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Abstract 

 

 Core-polymerized and boron-conjugated micelles (PM micelles) were prepared by free radical 

copolymerization of a PEG-b-PLA block copolymer bearing an acetal group and a methacryloyl 

group (acetal-PEG-b-PLA-MA), with 1-(4-vinylbenzyl)-closo-carborane (VB-carborane), and the 

utility of these micelles as a tumor-targeted boron delivery system was investigated for boron 

neutron capture therapy (BNCT). Non-polymerized micelles (NPM micelles) that incorporated 

VB-carborane physically showed significant leakage of VB-carborane (ca. 50%) after 12 h 

incubation with 10% fetal bovine serum (FBS) at 37 ºC. On the other hand, no leakage from the PM 

micelles was observed even after 48 h of incubation. To clarify the pharmacokinetics of the micelles, 

125
I (radioisotope)-labeled PM and NPM micelles were administered to colon-26 tumor-bearing 

BALB/c mice. The 
125

I-labeled PM micelles showed prolonged blood circulation (area under the 

concentration curve (AUC): 943.4) than the 
125

I-labeled NPM micelles (AUC: 495.1), whereas 

tumor accumulation was similar for both types of micelles (AUCPM micelle: 249.6, AUCNPM micelle: 

201.1). In contrast, the tumor accumulation of boron species in the PM micelles (AUC: 268.6) was 

7-fold higher than the NPM micelles (AUC: 37.1), determined by ICP-AES. Thermal neutron 

irradiation yielded tumor growth suppression in the tumor-bearing mice treated with the PM 

micelles without reduction in body weight. On the basis of these data, the PM micelles represent a 

promising approach to the creation of boron carrier for BNCT. 
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1. Introduction 

 

 Boron neutron capture therapy (BNCT) has attracted much attention as a selective and noninvasive 

type of cancer therapy [1,2]. This therapy is based on the capture reaction of thermal neutrons using 

nonradioactive 
10

B, which produces particles and 
7
Li nuclei with approximately 2.3 MeV of 

energy. These high linear-energy-transfer (LET) particles dissipate their energy before traveling 

across the diameter of cells (5-9 m) within tissues, resulting in cytotoxic effects. Two types of 

10
B-compunds, sodium borocaptate (BSH) and L-4-dihydroxyboronylphenylalanine (BPA), have 

been utilized for clinical trials. However, due to the rapid clearance of these compounds from the 

bloodstream (half-life of blood circulation time of BSH, BPA: t1/2 < 1 h) [3], a high dose of 

10
B-compounds is generally required to allow a sufficient concentration of 

10
B atoms to accumulate 

in tumor tissues (BSH: 41 mg 
10

B/kg, BPA: 58 mg 
10

B/kg) [4]. Meanwhile, with BNCT, it is 

theoretically possible to kill tumor cells without damage to normal cells if 
10

B atoms can be 

selectively accumulated in tumor tissues (15–30 ppm of 
10

B atoms per gram of tumor tissue). 

Therefore, the therapeutic value of cancer BNCT under in vivo conditions is largely dependent on 

the development of effective boron carrier systems that can achieve modulated disposition in the 

body through the intravenous route as well as facilitate accumulation in tumor tissues. Maeda and 

Matsumura reported that large-molecular-weight compounds, including nanoparticles tend to 

accumulate in tumors due to the presence of leaky neovascular walls and an immature lymphatic 

system in tumors (a phenomenon called the enhanced permeability and retention (EPR) effect) [5,6]. 

