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Abstract 17 

We propose a methodology for estimating the residence time of groundwater based on 18 

bomb-produced 36Cl. Water samples were collected from 28 springs and 2 flowing wells 19 

located around Mt. Fuji, Central Japan. 36Cl/Cl ratios in the water samples, determined 20 

by accelerator mass spectrometry (AMS), were between 43 × 10−15 and 412 × 10−15. A 21 

reference time series of the above-background (i.e., bomb-derived) 36Cl concentration 22 

was constructed by linearly scaling the background-corrected Dye-3 data according to 23 

the estimated total bomb-produced 36Cl fallout in the Mt. Fuji area. Assuming piston 24 

flow transport, estimates of residence time were obtained by comparing the measured 25 

bomb-derived 36Cl concentrations in spring water with the reference curve. The 26 

distribution of 36Cl-based residence times is basically consistent with that of 27 

tritium-based estimates calculated from data presented in previous studies, although the 28 

estimated residence times differ between the two tracers. This discrepancy may reflect 29 

chlorine recycling via vegetation or the relatively small change in fallout rate since 30 

~1975, which would give rise to large uncertainties in 36Cl-based estimates of recharge 31 

for the period since ~1975. Given the estimated ages for groundwater from flowing 32 



2 

wells, dating based on a 36Cl bomb pulse may be more reliable and sensitive for 1 

groundwater recharged before 1975, back as far as the mid-1950s. 2 

 3 

Introduction 4 

Groundwater is generally highly vulnerable to excessive use and contamination, 5 

because of its typically long mean residence time. In the case of groundwater depletion 6 

or contamination, aquifers require a long time for recovery and purification. 7 

Consequently, knowledge of the residence time and flow system of groundwater is 8 

crucial for the development and sustainable utilization of groundwater resources. 9 

One of the most promising approaches to estimating the residence time of 10 

groundwater is the use of environmental tracers, such as chlorofluorocarbons (CFCs), 11 

tritiogenic 3He, SF6, and 85Kr for young groundwater (<60 yr). Bomb-produced 36Cl is a 12 

dating tool covering the last ~60 yr (Bentley et al. 1982). In addition to its hydrophilic 13 

nature, 36Cl is advantageous for young groundwater because its long half-life (3.01 × 14 

105 yr) means that decay attenuation is negligible on the time scale of decades to 15 

centuries. 16 

A 36Cl bomb pulse can be observed in the unsaturated zone of arid and semi-arid 17 

regions, and has been used as a tracer to estimate infiltration/recharge rates (e.g. Phillips 18 

et al. 1988). In contrast, few studies have applied 36Cl bombs in tracing groundwater, 19 

except for detecting the presence of young water (e.g. Andrews et al. 1994). 36Cl has 20 

been used in combination with 3H to estimate the groundwater recharge rate in a 21 

fractured rock aquifer (Cook and Robinson 2002) and to deduce the flow velocity and 22 

dispersivity in a sandy aquifer (Balderer et al. 2004). 23 

Few studies have investigated the application of 36Cl as a dating tool (Corcho 24 

Alvarado et al. 2005; Milton et al. 2003; Tosaki et al. 2007, 2010). One approach to 25 

quantitatively investigating the potential use of 36Cl is to reconstruct its fallout rates 26 

from measured 36Cl/Cl ratios in groundwater. The 36Cl fallout rates in Denmark, as 27 

reconstructed by Corcho Alvarado et al. (2005), exceeded the estimates based on data 28 

from the Dye-3 ice core, Greenland (Synal et al. 1990). The authors attributed this 29 

discrepancy to the storage and recycling of chlorine in the biosphere (e.g. Scheffel et al. 30 

1999). The nature of such storage and recycling was thoroughly evaluated at a wet, 31 

forested site in Canada by Milton et al. (2003) based on measurements of 36Cl in 32 
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groundwater, vegetation, and soil. Their results suggested chlorine retention and 1 

subsequent release by vegetation (including bomb-produced 36Cl), which can lead to 2 

errors in the application of 36Cl-based methods. In contrast, the 36Cl fallout rates in 3 

Germany, as reconstructed by Tosaki et al. (2007, 2010), were consistent with Dye-3 4 

fallout data, suggesting that the successful application of 36Cl is dependent on the 5 

conditions of the study site. 6 

No previous study has used 36Cl to quantitatively estimate the residence time of 7 

young groundwater. Consequently, the aim of the present study is to develop a 8 

methodology for “36Cl bomb-pulse dating”. This paper presents the initial results of 9 

attempts to estimate the residence time of volcanic spring waters originating from 10 

basaltic lava aquifers. The results provide insight into the potential of the proposed 11 

method and its limitations. 12 

 13 

Study area 14 

The study area lies at the foot of the western, southern, and eastern sections of Mt. 15 

Fuji in Central Japan. Mt. Fuji is one of the largest Quaternary stratovolcanoes in Japan 16 

(elevation, 3776 m) and consists mainly of alternating basaltic lava flows and 17 

coarse-grained pyroclastic rocks (e.g. Tsuya et al. 1988). Mt. Fuji can be structurally 18 

divided into three parts: the Komitake, Older Fuji, and Younger Fuji volcanoes, in 19 

ascending stratigraphic order. The underlying basement rocks are mainly Neogene 20 

marine sediments (e.g. Miyaji et al. 1992). 21 

The large amount of precipitation in the area means that Mt. Fuji contains large 22 

reservoirs of groundwater in its main body. Annual precipitation over the Mt. Fuji area 23 

ranges from 1500–2000 mm on the northern slope of the mountain to 2750–3000 mm 24 

on the eastern slope (Kizawa et al. 1969), with the overall area receiving an annual 25 

volume of ~2 × 109 m3 of rainwater (Yamamoto 1970). Springs located around the foot 26 

of the mountain originate mainly from confined groundwater in permeable parts of early 27 

