

δ√
V arθ(T̃n)

≥ zα/2

as p → ∞. Throughout this section, we assume the following extra assumption:

(A-vi)
µT Σiµ

δ
√

tr(Σ2
i )

= o(1) for i = 1, ..., k.

Then, we find the sample size for each πi as

ni ≥
zα/2

√
2

δ
|bi|tr(Σ2

i )
1/4

k∑
j=1

|bj |tr(Σ2
j )

1/4

+
2z2

α/2

δ2
|bi|tr(Σ2

i )
1/4

k∑
j=1

|bj |
µT Σjµ

tr(Σ2
j )1/4

(= Ci, say). (12)

Note that Ci = O(p1/2/δ) = o(p) under (A-iv). Thus it holds that Ci/p → 0
as p → ∞, i = 1, ..., k. Then, we have the following theorem.

Theorem 3.2. Assume either (A-ii) or (A-iii) with (A-v). For ni satisfying
(12), we have as p → ∞ that

lim inf Pθ(µ ∈ Rn,δ) ≥ 1 − α.

3.2 Two-Stage Procedure

Since Σi’s are unknown, it is necessary to estimate Ci’s in (12) with some
pilot samples. We propose a two-stage estimation procedure to determine the
sample sizes n. We suppose the following assumption: There exists a known

and positive lower bound σi⋆ for
√

tr(Σ2
i ) such that σi⋆/

√
tr(Σ2

i ) ∈ (0, 1),
i = 1, ..., k, as p → ∞. We proceed the following two steps:
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1. Let τ⋆ = min1≤i≤k |bi|
√

σi⋆

∑k
j=1 |bj |

√
σj⋆. Having a fixed integer m0 (≥

4), define

m = max
{

m0,
[zα/2

√
2

δ
τ⋆

]
+ 1
}

. (13)

According to (13), take pilot samples xij , j = 1, ...,m, of size m from each πi.
Then, calculate xim(1), xim(2), Sim, Sim(1) and Sim(2) according to (7) for
each πi. We consider an unbiased estimator of µT Σiµ such as

Ui =
(
(bixim(1) + T m(i))T Sim(2)(bixim(1) + T m(i))

+ (bixim(2) + T m(i))T Sim(1)(bixim(2) + T m(i))
)
/2 −

b2
i tr(Sim(1)Sim(2))m

2m1m2

−
k∑

j( ̸=i)

b2
j tr((Sim(1) + Sim(2))Sjm)

2m
(14)

with T m(i) =
∑k

j( ̸=i) bjxjm. Note that Eθ(Ui) = µT Σiµ. Define the total
sample size for each πi by

Ni =max
{

m,
[zα/2

√
2

δ
|bi|tr(Sim(1)Sim(2))1/4

k∑
j=1

|bj |tr(Sjm(1)Sjm(2))1/4

+
2z2

α/2

δ2
|bi|tr(Sim(1)Sim(2))1/4

k∑
j=1

|bj |
max{Uj , 0}

tr(Sjm(1)Sjm(2))1/4

]
+ 1
}

. (15)

Let N = (N1, ..., Nk).
2. Take additional samples xij , j = m+1, ..., Ni, of size Ni −m from each

πi. By combining the initial samples and the additional samples, calculate
T̃N = ||TN||2 − Σ̂N, where Σ̂N =

∑k
i=1 b2

i tr(SiNi)/Ni with SiNi = (Ni −
1)−1

∑Ni

j=1(xij − xiNi)(xij − xiNi)
T . Then, define RN,δ according to (10).

We have the following theorem.

Theorem 3.3. Assume either (A-ii) or (A-iii) with (A-v). Assume also that
max1≤i≤k{tr(Σ4

i )} = O(pδ2). For the two-stage procedure given by (13)-(15),
we have as p → ∞ that

lim inf Pθ(µ ∈ RN,δ) ≥ 1 − α.

Remark 6. Assume either (A-ii) or (A-iii). It holds as p → ∞ that Ni/Ci =
1 + op(1), so that Ni/p = op(1) for i = 1, ..., k. It should be noted that the
result given by Theorem 3.3 can be claimed in a HDLSS situation.