The high levels of nanoparticle accumulation can be achieved via the EPR effect if the nanoparticle 

has a tendency for prolonged circulation within the bloodstream, since the EPR effect builds up 
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gradually over several days. Thus, prolonged circulation of nanoparticles, for at least several days, 

in the bloodstream is a preferable feature in development of cancer therapeutics. To improve the 

therapeutic effect of cancer BNCT, a variety of boron-delivery systems, such as BSH-encapsulated 

PEG-modified liposomes, have been developed, and some of these can allow accumulation to 

substantially higher levels in tumor tissues than that achieved with free BSH [7-9]. However, the 

therapeutic efficacy of BSH-encapsulated liposomes is still controversial due to the leakage of the 

encapsulated BSH from the liposome into the bloodstream [10]. An alternative approach 

represented by the 
10

B-compound-conjugated liposomes fabricated by covalently linking a lipid 

(hydrophobic group) with a 
10

B-compound (hydrophilic group) to suppress the leakage of the 

10
B-compound into the bloodstream [11,23]. However, the synthesis of nido-carborane required 

complicated preparation steps. Additionally, serious acute toxicity was observed in vivo because of 

the cytotoxicity of nido-carborane [23]. 

We have studied nano-sized polymeric micelles constructed from AB-type amphiphilic block 

copolymers as drug carrier and reported the selective accumulation into tumor tissues through the 

EPR effect [12]. However, one of the disadvantages of utilizing polymeric micelles as the drug 

carrier was leakage of the drug incorporated in the micelles during blood circulation [13-15]. 

Therefore, we attempted to prepare polymeric micelles by conjugating the boron compounds 

through covalent bonds, since release of the incorporated drugs from nanoparticles is not required 

for BNCT. Recently, we reported the development of a new class of boron delivery systems based 

on core cross-linked and boron-conjugated micelles prepared by radical polymerization of 

poly(ethylene glycol)-block-poly(lactide) copolymer (PEG-b-PLA), which bears an acetal group at 

the PEG end and a methacryloyl group at the biodegradable PLA end (acetal-PEG-b-PLA-MA) and 
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a polymerizable carborane bearing two vinylbenzyl groups (1,2-bis(4-vinylbenzyl)-closo-carborane) 

as the cross-linker [16]. Indeed, the obtained core cross-linked and boron-conjugated micelles 

showed no leakage of boron compounds from the micelles under physiological conditions even in 

the presence of fetal bovine serum (FBS) at 37 ºC, while significant leakage (80%) of boron 

compounds was observed from the non-cross-linked micelles, which incorporate the boron 

compounds by physical entrapment. The boron concentrations in both blood (13.5%ID/g) and tumor 

tissues (5.4%ID/g) of tumor-bearing mice injected with the core cross-linked micelles were 

significantly higher at 24 h after the injection than in the mice injected with the non-cross-linked 

micelles (blood: 1.8%ID/g, tumor: 1.4%ID/g). However, the loading content of the carborane in the 

micelles was insufficient (ca. 1.0 wt%), probably due to low compatibility of the carborane with the 

micelle core. From calculations made using the pharmacokinetic data, a huge dose (2,000–3,000 

mg/kg) would be required to attain a therapeutically effective boron concentration in tumor tissue 

for BNCT (15–30 ppm of 
10

B atoms per gram of tumor tissues), if one were to use the core 

cross-linked micelle. For this reason, it was difficult to utilize the core cross-linked and 

boron-conjugated micelles as boron carriers for in vivo BNCT.  

In this study, we prepared and characterized core-polymerized (but not cross-linked) and 

boron-conjugated micelles (PM micelles) with high loading content by performing free radical 

copolymerization of the core of the acetal-PEG-b-PLA-MA micelles with polymerizable 

(mono-functional) 1-(4-vinylbenzyl)-closo-carborane (VB-carborane) as a comonomer (Figure 1). 

Note that no cross-linking agent was used in the core-polymerization system. The VB-carborane 

bearing a vinylbenzyl group and a CH group, was synthesized to increase the loading contents of 

the boron compounds in the core. Because the CH group of the carborane has been reported to 
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exhibit an acidic nature, the loading occurs when the CH group of carborane and carbonyl group 

(C=O) of the PLA segment interact to form a C-H…O=C hydrogen bond [17]. PM micelles with 

high loading content of boron compounds are expected to suppress the leakage of the boron 

compounds into the bloodstream due to the existence of the covalent bonds between the boron 

compounds and the PLA core, leading to prolonged blood circulation time and enhanced tumor 

accumulation. Additionally, the PM micelles are expected to excrete easily from major organs via 

biodegradation of the PLA core. The PM micelles are thus expected to exert significant therapeutic 

effects when used with thermal neutron irradiation in tumor-bearing mice because of the high 

concentration of boron atoms in the tumor tissues, which can be attributed to the high stability of 

the micelles in the bloodstream. We believe that the use of PM micelles composed of 

acetal-PEG-b-PLA-MA and VB-carborane represents a promising approach to the creation of boron 

carriers for cancer BNCT. 