Holocene lava flows (e.g. Tsuchi 2007). 28 

Previous studies have estimated the residence times of these spring waters based on 29 
3H or 3H/3He dating methods. In pioneering work conducted during the 1960s, 30 

groundwater in shallow aquifers (i.e. older lava flows of the Younger Fuji volcano) was 31 

found to possess high concentrations of 3H derived from atmospheric nuclear tests, and 32 



4 

residence times were estimated to be on the order of several years (Ochiai and Kawasaki 1 

1970). In contrast, groundwater in deep aquifers (i.e. mudflow deposits of the Older Fuji 2 

volcano) possessed low concentrations of 3H, with estimated residence times of 20–30 3 

years. 4 

Yoshioka et al. (1993) reported relatively high 3H concentrations (~38 TU) for 5 

springs emanating from the Younger Fuji lava at the eastern foot of Mt. Fuji, higher than 6 

those measured in the southeastern part of the mountain, and estimated residence times 7 

of ~30 yr using an exponential-type model. Using the 3H/3He dating method for samples 8 

collected in 1988, Mahara et al. (1993) obtained groundwater ages of ~10 yr for the 9 

southeastern foot of Mt. Fuji. Finally, Tsuchi (2007) reported 3H concentrations of ~5 10 

TU at the foot of the south and southern sections of Mt. Fuji (these sections are defined 11 

below) for water samples collected in the mid-1990s, indicating residence times of ~15 12 

yr. 13 

 14 

Sampling and analyses 15 

During two sampling campaigns, carried out in August 2006 and March 2007, 30 16 

samples were collected from springs and flowing wells around Mt. Fuji (Figure 1). The 17 

first sampling campaign collected 20 samples of spring water and 2 samples of 18 

groundwater from flowing wells at the southern foot of Mt. Ashitaka. During the second 19 

sampling campaign, samples were collected from eight springs. 20 

Electrical conductivity (EC), pH, and water temperature were measured in the field 21 

at the time of sampling. In the laboratory, samples were analyzed for major ions, silica 22 

(SiO2), stable isotopes (D and 18O), and 36Cl. Bicarbonate (HCO3
−) concentrations were 23 

determined by titration with dilute H2SO4 solution. Other major dissolved ions (Na+, K+, 24 

Mg2+, Ca2+, Cl−, SO4
2−, and NO3

−) were measured by ion chromatography analysis (Ion 25 

Analyzer IA-100; Dkk-Toa, Tokyo, Japan) at the Tandem Accelerator Complex, 26 

Research Facility Center for Science and Technology, University of Tsukuba, Japan. 27 

Dissolved SiO2 concentrations were determined with an inductively coupled 28 

plasma–atomic emission spectroscope (ICP–AES) system (ICAP-757; Nippon 29 

Jarrell-Ash, Kyoto, Japan) at the Chemical Analysis Division, Research Facility Center 30 

for Science and Technology, University of Tsukuba, Japan. The overall ionic charge 31 

balance was better than ±3%. 32 
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Stable isotope ratios of oxygen and hydrogen (δ18O and δD) were measured with a 1 

stable isotope mass spectrometer (MAT252; Thermo Finnigan, Bremen, Germany) at 2 

the Hydrology Lab, Graduate School of Life and Environmental Sciences, University of 3 

Tsukuba. Prior to analyses of stable isotopes, samples were equilibrated with CO2 gas 4 

for 18O and H2 gas with platinum catalysts for D. The analytical errors for δ18O and δD 5 

were 0.1‰ and 1‰, respectively. 6 

For 36Cl analysis, water samples were prepared as AgCl (see Tosaki et al. 2007). The 7 
36Cl/Cl ratios of the samples were measured with the AMS system at the Tandem 8 

Accelerator Complex, Research Facility Center for Science and Technology, University 9 

of Tsukuba (Sasa et al. 2010). Also analyzed was the diluted NIST 36Cl standard 10 

(36Cl/Cl = 1.000 × 10−11; Sharma et al. 1990). The overall precision of the system was 11 

better than 2%, and the background level of 36Cl/Cl measurement was ~1 × 10−15 (Sasa 12 

et al. 2010). The 36Cl/Cl ratios reported in this study include the statistical error derived 13 

from uncertainties (1σ) in measurements of the sample, the standard, and the blank. 14 

 15 

Results and discussion 16 

Stable isotopic composition and water chemistry 17 

Tables 1 and 2 summarize chemical and isotopic data, respectively, for the samples 18 

collected during the two sampling campaigns. The measured δD and δ18O values vary 19 

from −66‰ to −46‰ and from −9.9‰ to − 7.4‰, respectively (Table 1). A δD–δ18O 20 

diagram (Figure 2) shows that the δD and δ18O values lie slightly below the local 21 

meteoric water line (δD = 8δ18O + 15.1; Yasuhara et al. 2007), but lie directly on a 22 

regression line for recharging groundwater, as obtained by Yasuhara et al. (2007) (δD = 23 

8δ18O + 13.5). The identical slopes and similar d-values of the samples indicate a 24 

meteoric origin and that evaporation during recharge made a negligible contribution to 25 

stable isotopic fractionation (Yasuhara et al. 2007). 26 

Figure 3 shows the spatial distribution of δ18O values in spring water and 27 

groundwater. As shown in the figure, the study area is divided into five regions (the 28 

eastern, southeastern, southern, and western flanks of Mt. Fuji, and the foot of Mt. 29 