Remark 7. One of the choices of σi⋆ is, for example, a positive lower bound,
σi0, for tr(Σi)/

√
p such that σi0

√
p/tr(Σi) ∈ (0, 1) as p → ∞. Then, it holds

from Schwartz’s inequality and (A-iv) that

0 < σi0/

√
tr(Σ2

i ) = (σi0
√

p/tr(Σi))(tr(Σi)/
√

ptr(Σ2
i )) < 1
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as p → ∞. We emphasize that the result in Theorem 3.3 can be claimed as
long as σi⋆/p1/2 > 0 as p → ∞ for i = 1, ..., k. In that sense, the two-stage
procedure is quite robust for the misidentification of σi⋆.

Remark 8. For (14), under (A-iv), (A-vi) and either (A-ii) or (A-iii), it holds
as p → ∞ that

V arθ(Ui) = o
(
p2/m2

)
;

Ui = µT Σiµ + op

(
p/m

)
for i = 1, ..., k.

Remark 9. Under (A-i), one may consider

Ui = T T
mSimT m − b2

i tr(Σ̂
2
i )

m
−

k∑
j(̸=i)

b2
j tr(SimSjm)

m

as an unbiased estimator instead of (14), where T m =
∑k

i=1 bixim and tr(Σ̂2
i )

is given in Remark 5. Then, it holds that Eθ(Ui) = µT Σiµ.

3.3 Simulation

In order to study the performance of the two-stage procedure given by (13)-
(15), we took resort to computer simulations. We set k = 2, b1 = 1, b2 = −1
and δ = 10. Our goal was to construct a 95% confidence interval RN,δ. In
other words, we set α = 0.05. We considered a non-Gaussian case such as
zijl = (13/15)1/2wijl, where wijl, i = 1, 2; j = 1, ..., p (l = 1, ..., ni) are
independently generated by t-distribution with 15 degrees of freedom. Then,
note that E(zijl) = 0, E(z2

ijl) = 1 and zijl, j = 1, ..., p (i = 1, 2; l = 1, ..., ni)

are independent. Let xil = HΛ
1/2
i (zi1l, ..., zipl)T + µi (i = 1, 2; l = 1, ..., ni)

with µ1 = (1, ..., 1, 0, ..., 0)T whose first 25 elements are 1, µ2 = (0, ..., 0)T ,
Σ1 = HΛ1H

T = B(0.3|i−j|1/3
)B and Σ2 = HΛ2H

T = 1.2B(0.3|i−j|1/3
)B,

where B is given by (9). Then, the population distributions of xil, i = 1, 2,

satisfy (A-ii). Note that ||µ||2 = 25. We set σi⋆ = 0.8 ×
√

tr(Σ2
i ), i = 1, 2.

Then, we obtained m = 13, 18, 22, 25, 28 from (13) for p = 400(400)2000,
respectively.

In table 2, each block gives the findings when p = 400(400)2000. The
findings were obtained by averaging the outcomes from 2000(= R, say) repli-
cations. Under a fixed scenario, suppose that the rth replication ends with
Ni = nir (i = 1, 2) observations and the corresponding confidence interval with
nr = (n1r, n2r) for r = 1, ..., R. Let ni = R−1

∑R
r=1 nir and V ar(ni/Ci) =

(R − 1)−1
∑R

r=1(nir − ni)2/C2
i . Then, n (= n1 + n2) estimates C = C1 + C2

defined by (12) with its estimated variance, V ar(n/C), computed analogously.
In the end of the rth replication, we checked whether µ does (or does not)
belong to the corresponding confidence interval and defined Pr = 1 (or 0)
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Table 2 Required sample size and the coverage probability by (13)-(15) with δ = 10

n n − C V ar(n/C) P s(P )

When p = 400: m = 13

C 48.94 56.30 7.36 0.195 0.939 0.00537
C1 23.36 26.89 3.53 0.199
C2 25.59 29.41 3.83 0.199

When p = 800: m = 18

C 61.69 70.57 8.89 0.132 0.935 0.00553
C1 29.44 33.74 4.30 0.135
C2 32.25 36.84 4.59 0.133

When p = 1200: m = 22

C 71.68 81.68 10.0 0.112 0.943 0.00521
C1 34.21 39.04 4.83 0.114
C2 37.47 42.64 5.16 0.113

When p = 1600: m = 25

C 80.16 91.49 11.33 0.0971 0.946 0.00505
C1 38.25 43.69 5.44 0.0986
C2 41.91 47.80 5.89 0.0973

When p = 2000: m = 28

C 87.65 98.56 10.90 0.0764 0.950 0.00487
C1 41.83 47.07 5.24 0.0775
C2 45.82 51.48 5.66 0.0765

accordingly. Let P = R−1
∑R

r=1 Pr, which estimates the target coverage prob-
ability, having its estimated standard error s(P ) where s2(P ) = R−1P (1−P ).
Throughout, we observed that the two-stage procedure constructed required
confidence intervals successfully for HDLSS situations.