 

2. Materials and methods 

 

2.1. Materials 

 

Azobisisobutironitrile (AIBN; Wako Pure Chemical Industries, Ltd., Osaka, Japan) was purified 

by recrystallization from methanol and dried in vacuo. N,N-Dimethylacetamide (DMAc; Kanto 

Chemicals Co., Ltd., Tokyo, Japan), o-carborane (Wako Pure Chemical Industries), 
10

B-enriched 

o-carborane (Katchem spol. s.r.o., Ltd., Prague, Czech), 
10

B-enriched BSH (Katchem spol. s.r.o., 

Ltd.) and poly(ethylene glycol) bearing a methoxy group at the  end and a hydroxyl group at the  
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end (MeO-PEG-OH) (Fluka Chemie GmbH Co, Germany) were used as received. The molecular 

weight of the MeO-PEG-OH was 5,000 g/mol. Water was purified using the Milli-Q system 

(Millipore). Dynamic light scattering measurements were carried out in phosphate-buffered saline 

(PBS) at 37 °C using a Zetasizer Nano-ZS instrument (Malvern, UK) equipped with a 4.0 mW 

He–Ne laser (633 nm). Zeta potential measurement of the micelles was performed at 37 ºC in 5 mM 

phosphate buffer solution at pH 7.4 using a Zetasizer Nano-ZS. 
1
H-NMR spectra were obtained in 

chloroform-d at 25 ºC with a JEOL EX270 spectrometer (JEOL, Japan). Chemical shifts were 

reported in ppm relative to CHCl3 ( 7.26 ppm). The concentration of boron atoms was 

determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) using an 

ICAP-575 emission spectrometer (Nippon Jarrell-Ash, Japan). Fourier transform infrared 

spectroscopy (FT-IR) measurements were performed using an FT/IR-300 spectrometer (JASCO, 

Tokyo, Japan). FT-IR spectra were collected by the KBr pellet method at a resolution of 4 cm
-1

 with 

128 scans. 1-(4-Vinylbenzyl)-closo-carborane (VB-carborane) was synthesized by a previously 

reported procedure [18]. The data obtained by elemental analysis, ICP-AES measurement, MS 

measurement, and 
1
H-NMR measurement of VB-carborane are summarized in Supplementary data. 

Acetal-PEG-b-PLA-MA was synthesized as per the method described in our previous report [19], 

and the molecular weight of the PEG segment and the PLA segment of the block copolymer were 

estimated to be 5,600 and 5,100 g/mol, respectively. The detailed characterization data of 

acetal-PEG-b-PLA-MA are summarized in Supplementary data. Acetal-PEG-b-PLA-MA micelles 

were also prepared by the method described in our previous report [19]. The average diameter and 

size distribution (= 2/
2
) of the acetal-PEG-b-PLA-MA micelles were found to be 38.4 nm and 

0.027, respectively, as determined by DLS measurements. Cytotoxicity of the samples was 
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evaluated by WST assay as described in Supplementary data. 

 

2.2. Preparation of PM and NPM micelles 

 

The core-polymerized and boron-conjugated micelles (PM micelles) were prepared as described 

previously [16,19]. A solution of VB-carborane (9.2 mg) and AIBN (0.3 mg) in chloroform (1.0 

mL) was added dropwise to 10 mL of a stirred aqueous solution of acetal-PEG-b-PLA-MA micelles 

(2.0 mg/mL) to form an o/w emulsion. The o/w emulsion was kept for 1 h, and the solution was 

exposed to air at 25°C for 3 h to evaporate the chloroform, after which the resulting micelle solution 

was purged with nitrogen gas for 20 min to remove the remaining chloroform and dissolved oxygen 

completely. To prepare the PM micelles, polymerization was carried out at 60 °C for 24 h. 