Ashitaka) based on the altitude effect on δ18O values. The southeastern foot of Mt. Fuji 30 

is located around the distal part of the Mishima lava flow, surrounded by the eastern 31 

foot of Mt. Ashitaka (1458 m) and the western outer rim of the crater at Mt. Hakone 32 



6 

(~1100 m). The δ18O values of the springs at the southeastern foot of Mt. Fuji (−8.5‰ to 1 

−8.1‰; samples 8–11) are lower than the values obtained around Mt. Ashitaka (−7.4 ‰ 2 

to −7.8‰; samples 7 and 12–14). Similar findings were reported by Yoshioka et al. 3 

(1993), indicating that the springs at the southeastern foot of Mt. Fuji originate mainly 4 

from elevations above those of Mts. Ashitaka and Hakone; i.e., from the foot of Mt. Fuji, 5 

passing through the Mishima lava flow (Younger Fuji lava). At the eastern foot of the 6 

mountain, samples 1 and 2 have higher δ18O values than those obtained at other springs. 7 

Considering the locations of these springs, the water probably originated from the foot 8 

of Mt. Hakone or from lower mountains. Consequently, these samples were not 9 

considered when estimating the residence times. 10 

The data in Table 1 indicate that the majority of the samples are Ca–HCO
3

 type, 11 

which is indicative of shallow groundwater, as reported previously in the present study 12 

area (e.g. Yoshioka et al. 1993). In contrast, several samples from the southern foot of 13 

Mt. Fuji have relatively high concentrations of NO3
−. Some of the spring waters are 14 

more enriched in Na+ than the general composition (e.g. sample 26). High Na+ contents 15 

relative to K+ are characteristic of groundwater in mudflow deposits of the Older Fuji 16 

volcano (Ikeda 1989), and may reflect cation exchange reactions between 17 

weathering-induced Ca2+ in groundwater and Na+ in the aquifer matrix (e.g. Chapelle 18 

and Knobel 1983), suggesting a relatively long residence time. 19 

Most of the spring waters with high NO3
− concentrations have higher δ18O values 20 

than those of nearby springs (Tables 1 and 2; Figure 3), indicating a relatively low 21 

recharge elevation and an origin from shallow aquifers. These waters would have been 22 

affected by NO3
− from agricultural sources, and possibly also anthropogenic Cl. 23 

Accordingly, samples with high NO3
− concentrations (>10 mg/L) were excluded from 24 

further analyses (cf. Davis et al. 2003). 25 

 26 

Estimates of residence time based on bomb-produced 36Cl 27 

Figure 4 shows the 36Cl/Cl ratios measured in spring waters and groundwater plotted 28 

against Cl− concentrations. The 36Cl/Cl ratios range from 43 × 10−15 to 412 × 10−15 29 

(excluding the samples with high NO3
− concentrations). The samples with high NO3

− 30 

concentrations have relatively low 36Cl/Cl ratios (39 × 10−15 to 62 × 10−15; Tables 1 and 31 
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2), suggesting the influence of anthropogenic Cl. The 36Cl/Cl ratios are relatively high 1 

in the eastern part of Mt. Fuji. With the exception of the NO3
−-contaminated samples, 2 

the observed variation in 36Cl content can be ascribed to differences in the residence 3 

times of the waters. Because we cannot be sure that the other samples did not receive 4 

additional Cl after recharge, the obtained 36Cl concentrations are likely to be more 5 

reliable than the 36Cl/Cl values. As discussed below, the mean recharge elevation of the 6 

springs is well constrained in the range of 1100–2250 m (Yasuhara et al. 1995), which 7 

probably indicates no significant difference among the springs in terms of the influence 8 

of evapotranspiration on the observed 36Cl concentrations. 9 

To estimate the groundwater residence time based on bomb-produced 36Cl, we 10 

developed a suitable methodology and applied it to the collected samples. The measured 11 
36Cl/Cl ratios were converted to above-background (bomb-derived) 36Cl concentrations 12 

(e.g. Cook and Robinson 2002), by (1) subtracting the background 36Cl/Cl ratio from 13 

measured ratios, and (2) multiplying by the Cl− concentrations to derive the 14 

above-background 36Cl concentrations (atoms/L). 15 

Reference 36Cl data are also required to estimate the residence time. These data were 16 

obtained as follows: (1) reduction of Dye-3 fallout data (Synal et al. 1990) using the 17 

background 36Cl flux at the Dye-3 site (Synal et al. 1994) to derive a time series of the 18 

above-background 36Cl flux; (2) linear scaling of the above-background 36Cl flux using 19 

the estimated total bomb-produced 36Cl fallout in Tsukuba (Tosaki et al. 2008) after 20 

correcting for the difference in precipitation amount between the two sites (i.e. between 21 

the Tsukuba and Mt. Fuji areas); and (3) conversion of the scaled above-background 22 
36Cl flux to the above-background 36Cl concentration by using a mass balance equation 23 

for the recharge area (Andrews et al. 1994). To estimate the residence times, the 24 

obtained reference curve was then compared with the above-background 36Cl 25 

concentrations obtained for the samples. 26 

The background 36Cl/Cl ratio was assumed to be (60 ± 10) × 10−15, based on the 27 

lower limit of the measured 36Cl/Cl range (see Figure 4). After subtracting this value 28 

from the 36Cl/Cl ratios measured for the samples, these values were multiplied by each 29 