4 Data Analysis

In this section, we demonstrate how the new methodologies perform for a real
data set in HDLSS data situations. We analyzed gene expression data given by
Chiaretti et al. (2004) in which data set consisted of 12625 (= p) genes and 128
samples. Note that the expression measures were obtained using the three-step
robust multichip average (RMA) preprocessing method. Refer to Pollard et al.
(2005) as well for the details. The data set had two tumor cellular subtypes,
π1: B-cell and π2: T-cell. We set µ = µ1 −µ2 (b1 = 1, b2 = −1). We assumed
(A-iv) and either (A-ii) or (A-iii) with (A-v).

We first considered constructing a confidence region for µ along the lines
of Section 2. We set α = 0.05 and W = 300. We assumed that tr(Σ1) > 1500
for B-cell and tr(Σ2) > 1500 for T-cell. We set σ1⋆ = 1500 and σ2⋆ = 1500 so
that τ⋆ = mini=1,2 σ

1/2
i⋆ (σ1/2

1⋆ + σ
1/2
2⋆ ) = 3000. We calculated the pilot sample
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size as

m = max
{

4,

[
3000
300

]
+ 1
}

= 10

according to (6). So, we took the first 10 samples from each πi as a pilot sample.
We calculated tr(S1m) = 2646, tr(S2m) = 2664, tr(S1m(1)S1m(2)) = 7.22×105

and tr(S2m(1)S2m(2)) = 1.09× 105 from (7). Note that zα = 1.64. Then, from
(8), we had the total sample sizes as

N1 = max
{

10,
[√2646

300

(√
2646 +

√
2664

)
+

1.64
√

2
300

√
2646

(√
7.22 × 105

2646
+

√
1.09 × 105

2664

)]
+ 1
}

= 27,

N2 = 27.

So, we took the next 17 samples from π1 and the next 17 samples from π2.
Then, we had an estimate of µ by

TN = x1N1 − x2N2 = (−0.102,−0.014, 0.026, ..., 0.095, 0.114, 0.174)T ,

so that a 95% confidence region for µ by

RN,W = {µ ∈ Rp : ||TN − µ||2 ≤ 300}. (16)

We checked whether µ = 0 or not. When µ = 0, it followed that ||T N−µ||2 =
||T N||2 = 1746 (> 300). Since 0 /∈ RN,W , we concluded that µ ̸= 0. Let
TN = (T1N, ..., TpN)T . We considered a variable selection procedure by

TjN(∗) =

{
TjN if |TjN| ≥ 0.4,

0 otherwise
(17)

for j = 1, ..., p. Let T N(∗) = (T1N(∗), ..., TpN(∗))T . Then, we had that

TN(∗) = (0, 0, 0, 0, 0, 0.572, ..., 0, 0, 0)T .

The number of nonzero elements in T N(∗) was 1709. In other words, the selec-
tion procedure (17) chose 1709 genes from 12625 genes. When µ = TN(∗), it
followed that ||TN−µ||2 = ||T N−T N(∗)||2 = 263 (< 300). Since µ = TN(∗) ∈
RN,W , we considered T N(∗) as an estimate of µ.

Next, we considered constructing a confidence interval for ||µ||2 along the
lines of Section 3. We set α = 0.05 and δ = 200. We assumed that tr(Σ2

1)
1/2 >

600 for B-cell and tr(Σ2
2)

1/2 > 300 for T-cell. We set σ1⋆ = 600 and σ2⋆ = 300
so that τ⋆ = mini=1,2 σ

1/2
i⋆ (σ1/2

1⋆ + σ
1/2
2⋆ ) = 724. Note that zα/2 = 1.96. We

calculated the pilot sample size as

m = max

{
4,

[
1.96

√
2 × 724

200

]
+ 1

}
= 11
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according to (13). So, we took the first 11 samples from each πi as a pilot
sample. We calculated tr(S1m(1)S1m(2)) = 6.28× 105 and tr(S2m(1)S2m(2)) =
3.63 × 105 from (7) so that max(U1, 0) = 0 and max(U2, 0) = 60400 from
(14). Then, from (15), we had the total sample sizes as

N1 = max
{

11,
[1.96

√
2

200
(6.28 × 105)1/4

{
(6.28 × 105)1/4 + (3.63 × 105)1/4

}
+

1.9622
2002

(6.28 × 105)1/4

(
0 +

60400
(3.63 × 105)1/4

)]
+ 1
}

= 34,

N2 = 30.