Purification was carried out by repeated ultrafiltration using a membrane with a molecular weight 

cut-off of 100,000 (VIVASPIN 4, Sartorius Stedim Biotech, Germany). For comparison, 

non-polymerized micelles (NPM micelles) encapsulating VB-carborane were prepared by the same 

procedure as that for PM micelles, without the addition of AIBN and heating. To determine the 

average diameter and size distribution of the micelles, DLS measurements were carried out in PBS 

at 37°C. Zeta potential measurement of the micelles was performed at 37ºC in 5 mM phosphate 

buffer solution at pH 7.4. To check whether the VB-carborane was covalently conjugated the core 

of the micelles, 
1
H-NMR measurements of the lyophilized PM and NPM micelles were carried out 

in CDCl3 at 25 ºC. The loading content and efficiency of the boron atoms in the micelles were 

determined using ICP-AES. To clarify the interaction between the VB-carborane and the 

acetal-PEG-b-PLA-MA, FT-IR measurements of the VB-carborane, the acetal-PEG-b-PLA-MA, the 
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MeO-PEG-OH and the mixture of the VB-carborane and the acetal-PEG-b-PLA-MA were 

performed by the KBr pellet method. Degradation of the NPM and PM micelles under the 

physiological conditions was confirmed by size exclusion chromatography (SEC) analysis using a 

JASCO HPLC system (JASCO, Tokyo, Japan) equipped with a refractive index (RI) detector 

(RI-2031) and a Superose 6 10/300 GL column (GE Healthcare, USA) with 10 mM phosphate 

buffered saline (pH 7.4, containing 150 mM NaCl) at a flow rate of 0.50 mL/min at 40 ºC. The PM 

or NPM micelles solution (1.0 mg/mL) in 10 mM PBS was incubated at 37 ºC. At a defined time 

interval, 50 L aliquots were subjected to SEC system after filtration through 0.45 m filter. 

 

2.3. Leakage of VB-carborane from PM and NPM micelles 

 

The leakage of VB-carborane from the PM and NPM micelles was evaluated at 0.23 mg/mL of 

micelles, well above the critical association concentration of both the micelles (ca. 2–3 g/mL), 

under physiological conditions and in the presence of 10% FBS. Briefly, a solution of the PM and 

NPM micelles (1.0 mg/mL, 3 mL) with 10% FBS was poured into dialysis bags (MWCO: 100,000), 

and each bag was immersed in 10 mL of physiological saline with 10% FBS at 37 °C. At a definite 

time interval, 0.5 mL of the solution outside the dialysis bag was sampled, and then the solutions 

were diluted to 20 mL with distilled water. After filtering through 0.45m filters (Millipore), 

ICP-AES measurement of the solution was carried out to determine the amount of VB-carborane 

released from each micelle based on the concentration of boron atoms, which was determined using 

a calibration curve based on boric acid (ultratrace analysis grade, Aldrich Chemical Co. Ltd., 

Milwaukee, WI). 
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2.4. Pharmacokinetics of 
125

I-labeled PM and NPM micelles 

 

 All procedures involving animal care were approved by the Animal Ethics Committee of the 

University of Tsukuba, and were conducted according to the Guidelines for Animal 

Experimentation of the University of Tsukuba. To characterize the pharmacokinetics of the micelles, 

the preparation of the 
125

I(radioisotope)-labeled PM and NPM micelles was performed according to 

our previous report [16,20]. As described in the previous report, using the acetal group at the end of 

the PEG chain, a tyrosine residue was introduced as a site of radiolabeling onto the PM or NPM 

micelles. The detailed procedure is described in Supplementary data. The biodistribution of the 