Cl− concentration to obtain the above-background 36Cl concentration (Figure 5c). In 30 

contrast, yearly values of bomb-produced 36Cl fallout (values above the background 31 

level) at the Dye-3 site were deduced by subtracting the natural background 36Cl flux 32 
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(20 ± 6 atoms m−2 s−1; Synal et al. 1994) from the original Dye-3 fallout data (Synal et 1 

al. 1990). These values were then scaled with a scaling factor obtained in the manner 2 

described below. 3 

In our previous study (Tosaki et al. 2008), the total bomb-produced 36Cl fallout in 4 

Tsukuba, Central Japan (36°04′N, 140°08′E), was estimated to be 2.3 × 1012 atoms m−2, 5 

based on depth-profiling of groundwater in an upland area. A revision of the assumed 6 

values of parameters used in the calculation (i.e. assumed layer porosities with 10% 7 

uncertainties (cf. Yasuhara et al. 1991) and a surface runoff rate of 90 ± 10% in upland 8 

areas) yields an estimated fallout of (2.4 ± 0.3) × 1012 atoms m−2. 9 

The average annual precipitation in Tsukuba is 1246 ± 178 mm (for 1951–2000; 10 

AMeDAS data from the Japan Meteorological Agency), which is approximately half 11 

that in the Mt. Fuji area (2500 ± 250 mm, as discussed below; Kizawa et al. 1969). 12 

Because the fallout rates of bomb-derived nuclides are expected to depend on the 13 

amount of precipitation (Phillips 2000), the difference in precipitation amount needs to 14 

be accounted for in our calculations. Here, we employed the following correction 15 

scheme proposed by Phillips (2000) for natural 36Cl flux: 16 

 ( ))()()( localDlocal λλ PPSλDD −+=     (1) 17 

where localD  is the measured local 36Cl deposition flux (atoms m−2 s−1), )(λD  is the 18 

mean 36Cl deposition flux for a given latitude band (atoms m−2 s−1), localP  is the local 19 

mean annual precipitation (mm), )(λP  is the mean annual precipitation for a given 20 

latitude band (mm), and )(D λS  is a parameter that describes the dependence of 36Cl 21 

deposition flux on precipitation amount within a given latitude band. Phillips (2000) 22 

obtained an )(D λS  value of 0.047 ± 0.006 atoms m−2 s−1 (mm yr−1)−1 for the latitude 23 

40°N. 24 

In the present study, Equation (1) was revised for bomb-produced 36Cl fallout, as 25 

follows:  26 

 ( ))()()( localDlocal λλ PPfSλFF −+=     (2) 27 

where localF  is the measured 36Cl fallout (atoms m−2), )(λF  is the mean 36Cl fallout 28 

for a given latitude band (atoms m−2), and f is a conversion factor that represents the 29 
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ratio of bomb-produced 36Cl fallout (atoms m−2) to natural background 36Cl flux (atoms 1 

m−2 s−1) at a given site within the selected latitude band. )(λP  was assumed to be 818 2 

± 77 mm, based on the estimated average precipitation amount at 30°–50°N 3 

(Baumgartner and Reichel 1975). As mentioned above, localP  was taken as 1246 ± 178 4 

mm for the Tsukuba Upland area and 2500 ± 250 mm for the Mt. Fuji area. The 5 

conversion factor f was obtained by dividing the total bomb-produced 36Cl fallout in 6 

Tsukuba ((2.4 ± 0.3) × 1012 atoms m−2) by the natural background 36Cl flux in Tsukuba 7 

(32 ± 2 atoms m−2 s−1; unpublished data for bulk precipitation during 2004–2007), 8 

yielding a value of (7.5 ± 1.0) × 1010 atoms m−2 (atoms m−2 s−1)−1. Because the study 9 

area occurs at a latitude of ~35°N, it would be reasonable to employ an )(D λS  value 10 

of 0.047 ± 0.006 atoms m−2 s−1 (mm yr−1)−1, as obtained previously for the latitude 40°N 11 

(Phillips 2000). Application of the above correction scheme yielded an estimated fallout 12 

of (6.8 ± 1.7) × 1012 atoms m−2 for the Mt. Fuji area. 13 

The time series of bomb-produced 36Cl fallout at the Dye-3 site was scaled according 14 

to the ratio of the estimated fallout at the study area ((6.8 ± 1.7) × 1012 atoms m−2) to the 15 

value at the Dye-3 site ((2.43 ± 0.03) × 1012 atoms m−2, as calculated by integrating the 16 

above-background 36Cl flux from 1945 to 1985; Synal et al. 1990, 1994). The scaled 17 

fallout values obtained using a scaling factor of 2.8 ± 0.7 were then converted to 36Cl 18 

concentrations using the following mass balance equation (Andrews et al. 1994): 19 

 







−
××

=
EP

FA
100

10010156.3 7

     (3) 20 

where A is the 36Cl concentration, F is the 36Cl fallout (atoms m−2 s−1), P is the mean 21 

annual precipitation (mm), and E is the mean annual evapotranspiration rate (%). 22 

Mean recharge elevations, estimated from the altitude effect on the stable isotopic 23 

composition for springs located on the south, east, and west slopes of Mt. Fuji, are 24 

1100–2000 m, 1250–2200 m and 1600–2250 m, respectively (Yasuhara et al. 1995). P 25 

was assumed to be 2500 ± 250 mm, because the precipitation amount at elevations of 26 

1100–2250 m is generally 2250–2750 mm, based on the precipitation map reported by 27 

Kizawa et al. (1969). 28 

According to estimates of evaporation based on the fractionation of stable isotopes 29 

