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Abstract. Using molecular dynamics simulations, we study the slow dynamics of

supercooled liquids confined in a random matrix of immobile obstacles. We study

the dynamical crossover from glass-like to Lorentz-gas-like behavior in terms of the

density correlation function, the mean square displacement, the nonlinear dynamic

susceptibility, the non-Gaussian parameter, and the fragility. Cooperative and spatially

heterogeneous dynamics are suppressed as the obstacle density increases, which lead

to the more Arrhenius-like behavior in the temperature dependence of the relaxation

time. Our findings are qualitatively consistent with the results of recent experimental

and numerical studies for various classes of spatially heterogeneous systems. We also

investigate the dependence of the dynamics of mobile particles on the protocol to

generate the random matrix. A reentrant transition from the arrested phase to the

liquid phase as the mobile particle density increases is observed for a class of protocols.

This reentrance is explained in terms of the distribution of the volume of the voids

that are available to the mobile particles.
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1. Introduction

The transport properties of fluids in a heterogeneous environment are of great

importance in physics, chemistry, and engineering [1, 2]. These systems include fluids

confined in walls, standing thin-film liquids, and fluids adsorbed in random media.

The effect of spatial confinement is especially important to the study of the glass

transition of supercooled liquids. Recent experiments and computer simulations have

revealed that the glass transition temperature, transport properties, and microscopic

dynamics sensitively change in the presence of spatial confinement [3]. Moreover, it

is expected that an understanding of these phenomena may lead to a deeper insight

into the growing length scales of the cooperative motion of atoms, which escorts the

drastic slowing down of dynamics near the glass transition point [4, 5]. A fluid in

randomly distributed immobile obstacles is an ideal model to study the effects of

the confinement on the glassy slow dynamics, in fact, a fluid in random media is

interesting in its own right. This system is introduced as a model system of a crowded

environment, and the transport phenomena contained within has attracted a great deal

of attention in the biophysics community [6, 7, 8, 9]. This system can also be seen as

a generalization of the Lorentz gas problem to the multi-particle case [10, 11, 12, 13].

Furthermore, this system can be regarded as a model of binary mixtures with a disparate

size ratio [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. The immobile obstacles in the

random media are interpreted as large particles in the binary liquids because of the

huge asymmetry in time scales between the small and large particle components.

In recent years, various molecular dynamics (MD) simulations have been performed

to study the slow dynamics of the fluids in random media [25, 26, 27, 28, 29, 30, 31].

Theoretically, the slow dynamics of mobile hard spheres in the presence of the immobile

hard spheres of the same size has been intensively investigated using the replica method

combined with the mode-coupling theory (RMCT) [32, 33, 34, 35]. These studies have

examined the dynamic phase transition from liquid to non-ergodic arrested states. Two

notable results were predicted. The first is that the slow dynamics can be characterized

by two types of dynamics: Type A and Type B dynamics [36]. When the mobile particle

density, ρm, is large and the immobile particle density, ρi, is small, the system undergoes

a conventional glass transition, in which the onset of slow dynamics is signaled by the

discontinuous emergence of two-step relaxation in the density correlation function. This

is referred to as Type B transition. As the immobile density ρi increases, the glass

transition point of the mobile particles decreases drastically. At an even larger ρi, the

dynamics qualitatively changes; one-step slow relaxation sets in at large wavelengths, in

which the tail of the relaxation curve continuously grows and progressively propagates

toward the smaller wavelengths as ρi increases, until the dynamics of the mobile particle

freezes. This freezing is a localization transition due to blocking by the percolating

network of the immobile particles. This is called Type A transition. The crossover

from Type B to Type A transition is reminiscent of the behaviors observed in many

heterogeneous systems such as the glass-to-gel crossover of attractive colloids [37, 38] and
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Figure 1. Schematic illustrations of two protocols to generate the random matrix:

(a) Quenched-Annealed (QA) and (b) Equilibrated Mixture (EM) protocols.

the glassy slow dynamics of binary mixture systems with a disparate size ratio [16, 17].

The second prediction is the existence of a reentrant transition in the small ρm regime,

in which the arrested mobile particles melt as the mobile particle density ρm increases

at a fixed ρi.