125
I-labeled PM micelles and 

125
I-labeled NPM micelles was evaluated in tumor-bearing, 

5-week-old male BALB/c mice (n = 3, 20-25 g, Charles River, Japan). Tumors were induced in the 

mice by subcutaneous injection of colon-26 cells (1.0 × 10
6
 cells/mouse) into the right femur. When 

the volume of the tumor reached 100 mm
3
, the 

125
I-labeled PM micelles or 

125
I-labeled NPM 

micelles were administered to the tumor-bearing mice by intravenous injection at a dose of 0.80 mg 

boron atoms per kg body weight. Blood, liver, spleen, kidney and tumor samples were collected, 

using sodium pentobarbital (40 mg/kg) as an anesthetic, at defined time periods after injection of 

the micelles. The radioactivity and the weight of the collected samples were measured by a 

-counter (Aloka, Japan) and a balance, respectively. 

 

2.5. Pharmacokinetics of boron species in the PM and NPM micelles 
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The pharmacokinetics of the boron species (VB-carborane) in the PM and NPM micelles were 

evaluated in tumor-bearing 5-week-old-male BALB/c mice (n = 3) on the basis of the concentration 

of boron atoms determined using ICP-AES. As a comparison, the pharmacokinetic of 
10

B-enriched 

BSH, which is clinically utilized, was also evaluated. The PM micelles, NPM micelles or BSH 

solution were administered to the tumor-bearing mice by intravenous injection at a dose of 0.80 mg 

boron atoms per kg body weight. Blood, liver, spleen, kidney and tumor samples were collected at 

defined time periods after the injection under anesthesia with pentobarbital sodium (40 mg/kg) and 

weighted. The freeze-dried tissues were dissolved with 1 mL of HNO3 (ultratrace analysis grade, 

Wako, Japan) and 0.5 mL of hydrogen peroxide solution (ultratrace analysis grade, Kanto 

Chemicals, Japan) at 60 ºC for 3 h. The dissolved samples were then diluted with distilled water. 

After filtering through a 0.45 m filter, the concentration of boron atoms in the tissues was 

measured using ICP-AES. Long-term tissue distribution of boron species in the PM and NPM 

micelles was also examined in normal 5-week-old-male BALB/c mice. The PM and NPM micelles 

were administered to the mice by intravenous injection at a dose of 0.80 mg boron atoms per kg 

body weight, and the concentration of boron atoms in each tissue was measured using the procedure 

described above. 

 

2.6. BNCT for tumor-bearing mice 

 

Neutron irradiation was carried out in the Japan Research Reactor No. 4 (JRR4) of Japan Atomic 

Energy Agency and Kyoto University Research Reactor (KUR) of Kyoto University Research 

Reactor Institute. 
10

B-enriched PM and NPM micelles were prepared from 
10

B-enriched 
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VB-carborane and acetal-PEG-b-PLA-MA by the same procedure described above. The 

10
B-enriched PM and NPM micelle solutions was injected into colon-26 tumor bearing mice (n = 5) 

via the tail vein at a dose of 15.6 mg 
10

B/kg 24 h before irradiation. For comparison, 
10

B-enriched 

BSH solution was injected 1 h before irradiation via the tail vein at a dose of 30.0 mg 
10

B/kg. The 

mice were anesthetized with pentobarbital sodium (40 mg/kg) and placed in an acrylic mouse holder. 

They were then irradiated in the JRR4 and KUR at a rate of 1.6–1.8 × 10
12

 neutrons/cm
2
. The 

effects of BNCT were evaluated in terms of the tumor size, which was estimated by using the 

following equation: V = (a) × (b)
2 

/ 2, where (a) and (b) are major and minor axes of the tumor 

measured by a caliper, respectively. Body weight was measured as an indicator of systemic toxicity. 