(Yasuhara et al. 1997), evaporation rates for the investigated slopes are 16% at 2000 m 30 
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and 21% at 1000 m. These values does not account for transpiration, which would cause 1 

little or no isotopic fractionation. The potential evapotranspiration rate was calculated to 2 

be 46 ± 3% at Mishima (elevation, 20.5 m) in the southeastern part of Mt. Fuji, using 3 

the Penman equation (e.g. Brutsaert 2005) with an assumed albedo of 0.20 ± 0.05 for 4 

vegetated surfaces. Given the estimated recharge elevation of the springs (1100–2250 5 

m), the actual evapotranspiration rate in this area is probably between ~20% and ~46%. 6 

In this regard, an evapotranspiration rate of 35%, as calculated by Tsuchi (2007) based 7 

on the water balance within the Mt. Fuji area, seems to be reasonable; accordingly, E 8 

was assumed to be 35 ± 5%. Figure 5a and 5b shows the resulting time series of 9 

above-background 36Cl concentrations estimated for the Mt. Fuji area. 10 

Most spring waters around Mt. Fuji originate from confined aquifers within the New 11 

Fuji lava layers or from an aquifer that overlies the low-permeability Older Fuji mud 12 

flow layer (e.g. Tsuchi 2007). Consequently, piston flow would be a reasonable 13 

approximation of groundwater flow in this area for an initial interpretation of the data. 14 

The residence times of spring waters can be roughly estimated by comparing Figure 5b 15 

and 5c. Considering the elevated concentrations of tritium in spring waters during the 16 

late 1960s (Ochiai and Kawasaki 1970), most of the spring waters would have been 17 

recharged during the post-bomb period. Hence, the estimated residence times were 18 

obtained using the post-peak portion of the reference curve shown in Figure 5b. One 19 

exception is sample 26, which showed a low δ18O value relative to the values for nearby 20 

springs, indicating recharge from a higher part of the slope. This sample also has the 21 

lowest K/Na ratio among the samples (see Table 1), which is characteristic of the deep 22 

Older Fuji aquifer (Ikeda 1989). In addition, its low 36Cl/Cl ratio, (53 ± 7) × 10−15, 23 

suggests that it was recharged during the pre-bomb period (residence time > 55 yr). 24 

Figure 6 shows the distribution of estimated residence times for spring water and 25 

groundwater (see also Table 2). Although the distribution is somewhat complex, the 26 

residence times estimated for spring water at the eastern foot of Mt. Fuji (22–36 yr) are 27 

generally older than those estimated for other areas. Two groundwater samples from 28 

flowing wells near Mt. Ashitaka also yielded relatively old ages (23–37 yr). In contrast, 29 

spring waters at the southeastern foot of Mt. Fuji have younger residence times (0–31 30 

yr), while springs at the southern foot yield variable residence times. 31 

 32 
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4. Discussion 1 

For the southeastern foot of Mt. Fuji, the residence times estimated in the present 2 

study (0–31 yr) overlap with previous estimates obtained using 3H/3He dating (~10 yr; 3 

Mahara et al. 1993). Figure 7 shows the available data on 3H concentrations for selected 4 

springs, along with the range of 3H concentrations in precipitation over Central Japan 5 

(see Table 2 for tritium-based ages interpreted from previous tritium data). 3H 6 

concentrations at the foot of the eastern and western sections of Mt. Fuji are higher than 7 

those at the southeastern and southern sections. Specifically, samples 4 and 29 from the 8 

former sections yield slightly older tritium-based ages (12–17 and 3–16 yr, respectively; 9 

Table 2). This difference between the eastern–western and south–southeastern sections 10 

is basically consistent with the trend observed for 36Cl. 11 

The estimated residence time for sample 26 (>55 yr) reflects the fact that the spring 12 

is located along the Agoyama Fault. The old age indicates that this spring water 13 

originates from groundwater in deeper aquifers, including mudflow deposits of the 14 

Older Fuji volcano. This interpretation is consistent with the field observation that this 15 

spring discharges in a direction away from Mt. Fuji. Other springs at the southern foot 16 

of the mountain yield variable residence times, possibly reflecting the specific 17 

geological setting of each site. 18 

Figure 8 compares 36Cl-based ages and tritium-based ages. Although the two 19 

distributions of residence time are basically in agreement, the 36Cl-based ages are 20 

generally much older than the tritium-based ages (Table 2; Figure 8). This discrepancy 21 

may reflect (1) dispersion during groundwater flow, (2) the mixing of groundwaters of 22 

different ages (e.g. exponential mixing), or (3) chlorine recycling via vegetation. 23 

Generally, dispersion acts to broaden the bomb pulse, resulting in an overestimate of 24 

residence time for the post-peak portion of the reference data; however, this would have 25 

a similar affect on both the 36Cl and tritium pulses, as would exponential mixing. 26 

Therefore, these two processes cannot explain the difference in residence time estimated 27 

using the two tracers. Because the study area is located in a humid temperate climate, 28 

the recycling of chlorine by vegetation may have affected the 36Cl contents of the 29 

springs. The estimates are also complicated by the relatively small change in the fallout 30 

rate of 36Cl after 1975. 31 

In addition to the above effects, several factors may produce errors in estimates of 32 
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residence time. Although we assumed a uniform background level for the entire study 1 

area, the 36Cl/Cl ratio is clearly dependent on stable Cl transported from the sea. 2 