So, we took the next 23 samples from π1 and the next 19 samples from π2.
Then, we had ||T N||2 = 1692 and Σ̂N = tr(S1N1)/N1 + tr(Σ2N2)/N2 = 149
so that T̃N = ||T N||2 − Σ̂N = 1543. Finally, we gave a 95% confidence interval
by

RN,δ = {µ ∈ Rp : max{−δ + T̃N, 0} ≤ ||µ||2 ≤ {δ + T̃N, 0}}
= {µ ∈ Rp : 1343 ≤ ||µ||2 ≤ 1743}.

We emphasize that one may apply a confidence interval for ||µ||2 to the dis-
criminant analysis for HDLSS data. (Refer to Section 4 in Aoshima and Yata,
2011).

A Appendix

Proof of Theorem 2.2. We have from (5) that Σn ≤ W/(1 + u(α)), where

u(α) = zα

√
2

k∑
i=1

|bi|

√
tr(Σ2

i )

tr(Σi)
/

 k∑
j=1

|bj |
√

tr(Σj)

 . (18)

It holds that√
2
∑
i,j

b2i b2j tr(ΣiΣj)/(ninj) ≤
√

2
k∑

i=1

b2i

√
tr(Σ2

i )/ni ≤
u(α)W

zα(1 + u(α))
.

Then, we have from (4) that

Pθ(||Tn − µ||2 ≤ W ) ≥ Pθ

(
||Tn − µ||2 − Σn ≤

u(α)W

1 + u(α)

)
≥ Pθ(N(0, 1) ≤ zα) + o(1) = 1 − α + o(1).

It concludes the result. �

Proof of Theorem 2.3. We have under (A-iv) and either (A-ii) or (A-iii) that

V arθ

(
tr(Sim)

tr(Σi)

)
= O(tr(Σ2

i )/(tr(Σi)
2m)) = O((mp)−1),

V arθ

(
tr(Sim(1)Sim(2))

tr(Σ2
i )

)
= O(m−2) + O(tr(Σ4

i )/(tr(Σ2
i )2m)) = o(m−1). (19)
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Then, it holds as p → ∞ that |Ni − Ci| = Op(1) under (A-iv) and either (A-ii) or (A-iii).
Let Ci⋆ = [Ci −mξ] (i = 1, ..., k) for ξ ∈ (0, 1/2). We have as p → ∞ that m < Ci⋆ < Ni <

Ci +mξ w.p.1. Here, we write that xiNi
=
∑Ci⋆

l=1 xil/Ni +
∑Ni

l=Ci⋆+1 xil/Ni. Then, it holds

that

||xiNi
− µi||2 − tr(SiNi

)/Ni

=

p∑
j=1

λij

∑Ci⋆
l̸=l′ zijlzijl′

Ni(Ni − 1)
+ 2

∑Ci⋆
l=1

∑Ni
l′=Ci⋆+1

zijlzijl′

Ni(Ni − 1)
+

∑Ni
l̸=l′(≥Ci⋆+1)

zijlzijl′

Ni(Ni − 1)

 .

By using Chebyshev’s inequality and Schwarz’s inequality, for any τ > 0, we have that

Pθ

 Ni∑
l̸=l′(≥Ci⋆+1)

∣∣∣∣∣∣
p∑

j=1

λijzijlzijl′

C2
i⋆

∣∣∣∣∣∣ > τW/p1/2


≤ Pθ

 Ci+[mξ]+1∑
l ̸=l′(≥Ci⋆+1)

∣∣∣∣∣∣
p∑

j=1

λijzijlzijl′

C2
i⋆

∣∣∣∣∣∣ > τW/p1/2

+ o(1) = O
(m4ξ

C2
i⋆

)
+ o(1) = o(1).