To verify these theoretical predictions, we [39, 40] and Kurzidim et al. [41, 42] have

independently and numerically investigated fluids in immobile obstacles. All of these

studies have confirmed that there is a crossover from Type B to Type A transition as

the immobile particle density increases. These studies also found no reentrant transition

for the system that was studied by RMCT.

We have also found that the dynamic arrest line (or more precisely iso-relaxation-

time line) sensitively depends on the protocol that is used to generate the configuration

of the randomly distributed immobile particles [39, 40]. Two types of these protocols

have been studied; the first is the Quenched-Annealed (QA) system, in which the

immobile particles are initially equilibrated before their positions are quenched (see

Fig. 1(a)). Mobile particles are then inserted into the system and their dynamics are

monitored after equilibration. This QA protocol offers a natural choice to model the

experimental setups of random media (such as porous materials) and has been adopted

in the theoretical analysis of RMCT [32, 33, 34, 35] and in numerical studies by Kurzidim

et al. [41, 42]. The second protocol studied is the Equilibrated Mixture (EM) protocol,

in which all of the particles are run in the simulation box and, after their equilibration,

the motions of a fraction of the particles are quenched (see Fig. 1(b)). The dynamics of

the mobile component is monitored after waiting long enough for the mobile particles

to equilibrate in the presence of the immobile particles. This protocol is appropriate

as a model of the dynamics of the fast (small) particle component in binary mixtures

with a disparate size ratio, in which the two time scales of each component are well

separated. We found no reentrance for the system prepared with the QA protocol, but

surprisingly, we did observe reentrance using the EM protocol [39, 40]. It should be noted

that this reentrance is distinct from that predicted by RMCT. It was speculated that
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this reentrance can be attributed solely to the configurations of the immobile particles

prepared by the EM protocol; the configuration of immobile particles is automatically

“optimized” to provide more pathways for the mobile particles than those prepared in

the absence of mobile particles (using the QA protocol).

In the present paper, we investigate the dynamical properties of the fluids in random

obstacles (which were also examined in our previous papers [39, 40]) in more detail,

focusing on various quantities that characterize the slow dynamics near the glass and

the localization transition. We evaluate the nonlinear dynamic susceptibility, the non-

Gaussian parameter, and the fragility across the entire parameter space of (ρi, ρm). We

also quantify how the dynamics of mobile particles sensitively depends on the protocol

used to generate the random matrices.

This paper is organized as follows. In Sec. 2, we briefly review our model and

simulation method. In Sec. 3, the numerical results are given; we first describe

how the dynamics changes from Type B to Type A by calculating various dynamic

quantities. In the latter subsection of Sec. 3, we discuss the sensitivity of the dynamics

of mobile particles to a geometry of random configurations of the immobile particles by

calculating the pore-size distribution. In Sec. 4, we summarize our results and provide

our concluding remarks.

2. Model and methods

We perform MD simulations for two types of systems: a binary mixture interacting

with the soft-core potential and a monodisperse hard sphere. The binary mixture is

used to explore the entire parameter space of (ρi, ρm); bidispersity is required to avoid

crystallization at the small obstacle density limit ρi → 0. The monodisperse hard sphere

is used to investigate the region at which the crossover from Type B to Type A transition

takes place. This is also the region where the reentrant transition was predicted by

RMCT. Monodispersity is of importance to explore the physical mechanism near the

crossover without the risk of it being obscured by the softness of the potential or by the

bidispersity of the system.

The binary soft-core mixture consists of an equal number of two types of particles

with the total number N = N1 + N2 = 500 + 500. They interact via the soft-core

potential

vαβ(r) = ǫ
(

σαβ

r

)12

, (1)

where σαβ = (σα + σβ)/2 and α, β ∈ {1, 2}. The size and mass ratio were σ2/σ1 = 1.2

andm2/m1 = 2, respectively. The total number density was fixed at ρ = (N1+N2)/L
3 =

0.8σ−3
1 , in which the system length was L = 10.77σ1 under periodic boundary conditions