According to Hiyama et al. (1995), the concentration of Cl− in precipitation for the 3 

southwestern foot of Mt. Fuji varies from 0.59 mg/L at an elevation of 1000 m to 0.21 4 

mg/L at 2390 m, indicating reduced Cl transport at higher elevation. In the case of a 5 

large difference in recharge elevation among the studied springs, the assumed 6 

background of 60 × 10−15 may result in an underestimate of the actual background at 7 

higher elevations. 8 

Four samples from the western foot of Mt. Fuji yield 36Cl/Cl ratios of ~100 × 10−15 9 

(Table 2), which is almost twice the assumed natural background level (60 × 10−15). 10 

However, sample 30 shows especially low concentrations of dissolved ions (Table 1) 11 

and a relatively high δ18O value (Table 2), which may suggest a short residence time. 12 

One reasonable explanation for the discrepancy in residence times is that the natural 13 

background level of 36Cl/Cl at the western foot of Mt. Fuji is higher than that for the 14 

other areas considered in the present study. This may reflect differences in Cl− 15 

concentrations within precipitation, as a reduction in the supply of stable chloride 16 

results in an increase in the 36Cl/Cl ratio. In addition, the springs located at the western 17 

foot of the mountain are recharged at a higher elevation (1600–2250 m) than the springs 18 

at other parts of the mountain (Yasuhara et al. 1995). 19 

Given the possibility of chlorine recycling and the minor change in the reference data 20 

after 1975, estimates of the residence time of young water would contain relatively large 21 

uncertainties. However, it is reasonable that artesian groundwater (from depths greater 22 

than 100 m) near Mt. Ashitaka would yield relatively old ages. Therefore, dating based 23 

on a 36Cl bomb-pulse may be more reliable and sensitive for groundwater recharged 24 

before 1975, back as far as the bomb-peak period. 25 

 26 

Conclusions and outlook 27 

The residence times of spring water around Mt. Fuji were estimated based on 28 

bomb-produced 36Cl. Dye-3 fallout data were used to construct a reference time series 29 

of 36Cl/Cl values in the Mt. Fuji area. To focus solely on the bomb-derived 36Cl 30 

components, all the measured and reference 36Cl data were presented as 31 

above-background 36Cl concentrations after subtracting the background levels. The total 32 



13 

bomb-produced 36Cl fallout in the Mt. Fuji area was estimated to be (6.8 ± 1.7) × 1012 1 

atoms m−2. The time series of above-background 36Cl concentration at the Dye-3 site 2 

was then scaled according to the ratio of the estimated total bomb-produced 36Cl fallout 3 

in the study area to that at the Dye-3 site ((2.43 ± 0.03) × 1012 atoms m−2). 4 

Measured 36Cl/Cl ratios in spring water were also converted to above-background 5 
36Cl concentrations and then compared with the estimated time series to yield estimates 6 

of residence time, assuming piston flow. The distribution of 36Cl-based residence times 7 

is reasonably consistent with that of tritium-based residence times, although the two 8 

tracers yield contrasting residence times, possibly due to chlorine recycling via 9 

vegetation and the relatively small change in the reference data after ~1975. This result 10 

suggests that 36Cl-based estimates for recharge years after ~1975 would involve large 11 

uncertainties. Given the ages estimated for artesian groundwater, 36Cl bomb pulse dating 12 

may be more reliable and sensitive for groundwater recharged before 1975, back as far 13 

as the bomb-peak period. 14 

The natural background 36Cl/Cl ratio may vary for different slopes upon Mt Fuji, 15 

reflecting variations in the Cl− concentration within precipitation. Therefore, the 16 

condition of the recharge area (i.e. the natural background level of 36Cl/Cl, mean annual 17 

precipitation, and evapotranspiration rate) must be known as accurately as possible to 18 

minimize errors in estimated residence times. 19 
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 2 

Figure 1. (a) Geological map of the Mt. Fuji area (after Tsuya 1968; Machida 1977). (b) Schematic cross-section through Mt. Fuji (after Tsuya 1940). 3 

(c) Topographic map of the Mt. Fuji area. Also shown on (a) and (c) are the sampling locations and sampling dates.  4 

5 
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 6 
 7 

Figure 2. Stable isotopic compositions of samples of spring water and groundwater. Open circles indicate δ18O and δD values of the samples. Solid 8 

and dashed lines represent regression lines for precipitation (local meteoric water line: LMWL) and groundwater obtained by Yasuhara et al. (2007), 9 

respectively.  10 

 11 
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 1 
 2 

Figure 3. Spatial distribution of δ18O values in spring water and groundwater in the Mt. Fuji area. The symbol shape indicates the date of sample 3 

collection. The study area was divided into five sub-regions based on the altitude effect on δ18O values (see the text for details). 4 
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 6 
 7 

Figure 4. 36Cl/Cl ratios plotted against chloride concentrations for samples of spring water and groundwater. Solid line and gray band indicate the 8 

assumed range of background 36Cl/Cl ratios in the study area. For an explanation of the geographic regions (e.g., East and Southeast), see Fig. 3. 9 
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 3 

Figure 5. (a) Predicted time series of above-background 36Cl concentration (see the text for details of how these values were calculated) in the Mt. 4 

Fuji area (logarithmic scale). (b) Predicted time series of above-background 36Cl concentration (linear scale). (c) Above-background 36Cl 5 

concentrations of spring water and groundwater. Gray areas shown in (a) and (b) indicate the error estimated from the propagation of uncertainties 6 

arising in the assumed values of parameters. For an explanation of the geographic regions (e.g., East and Southeast), see Fig. 3. 7 
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Figure 6. Spatial distribution of the residence time of spring water and groundwater in the Mt. Fuji area, as estimated from 36Cl. The symbol shape 3 

indicates the date of sample collection. 4 
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 6 