(20)

Thus we claim that

p∑
j=1

λij
∑Ni

l̸=l′(≥Ci⋆+1)
zijlzijl′

Ni(Ni − 1)
= op(W/p1/2).

Similarly to (20), for any τ > 0, we have that

Pθ

 Ni∑
l′=Ci⋆+1

∣∣∣∣∣
∑p

j=1 λij
∑Ci⋆

l=1 zijlzijl′

C2
i⋆

∣∣∣∣∣ > τW/p1/2

 = o(1).

Thus we have that

p∑
j=1

λij
∑Ci⋆

l=1

∑Ni
l′=Ci⋆+1

zijlzijl′

Ni(Ni − 1)
= op(W/p1/2).

Then, it holds as p → ∞ that

||xiNi
− µi||2 − tr(SiNi

)/Ni =

p∑
j=1

λij

∑Ci⋆
l̸=l′ zijlzijl′

Ci⋆(Ci⋆ − 1)

+ op(W/p1/2).

Similarly, it holds for i ̸= i′ that

(xiNi
− µi)

T (xi′Ni′
− µi′ ) = (xiCi⋆

− µi)
T (xi′Ci′⋆

− µi′ ) + op(W/p1/2).

Then, we have that

||TN − µ||2 − Σ̂N = ||T C⋆ − µ||2 − Σ̂C⋆ + op(W/p1/2),

where C⋆ = (C1⋆, ..., Ck⋆). Here, let us write that

Yi =
1

W
|bi|
√

tr(Sim)
k∑

j=1

|bj |
√

tr(Sjm) +
zα

√
2

W
|bi|
√

tr(Sim)
k∑

j=1

|bj |

√
tr(Sjm(1)Sjm(2))

tr(Sjm)
.

From (19), it holds that Yi = Ci+op(1). Then we have that Ni ≥ [Yi]+1 = [Ci+op(1)]+1 ≥
Ci w.p.1. Thus we claim that ΣN − ΣC ≤ 0 w.p.1, where C = (C1, ..., Ck). Note that
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Σ̂N − ΣN = op(W/p1/2), Σ̂C⋆ − ΣC⋆ = op(W/p1/2) and u(α) = O(p−1/2), where u(α) is
defined by (18). Therefore, similarly to the proof of Theorem 2.2, we have that

Pθ(||TN − µ||2 − Σ̂N ≤ W − Σ̂N) ≥ Pθ

(
||T C⋆ − µ||2 − ΣC⋆ ≤ W − ΣC

)
+ o(1)

≥ 1 − α + o(1).

It concludes the result. �

Proof of Theorem 2.4. From (A-i), (A-iv) and (19), we claim Eθ(Yi) = Ci + o(1), where Yi

is defined in the proof of Theorem 2.3. In a way similar to the proof of Lemma 2 in Yata
and Aoshima (2009a), we have under (A-i) that

Eθ

{
(Ni − [Yi] − 1)t

}
= o(mt−2) (t = 1, 2).

Note that V arθ(Yi) = o(1). Then, it holds that

|Eθ(Ni − Ci)| ≤ |Eθ(Yi) − Ci| + 1 + o(1) = 1 + o(1).

Note that |Eθ([Yi]) − [Ci]| ≤ 1 + o(1) and Eθ{(Yi − Ci)
2} = o(1). Then, it holds that

V arθ{Ni} = Eθ{([Yi] − Eθ{[Yi]})2} + o(1) ≤ Eθ{(|[Yi] − [Ci]| + 1)2} + o(1)

≤ Eθ{(
[
|Yi − Ci|

]
+ 2)2} + o(1) ≤ Eθ{(|Yi − Ci| + 3)2} + o(1) = O(1).

It concludes the results. �

Proof of Theorem 3.1. From the assumptions that µT Σiµ = o(tr(Σ2
i )/ni), i = 1, ..., k, it

holds as p → ∞ that V arθ(µT Tn) = O(
∑k

i=1 µT Σiµ/ni). Thus we have that

T̃n − ||µ||2√
V arθ(T̃n)

=
||Tn − µ||2 − Σ̂n√

2
∑

i,j b2i b2j tr(ΣiΣj)/(ninj)
+ op(1).

Then, by using Corollary 2.1 in Aoshima and Yata (2011), it concludes the result. �

Proof of Theorem 3.2. Note that V arθ(T̃n)z2
α/2

/δ2 ≤ 1+o(1). Then, we have from Theorem

3.1 that

Pθ(|T̃n − ||µ||2| ≤ δ) ≥ Pθ(|N(0, 1)| < zα/2) + o(1) = 1 − α + o(1).