(PBC). The units of length, time, and temperature were considered to be σ1,
√

m1σ2
1/ǫ,

and ǫ/kB, respectively. For each simulation run, Ni particles were picked up from

the N particles randomly and fixed their positions. Nm = N − Ni particles were left

mobile. In this model, we used the number densities defined by ρi = Niρeff/N and



Dynamic heterogeneities, fragility, and slow dynamics in random media 5

0 0.5 1 1.5
0

0.5

1

1.5

ρi

ρ m

arrested states
liquid states

−−−−(A)

−−−−−(B)

−−−(C)

−−−−−−−−−(D)

Figure 2. Dynamic phase diagram of the binary soft-core mixture generated by the

EM protocol. ρi is the immobile (obstacle) particle density, and ρm is the mobile

(fluid) particle density. The arrested states are defined as the points beyond which the

α-relaxation time τα exceeds 103.

ρm = Nmρeff/N as the system parameters, in which ρeff = N(ǫ/kBT )
1/4σeff

3/V is the

effective density of this model [43]. Here, σeff is the effective particle diameter defined

by σeff
3 =

∑

α,β=1,2 xαxβσαβ
3, where x1 = N1/N = 1/2 and x2 = N2/N = 1/2 are the

mixture compositions. The states that were investigated here were as follows: ρeff = 0.5,

0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.15, 1.2, 1.3, 1.4, and 1.45. The corresponding temperatures

were as follows: T = 21.61, 10.42, 5.624, 3.297, 2.058, 1.350, 0.992, 0.772, 0.651, 0.473,

0.352, and 0.306, respectively. We controlled ρi and ρm by changing Ni (or Nm) and

ρeff (or T ). The number of mobile particles was chosen to be Nm = 10 ∼ 900. The

velocity Verlet algorithm was used to integrate Newton equations with time steps of

0.001 ∼ 0.005.

The monodisperse hard sphere system includes N identical hard spheres with mass

m and diameter σ in a cubic box of volume V under PBC. σ and
√

mσ2/kBT were used

as the units of length and time, respectively. The temperature was fixed as kBT = 1.

The standard event-driven algorithm was used for particle collisions [44]. The number

densities ρi = Ni/V and ρm = Nm/V were controlled by changing Ni, Nm, and V .

For both systems, we carefully checked the system size dependence and the sample

dependence of the observables throughout the study. Two types of protocols, the QA

and EM protocols, were employed to generate the random matrices.

3. Numerical results

3.1. Dynamic phase diagram

We first determined the dynamic phase diagram for the whole (ρi, ρm)-space by

performing MD simulations of the EM systems of the binary soft-core mixture. In
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Figure 3. Various time-dependent quantities for the binary soft-core mixture

generated by the EM protocol at the four state points (A) (Ni, ρeff) = (100, 1.45),

(B) (Ni, ρeff) = (300, 1.3), (C) (Ni, ρeff) = (500, 1.15), and (D) (Ni, ρeff) = (900, 0.7),

as denoted in Fig. 2. (a) the self-part of the intermediate scattering function Fs(k, t)

with k = 2π, (b) the mean square displacement 〈∆r2(t)〉, (c) the nonlinear dynamic

susceptibility χ4(k, t) with k = 2π, and (d) the non-Gaussian parameter α2(t).

Fig. 2, the dynamic phase diagram is plotted as a function of ρi and ρm. The dynamic

arrest line is defined as the points at which the α-relaxation time τα reaches 103. We

confirmed that varying the criteria for τα simply shifts the dynamic arrest line back and

forth, but that its qualitative behavior remains intact. τα is determined by calculating

the self-part of the intermediate scattering function for mobile particles,

Fs(k, t) =
1

Nm

〈

Nm
∑

j=1

exp[i~k · (~rj(t)− ~rj(0))]

〉

, (2)

where ~k is the wave vector, k = |~k|, and ~rj(t) is the position of the j-th particle. We

defined τα by Fs(k = 2π, τα) = 0.1.

As ρi increases, the dynamic arrest line (or the glass transition points) drastically

decreases. These features were well documented in the previous simulations studies [28,
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29, 30, 31] and in RMCT [32, 33, 34, 35]. This tendency is sustained up to the region,

beyond which a small reentrant pocket is observed. This reentrance will be discussed in

a later section.