Figure 7. Tritium concentrations in selected springs within the Mt. Fuji area. Data are from Takahashi et al. (1969), Ochiai and Kawasaki (1970), 7 

Tsuchi (1992, 1996, 2001), Yoshioka et al. (1993), Mahara et al. (1993), Masuda et al. (1994), Ochiai (1995), Kakiuchi (1995), and Nakai (1996). 8 

Each value is expressed as the concentration at the time of sampling. Tritium concentrations in precipitation at Tokyo (1961–1979; IAEA/WMO 9 

2006) and Chiba (1979–2006; NIRS 2006), Central Japan, are shown for comparison. Dotted lines indicate the decay curves for the maximum and 10 

minimum tritium concentrations of the samples. The recharge year for each sample can be obtained from the intersection between a straight line that 11 

passes through the tritium concentration data and the precipitation data.  12 
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Figure 8. Comparison of 36Cl-based and tritium-based ages.9 
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Table 1. Chemical compositions of spring water and groundwater sampled from around Mt. Fuji  1 

Sam

ple 

no. 

Name Type 
Elev

ation 
Sampling date Na+ K+ Mg2+ Ca2+ Cl− SO4

2− NO3
− HCO3

− SiO2 

   (m)  (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

1 Yubune Spring 344 5 Mar. 2007  4.7 1.1 5.3 10.2 2.8  3.4  2.2 58.6 52.7 

2 Kuwaki Spring 400 6 Mar. 2007  4.5 1.0 3.7 13.8 2.5  4.6  3.0 58.6 40.3 

3 Nimaibashi Spring 458 24 Aug. 2006 11.3 1.8 4.8 14.5 2.1 18.2  0.6 72.6 25.2 

4 Nakashimizu Spring 385 24 Aug. 2006  6.8 1.6 4.7 12.8 2.5  7.0  3.7 63.4 36.6 

5 Numata Spring 389 23 Aug. 2006  8.4 1.5 5.6 15.0 2.6 14.3  1.9 71.4 32.7 

6 Futagosuijin Spring 380 24 Aug. 2006  7.8 1.5 5.1 13.4 2.2 12.7  2.1 65.9 32.8 

7 Hirayama Spring 185 23 Aug. 2006  7.5 1.5 4.0 12.4 5.7  9.0  5.7 52.5 39.6 

8 Komoike Spring  32 21 Aug. 2006 11.2 2.1 5.9 16.8 7.5 10.9  3.4 82.4 44.9 

9 Suisen-en Spring  32 21 Aug. 2006  9.7 1.8 5.0 14.9 6.9 15.4   6.2 60.4 41.4 

10 Fujiyusuichi Spring  24 21 Aug. 2006  8.2 1.9 4.3 12.4 7.7  9.3  6.3 51.2 42.8 

11 Kakitagawa Spring  20 21 Aug. 2006  9.6 1.9 4.8 14.5 6.6 17.0  4.7 58.6 41.1 

12 Mizujinja Spring 570 8 Mar. 2007  3.4 1.1 0.9  3.6 2.5  1.4  2.3 16.5 30.6 

13 Hiyoshijinja Groundwater  20 21 Aug. 2006  7.3 1.2 4.9 11.2 5.9  1.1  2.6 63.4 46.3 

14 Hara Groundwater   7 21 Aug. 2006  7.2 1.0 2.1  7.0 4.5  2.6  0.5 39.7 39.3 

15 Iouji Spring  23 23 Aug. 2006  7.1 2.7 5.0 12.5 6.8 13.6 16.7 40.3 45.6 

16 Kansekien Spring  33 21 Aug. 2006  6.3 1.5 2.7  7.8 3.6  6.3  5.0 36.0 38.9 

17 Takifudou Spring  24 21 Aug. 2006  6.3 1.6 2.7  7.8 3.5  6.4  5.2 36.0 38.2 

18 Youmeiji Spring  21 21 Aug. 2006  6.7 1.4 2.7  7.7 3.4  6.5  5.1 36.0 37.6 
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19 Hounji Spring   9 23 Aug. 2006  8.0 2.3 5.3 14.9 5.1 16.4 19.0 47.6 40.5 

20 Sugita (1) Spring 204 8 Mar. 2007  6.4 5.5 8.2 28.0 8.3 39.7 64.1 22.6 38.1 

21 Sugita (2) Spring 201 8 Mar. 2007  6.6 3.8 6.2 21.2 7.2 31.1 40.6 25.6 38.7 

22 Izurimizu Spring 208 22 Aug. 2006  7.0 2.5 4.9 19.1 5.8 18.9 24.0 47.6 43.7 

23 Kamikoizumi Spring 165 22 Aug. 2006  6.8 1.6 5.1 12.9 3.4 14.2  9.4 50.6 43.6 

24 Wakutamaike Spring 126 22 Aug. 2006  7.5 2.0 4.0 11.7 4.6  9.0  9.4 48.8 43.1 

25 Hagoromo Spring 121 23 Aug. 2006  7.7 2.1 3.5 11.4 5.3  7.4  8.2 48.2 44.3 

26 Yoshimaike Spring 127 23 Aug. 2006 14.2 1.7 4.4 12.6 6.6 18.4  7.6 58.0 44.5 

27 Shiraitonotaki Spring 480 7 Mar. 2007  8.6 1.6 3.5  9.7 4.2  8.9  7.1 44.5 37.0 

28 Shiraitoyusui Spring 485 7 Mar. 2007  9.2 1.9 3.7 10.5 5.2 10.9  8.3 45.8 35.0 

29 Inokashira Spring 730 22 Aug. 2006  5.9 1.0 2.4  8.2 3.6  7.7  3.2 32.9 24.6 

30 Jinbanotaki Spring 700 7 Mar. 2007  4.0 0.9 1.7  7.8 2.7  5.9  3.0 27.5 20.0 

1 
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Table 2. Isotopic composition of spring water and groundwater sampled from around Mt. Fuji 1 

Sa

mp

le 

no. 