By noting that ||µ||2 ≥ 0, it holds that Pθ(µ ∈ Rn,δ) ≥ 1−α+o(1). It concludes the result.
�

Proof of Theorem 3.3. Under either (A-ii) or (A-iii), we have that

V arθ(Ui) =O
(∑

j,j′

tr(ΣiΣjΣiΣj′ )

m2

)
+ O
(∑

j,j′

tr(ΣiΣj)tr(ΣiΣj′ )

m3

)
+ O
( (µT Σiµ)2

m

)

+ O
( k∑

j=1

µT ΣiΣjΣiµ

m

)
+ O
( k∑

j=1

tr(ΣiΣj)µ
T Σiµ

m2

)
. (21)

Note that tr(ΣiΣj) ≤ max
1≤i≤k

tr(Σ2
i ), tr(ΣiΣjΣiΣj′ ) ≤ max

1≤i≤k
tr(Σ4

i ) and µT ΣiΣjΣiµ ≤

µT Σiµ
√

tr(Σ2
i Σ2

j ). From the assumptions that (A-iv), (A-vi) and max
1≤i≤k

tr(Σ4
i ) = O(pδ2)

as p → ∞, we have that

V arθ(Ui/δ2) = O(m). (22)
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From (19) and (22), it holds that |Ni−Ci| = Op(m1/2). Let Ci⋆ = [Ci−m1/2+ξ] (i = 1, ..., k)
for ξ ∈ (0, 1/6). We have as p → ∞ that m < Ci⋆ < Ni < Ci +m1/2+ξ w.p.1. Here, we write
that ωi = [|(Ni − Ci⋆)|/[m1/2−ξ]] + 1, where ωi is an integer. Note that ωi = Op(m2ξ).
Let Rt = {Ci⋆ + 1 + (t − 1)[m1/2−ξ], ..., Ci⋆ + t[m1/2−ξ]} (t = 1, .., ωi − 1) and Rωi =

{Ci⋆ + 1 + (ωi − 1)[m1/2−ξ], ..., Ni}. Then, we can describe
∑Ni

l=Ci⋆+1 as
∑ωi

j=1

∑
l∈Rj

.

Thus we have that

p∑
j=1

λij
∑Ci⋆

l=1

∑Ni
l′=Ci⋆+1

zijlzijl′

Ni(Ni − 1)

=

ωi−1∑
t=1

p∑
j=1

λij
∑Ci⋆

l=1

∑
l′∈Rt

zijlzijl′

Ni(Ni − 1)
+
∑

l′∈Rωi

p∑
j=1

λij
∑Ci⋆

l=1 zijlzijl′

Ni(Ni − 1)
.

In a way similar to (20), for any τ > 0, we have that

Pθ

ωi−1∑
t=1

∣∣∣∣∣∣
p∑

j=1

λij
∑Ci⋆

l=1

∑
l′∈Rt

zijlzijl′

C2
i⋆

∣∣∣∣∣∣ > τδ

 = O(m4ξm1/2−ξ/Ci⋆) + o(1) = o(1),

Pθ

 ∑
l′∈Rωi

∣∣∣∣∣∣
p∑

j=1

λij
∑Ci⋆

l=1 zijlzijl′

C2
i⋆

∣∣∣∣∣∣ > τδ

 = O(m1−2ξ/Ci⋆) = o(1).

Then, we have that
p∑

j=1

λij
∑Ci⋆

l=1

∑Ni
l′=Ci⋆+1

zijlzijl′

Ni(Ni − 1)
= op(δ).

Similarly, we have that

p∑
j=1

λij
∑Ni

l̸=l′(≥Ci⋆+1)
zijlzijl′

Ni(Ni − 1)
= op(δ) and

Ni∑
l=Ci⋆+1

µT (xil − µi)/Ni = op(δ).

In a way similar to the proof of Theorem 2.3, we claim that

T̃N − ||µ||2 = ||TN − µ||2 − Σ̂N + op(δ) = ||T C⋆ − µ||2 − Σ̂C⋆ + op(δ),

where C⋆ = (C1⋆, ..., Ck⋆). Hence, similarly to the proof of Theorem 3.2, it concludes the
result. �
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