3.2. Intermediate scattering function

The numerical results of conventional dynamical quantities displayed in Fig. 3

demonstrate how the immobile particle density ρi affects the relaxation processes of

mobile particles. In Fig. 3(a), the time evolution of Fs(k, t) with k = 2π is plotted for

the four state points (A)–(D) that are indicated in Fig. 2, at which the α-relaxation

times are almost the same. The figure clearly indicates that there are two types of

distinct dynamics depending on ρi.

In the small ρi (immobile particle density) regime ρi ≪ 0.5, Fs(k, t) exhibits two-

step relaxation with a well-developed plateau, which is a hallmark of slow dynamics near

the glass transition point. We found that the shoulder of the plateau discontinuously

appears as one approaches from the fluid side to the arrested phase [39, 40]. This

behavior is typical of slow dynamics near the glass transition point and is referred

to as Type B transition in the MCT community. However, as the mobile particle

density ρm decreases and ρi increases, the relaxation profile of Fs(k, t) becomes quite

different from that of Type B transition, i.e., Fs(k, t) shows a single step relaxation

with a long tail (see Fs(k, t) at the state (D)). It is also observed that the amplitude of

the tail increases continuously as one crosses the arrested phase and that this increase

incipiently starts from the lowest wavelength and propagates to the shorter scales as

ρi increases [39, 40]. This behavior is known as the hallmark of Type A transition (or

the localization transition) as predicted by RMCT [32, 33, 34, 35] and demonstrated

by simulations for various spatially heterogeneous systems, such as binary mixtures of

large and small particles [16, 17] and colloidal gels [37, 38].

3.3. Mean square displacement

The qualitative change from Type B to Type A dynamics is also observed in the mean

square displacement (MSD) for mobile particles,

〈∆r2(t)〉 =
1

Nm

〈

Nm
∑

j=1

|~rj(t)− ~rj(0)|
2

〉

. (3)

The results are plotted in Fig. 3(b). It is known that in the Type B dynamics, the MSD

exhibits a plateau at the β-relaxation time regime where the plateaus are observed for

Fs(k, t), in which the tagged particle is trapped by surrounding particles. However, at

the small ρm limit (see (D) of Fig. 3(b)), anomalous subdiffusive behavior ∆r2(t) ∼ tα

(α < 1) is observed, in which the system is almost Lorentz-gas-like. On a short

timeframe, the mobile particles at the state point (D) can explore longer distance than

those at (A)–(C), because the mobile particle density is small. At a longer timeframe,

however, the diffusion becomes very slow due to the developing network of immobile
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particles that hinders the ability of the mobile particles to explore the long distance;

this system can be explained in terms of the percolation theory [45]. The subdiffusion

exponent α ≈ 0.3 is consistent with 0.32 predicted for the Lorentz gas [10, 11, 12, 13].

3.4. Nonlinear dynamic susceptibility

We next investigate the nonlinear dynamic susceptibility or four-point correlation

function for mobile particles, χ4(k, t), which is a measure that is used to quantify the

extent of the dynamic heterogeneities [46, 47, 48]. χ4(k, t) is defined as the variance of

the fluctuations of the self part of the intermediate scattering function by

χ4(k, t) = Nm[〈F̂
2
s (k, t)〉 − 〈F̂s(k, t)〉

2]. (4)

Here Fs(k, t) = 〈F̂s(k, t)〉 and

F̂s(k, t) ≡
1

Nm

Nm
∑

i=1

sin(k|∆~ri(t)|)

k|∆~ri(t)|
. (5)

In the literatures [47], N−1
m

∑Nm

i=1 cos(~k · ∆~ri(t)) is conventionally used as the definition

of F̂s(k, t). Under this definition, χ4(k, t) decays to a constant 1/2 at t → ∞. However,

as we demonstrate here, the peak of χ4(k, t) for the Type A regime grows more mildly

than it does for the Type B regime. To demonstrate this suppression of the peak

and thus the dynamic heterogeneities in the Type A regime without the results being

obscured by a constant plateau at a large t, we have adopted an alternative definition of