Name δ18O δD 36Cl/Cl 
36Cl 

concentration 

Above-background 
36Cl/Cl 

Above-background 
36Cl concentration 

36Cl-based 

age 

Tritium-based 

age* 

  (‰) (‰) (10−15) (106 atoms/L) (10−15) (106 atoms/L)   

1 Yubune −7.9 −49  70 ± 6  3.3 ± 0.3  10 ± 12  0.5 ± 0.6 – – 

2 Kuwaki −8.1 −50 314 ± 16 13.5 ± 0.7 254 ± 19 11.0 ± 0.8 – – 

3 Nimaibashi −9.9 −66 412 ± 16 14.8 ± 0.6 352 ± 19 12.7 ± 0.7 32–36 – 

4 Nakashimizu −8.9 −57 105 ± 9  4.4 ± 0.4  45 ± 13  1.9 ± 0.5 22–30 12–17 

5 Numata −9.5 −62 201 ± 12  8.8 ± 0.5 141 ± 15  6.2 ± 0.7 31–32 0–12 

6 Futagosuijin −9.4 −62 202 ± 14  7.4 ± 0.5 142 ± 17  5.2 ± 0.6 31–32 – 

7 Hirayama −7.7 −48  99 ± 8  9.6 ± 0.8  39 ± 13  3.8 ± 1.2 23–31 0–8 

8 Komoike −8.1 −52  68 ± 9  8.7 ± 1.2   8 ± 14  1.0 ± 1.8 0–31 – 

9 Suisen-en −8.2 −53  70 ± 9  8.2 ± 1.1  10 ± 14  1.2 ± 1.6 0–31 0–7 

10 Fujiyusuichi −8.2 −52  51 ± 8  6.6 ± 1.0  −9 ± 13 −1.2 ± 1.6 0–21 0–2 

11 Kakitagawa −8.5 −55  43 ± 7  4.8 ± 0.7 −17 ± 12 −1.9 ± 1.3 0–21 0–13 

12 Mizujinja −7.8 −48  70 ± 6  2.9 ± 0.2  10 ± 12  0.4 ± 0.5 0–21 0 

13 Hiyoshijinja −7.4 −46 217 ± 12 21.7 ± 1.2 157 ± 16 15.7 ± 1.6 32–37 – 

14 Hara −7.6 −48 113 ± 10  8.7 ± 0.7  53 ± 14  4.1 ± 1.1 23–31 – 

15 Iouji −8.0 −50  42 ± 6  4.8 ± 0.7 −18 ± 12 −2.1 ± 1.3 – – 

16 Kansekien −8.4 −54  67 ± 8  4.1 ± 0.5   7 ± 13  0.4 ± 0.8 0–21 10–13 

17 Takifudou −8.5 −54  61 ± 7  3.7 ± 0.4   1 ± 12  0.1 ± 0.7 0–21 – 
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18 Youmeiji −8.5 −55  78 ± 8  4.5 ± 0.5  18 ± 13  1.0 ± 0.7 0–29 – 

19 Hounji −8.2 −52  52 ± 7  4.4 ± 0.6  −8 ± 12 −0.7 ± 1.0 – – 

20 Sugita (1) −7.6 −49  39 ± 4  5.5 ± 0.6 −21 ± 11 −3.0 ± 1.5 – – 

21 Sugita (2) −7.7 −50  42 ± 4  5.1 ± 0.5 −18 ± 11 −2.2 ± 1.3 – – 

22 Izurimizu −7.8 −49  62 ± 7  6.1 ± 0.7   2 ± 12  0.2 ± 1.2 – – 

23 Kamikoizumi −8.4 −54 121 ± 10  7.0 ± 0.6  61 ± 14  3.5 ± 0.8 23–31 – 

24 Wakutamaike −8.5 −55  96 ± 9  7.5 ± 0.7  36 ± 14  2.8 ± 1.1 23–31 0–8 

25 Hagoromo −8.6 −55  65 ± 6  5.9 ± 0.6   5 ± 12  0.5 ± 1.1 0–28 – 

26 Yoshimaike −9.3 −61  53 ± 7  5.9 ± 0.7  −7 ± 12 −0.8 ± 1.3 >55 or 0–21  – 

27 Shiraitonotaki −9.5 −63 129 ± 8  9.3 ± 0.5  69 ± 13  5.0 ± 0.9 29–32 – 

28 Shiraitoyusui −9.2 −61 109 ± 7  9.6 ± 0.6  49 ± 12  4.3 ± 1.1 29–31 – 

29 Inokashira −9.3 −61 130 ± 11  8.0 ± 0.7  70 ± 15  4.3 ± 0.9 29–31 3–16 

30 Jinbanotaki −8.7 −57 124 ± 7  5.8 ± 0.3  64 ± 12  3.0 ± 0.6 23–30 – 

*Original tritium concentration data are from Takahashi et al. (1969), Ochiai and Kawasaki (1970), Tsuchi (1992, 1996, 2001), Yoshioka et al. 

(1993), Mahara et al. (1993), Masuda et al. (1994), Ochiai (1995), Kakiuchi (1995), and Nakai (1996). 
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