F̂s(k, t) by taking the average over the angular components of the wave vector ~k, which

leads to eq.(5). Note that both definitions of F̂s(k, t) lead to an identical averaged

value Fs(k, t) = 〈F̂s(k, t)〉 due the isotropic nature of the system, but that the new

definition removes the unwanted constant for χ4(k, t) at t → ∞. In Fig. 3(c), the time

evolutions of χ4(k, t) are plotted for the four state points (A)–(D). In the Type B regime,

χ4(k, t) exhibits behavior that is typical for bulk glass, i.e., a pronounced peak at the

α-relaxation time, whose height grows rapidly as the density increases and is preceded

by algebraic growth in the β-relaxation regime. In the Type A regime at state (D),

however, χ4(k, t) neither grows nor shows a strong peak, even after a long period of

time. This results implies that dynamic heterogeneities play a minor role in the slow

dynamics of this regime. Similar behavior of χ4(k, t) has been reported for colloidal gels

whose slow dynamics are caused by geometrical constraints [49, 50].

3.5. Non-Gaussian parameter

The non-Gaussian parameter (NGP) is another typical quantity that is suitable to

monitor the effect of the heterogeneities inherent in the system. We calculated the

NGP α2(t) defined by

α2(t) =
3〈∆r4(t)〉

5〈∆r2(t)〉2
− 1, (6)
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Figure 4. (a) The α-relaxation time, τα, as a function of the inverse temperature

Tg/T , for several Ni’s, Ni = 0, 100, 200, 500 and 800. Tg is defined as the temperature

at which τα = 104. (b) Ni-dependence of the fragility index m.

where 〈∆r4(t)〉 = (1/Nm)〈
∑Nm

j=1 |~rj(t) − ~rj(0)|
4〉. α2(t) reveals how the distribution

of the single-particle displacement, |∆~rj(t)|, at time t deviates from the Gaussian

distribution [51]. The profiles of α2(t) are indicated in Fig. 3(d).

It is observed that α2(t) develops and exhibits the pronounced peak before the α-

relaxation time in the Type B regime. It is known that an increase in the maximum

α2(t) is synchronized with the growing dynamic heterogeneities near the glass transition

point [52]. As the immobile density ρi increases, the height of the peak decreases. At

the largest ρi, the point (D), it is hard to see the peak. This trend is qualitatively

similar to that of the nonlinear dynamic susceptibility, χ4(k, t). Recently, Flenner and

Szamel have proposed a new non-Gaussian parameter (NNGP) [53]. They argued that

the conventional NGP is more susceptible to particles moving faster than those moving

more slowly, whereas NNGP is more susceptible to slowly moving particles. It would be

beneficial to compute and compare the NGP, NNGP, and χ4(k, t) in order to corroborate

the role of the dynamic and static heterogeneities in the confined systems.

3.6. Fragility

The “fragility” is a concept to quantify the deviation of the temperature dependence

of the viscosity, diffusion coefficient, and the relaxation time from the Arrhenius

behavior [54]. The fragility index m is commonly used as a measure of the fragility

and is defined by the steepness of the increase of τα upon decreasing the temperature;

m =
∂ log10 τα
∂(Tg/T )

∣

∣

∣

∣

T=Tg

, (7)

where Tg is the glass transition point. m depends on the material of the glass formers.

Generally, fragile liquids with large m’s tend to exhibit more pronounced and more

temperature-sensitive dynamic heterogeneities than do more Arrhenius-like fluids with
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smaller m’s (or stronger liquids). As was demonstrated in the previous sections, the

dynamic heterogeneities are suppressed as the immobile particle density ρi increases.

Therefore, it is natural to expect that the system concomitantly becomes stronger (more

Arrhenius-like). We examined the temperature (or the effective density ρeff) dependence

of τα’s for various Ni’s (the number of the immobile particles) for a binary soft-core

mixture. Note that we have used ρeff to control T . The change of ρeff changes ρi (and

also ρm) slightly, and this shift may make it difficult to quantify the effects of the fixed

number of obstacles on the fragility. We believe, however, that this effect is negligible

for the range of the temperatures that we have explored.

The “Angell-plot”, the log10 τα-vs-1/T plot, of our system is shown in Fig. 4(a),

in which the temperature T is scaled by the “glass transition temperature” Tg. Tg

has been defined by the point at which τα reaches 104 that is slightly longer than the

criteria used to draw Fig. 2. The dependence of the fragility index m on the number of

immobile particles Ni is plotted in Fig. 4(b). We observe that m is remarkably sensitive

to the density of immobile particles. The fragility index is m ≈ 14 for bulk glass but it

decreases to m ≈ 4 at the largest density of immobile particles. Our observation differs

from the one reported for a binary mixture system with large size ratios (≤ 3) by Kurita

et al. [24]. They indicated that the fragility changed non-monotonically, though mildly,

by changing the size ratio of small and large particles and their densities. It would be

interesting to study how this trend changes as the size ratio of the two components

increases, resulting in the time scales for each component becoming decoupled.

We remark that the fragility, which behaves in a manner that is qualitatively

similarly to ours, has been experimentally obtained in polymeric systems confined in

porous media recently [55], in which the crossover from a non-Arrhenius to Arrhenius

temperature-dependence of the relaxation time was observed as the pore size became

smaller. It was speculated that the decrease of the fragility as the effect of the

confinement is enhanced is universal and should be observed for other types of confined

systems such as those with the solid-liquid or air-liquid interfaces [56].

Finally, it should be noted that even the largest values of m reported here are

still very small compared with conventional molecular systems [57]. This discrepancy

occurs because the glass transition temperature Tg defined above is far higher than those

observed for real glasses, which is due to the limited time windows that the simulations

can access. It is noteworthy that our simulation results still exhibited qualitatively

similar behavior form as the experimental results, despite the large time-scale differences

between them.

3.7. Reentrant transition

In this subsection, we examine the effect of the configurations of immobile particles on

dynamics of the mobile particles by comparing results obtained with the EM protocol

to those obtained with the QA protocol in the monodisperse hard sphere system. We

used the one-component hard spheres to study the mechanism behind the configuration-
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Figure 5. Dynamic phase diagram of the monodisperse hard sphere system with a

random matrix generated by the two different protocols: (a) QA and (b) EM.
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Figure 6. The ρm dependence of the mean square displacement, 〈∆r2(t)〉, at the

immobile particle density (a) ρi = 0.3, (b) 0.43, and (c) 0.5 of the QA systems
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Figure 7. The ρm dependence of the mean square displacement, 〈∆r2(t)〉, at the

immobile particle density (a) ρi = 0.3,(b) 0.43, and (c) 0.5 of the EM systems.

dependence of dynamics near the Type B-Type A crossover without the results being

obscured by the softness of the potential or by the bidispersity of the system. We

calculated the MSD of the mobile particles and determined the dynamic phase diagrams

for both the QA and EM systems. The results are plotted in Fig. 5. Here, the dynamic
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Figure 8. The pore-size distribution P (vpore) for various mobile particle densities

ρm at the fixed immobile particle density ρi = 0.5 of the EM systems.

arrest line is determined as the points at which the MSD reaches 102 in the simulation

time t = 104. Figs. 6 and 7 show the dependence of the MSD on ρm at several ρi’s for

both the QA and EM systems.

As indicated by Fig. 5(a), no reentrant transition is observed for the QA system.

The dynamic arrest line monotonically decreases as ρi increases, which is compatible

with the recent numerical simulations for the related QA systems [41, 42]. Indeed, Fig. 6

indicates that the slope of the MSD monotonically decreases as ρm increases at a fixed

ρi. On the one hand, this result is hardly surprising because the slowing down of the

mobile particle dynamics is mainly due to the geometrical confinement by the immobile

particles. On the other hand, the EM system shows the reentrant pocket at a finite

ρm, which is clearly seen in Fig 5(b). The similar reentrance pocket has been observed

in the binary soft-core mixture (see Fig. 2). The dynamics of the mobile particles are

accelerated in spite of the increase in ρm. This reentrance can be clearly seen in Fig. 7(b)

and (c); by increasing ρm at the fixed large ρi, the slope of the MSD at long times first

increases and then gradually decreases.

In our previous study [39, 40], we have speculated that the origin of this reentrance is

due to the change of the equilibrium structure of the immobile particles in the presence

of the mobile particles, which are equilibrated together when the random matrix is

generated. To verify this speculation, we investigated the distribution of the pore size (or

the free volume available for the mobile particles) generated by the immobile particles.

The pore-size distribution is determined as follows. Using a three dimensional Delaunay

triangulation algorithm, the total space of the system is divided into non-overlapping

tetrahedrons. The vertices consist of the positions of the immobile particles. The volume

distribution of the tetrahedrons, P (vpore), for EM systems is computed. If the volume

of the tetrahedron is much larger than that of the particle, vpore > πσ3/6 ≃ 0.52σ3, the

mobile particle can access the pore. The available pore-sizes for the mobile particles are
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not identical to the available pathways that are available to them, but their distribution

function still provides reliable information on the dynamics of the mobile particles in

geometrical confinement. As observed in Fig. 8, the height of the tail of P (vpore) at

vpore ≥ 0.52σ3 increases as ρm increases at a fixed value of ρi = 0.5 monotonically.

This result indicates that the free volumes available for the mobile particles increases,

which leads to the reentrant behavior of the MSD that is observed in Fig. 7(c). Note

that the tails monotonically increase (at least up to ρm = 0.4), but the dynamics slow

down again around ρm ≈ 0.2, as indicated by Fig. 5(b). This result occurs because the

glassy dynamics of the mobile particles sets in while the localization effect (due to the

geometrical confinements) becomes smaller.

These results quantify our speculation that the immobile particles adjust themselves

during an equilibration run to prepare for the presence of the mobile particles so that

the free volumes for both components are entropically maximized and leave more

available geometrical spaces (and pathways) for the mobile particles, delaying the

percolation transition to larger values and thus leading to faster dynamics of the mobile

particles. The sensitivity of the percolation point to the protocols used to generate the

matrix configuration has been previously studied in several contexts and our results are

consistent with these results [29, 30, 31].

We also speculate that counterintuitive effects similar to the reentrance discussed

above are prevalent in systems in which the disparate time scales are entangled. A

binary mixture consisting of large and small particles studied by MD simulations may

be a good example. Voigtmann et al. have numerically studied the dynamics of such a

binary mixture and have shown that the diffusion of small particles becomes slower when

the interactions between small particles are turned off [22, 23]. One may speculate that

this observation is relevant to our finding of the reentrant pocket for the EM system. The

turn-off of the interactions makes small particles “invisible” to each other and makes

the large particles behave as if there are fewer small particles around them, which

makes the configuration of the large particles become more QA-like than those with full

interactions. This effect might be difficult to observe via standard static quantities (such

as the static structure factors) but may be detected easily via the pore-size distribution

function. An accurate theoretical method to evaluate the subtle differences in the static

structure factors would be desirable to investigate how the protocol dependence changes

the dynamic phase diagram using RMCT [58].

4. Conclusions

In this paper, MD simulations have been performed to examine the dynamical properties

near the arrest points of simple fluids confined in random media. We calculated various

quantities for the whole range of the mobile and immobile densities, including the

intermediate scattering function, the mean square displacement, the nonlinear dynamic

susceptibility, the non-Gaussian parameter, and the fragility. We found that all of these

quantities exhibited qualitative changes as the density of the mobile/immobile particles
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was varied. At the limit of small immobile particle density, all of the observed quantities

indicated the strong signs of dynamic heterogeneities near the glass transition point, such

as the enhanced nonlinear dynamic susceptibility, the increased peak heights of the non-

Gaussian parameter, and the fragile behavior of the relaxation time in its temperature

dependence. At the opposite limit, in which a small number of mobile particles diffuse

amid abundant obstacle particles, the signs of the dynamic heterogeneities were all

suppressed. The nonlinear dynamic susceptibility and the non-Gaussian parameter

exhibited no peak, and the temperature dependence of the relaxation time was almost

Arrhenius. To understand the underling physics behind the reentrant transition near the

Type B to Type A crossover, we have carefully quantified how the statistical properties

of configuration of the random matrix can be altered by the different protocols used

to generate them by calculating the pore-size distribution generated by the immobile

particles. Throughout this paper, we refer the change from Type B to Type A dynamics

as the crossover. According to RMCT [32, 33, 34, 35], this change should be associated

with a higher order MCT transition. However, this transition is too subtle to be clearly

observed at the resolution of the current simulations.
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