 

3. Results and discussions 

 

3.1. Preparation and characterization of PM and NPM micelles 

 

The acetal-PEG-b-PLA-MA was synthesized as described in our previous paper [19], and the 

molecular weights of the PEG and PLA segments of the block copolymer were estimated to be 

5,600 and 5,100 g/mol, respectively. The detailed characterization data of the 

acetal-PEG-b-PLA-MA are summarized in Supplementary data. The VB-carborane was synthesized 

using a previously reported procedure [18] and is described in detail in Supplementary data. To 

prepare the acetal-PEG-b-PLA-MA micelles, the dialysis method was employed as described 

previously [19]. The average diameter of the acetal-PEG-b-PLA-MA micelles was 38.4 nm with a 

narrow size distribution (μ2/Γ
2
 = 0.027), as determined by DLS measurement (Figure S4). To 
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prepare the NPM micelles, the VB-carborane was encapsulated into acetal-PEG-b-PLA-MA 

micelles by means of the solvent evaporation method. The average diameter of the VB-carborane 

encapsulating acetal-PEG-b-PLA-MA micelles (NPM micelles) increased from 38.4 nm to 60.2 nm 

with a narrow size distribution (μ2/Γ
2
 = 0.119), as shown in Figure S4. This is probably due to the 

formation of a loosely associated PLA core as a result of the swelling of the hydrophobic PLA core, 

which occurs upon the addition of chloroform, as previously reported [19]. To prepare the PM 

micelles, both VB-carborane and AIBN were encapsulated into acetal-PEG-b-PLA-MA micelles by 

means of the solvent evaporation method, and the polymerization of the core was carried out at 

60ºC for 24 h. The characteristics of the PM and NPM micelles are summarized in Table 1. The 

average diameter (67.3 nm, μ2/Γ
2
 = 0.113) and zeta-potential (-0.32 ± 0.99 mV) of the PM micelles 

was almost similar to that of the NPM micelles (60.2 nm, μ2/Γ
2
 = 0.119, zeta-potential: -0.15 ± 0.05 

mV), suggesting that the core polymerization process does not influence the size distribution and 

the zeta-potential of the micelles. To confirm that the VB-carborane was covalently linked with the 

end of the PLA chain, 
1
H-NMR measurements of the lyophilized NPM and PM micelles were 

carried out in CDCl3, which is a good solvent for both acetal-PEG-b-PLA-MA and VB-carborane 

(Figure S5). In the spectrum obtained for the NPM micelles, peaks at 5.60 and 6.20 ppm were 

observed, which can be attributed to the methacryloyl group at the end of PLA chain, and peaks for 

the vinyl protons of VB-carborane were observed at 5.70 ppm. These data indicate that both 

acetal-PEG-b-PLA-MA and VB-carborane were dissolved in CDCl3. On the other hand, the peaks 

attributed to the methacryloyl and vinyl groups were reduced by more than 99 % in the spectrum 

obtained for the PM micelles, suggesting that the copolymerization of the acetal-PEG-b-PLA-MA 

and VB-carborane proceeded successfully. The loading content of VB-carborane in the NPM and 
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PM micelles was determined to be 8.5 wt% (loading efficiency: 23.5 %) and 7.7 wt% (loading 

efficiency: 21.5 %), respectively. The loading content of both micelles was comparable, indicating 

that leakage of VB-carborane from the micelles did not occur during the polymerization process. It 

is of note that the loading content of VB-carborane in the acetal-PEG-b-PLA-MA micelles (ca. 1.0 

wt%) increased remarkably in comparison with that in polymerizable carborane bearing two 

vinylbenzyl groups (1,2-bis(4-vinylbenzyl)-closo-carborane) [16]. This increment might be caused 

by the enhancement of the compatibility of the VB-carborane with the PLA core of the micelles due 

to the existence of the hydrogen bonds between the CH group of the VB-carborane and the O atom 

of the carbonyl group (C=O) in the PLA segments. To clarify the interaction between the 

VB-carborane and the acetal-PEG-b-PLA-MA, FT-IR measurements of the VB-carborane, the 

acetal-PEG-b-PLA-MA, the MeO-PEG-OH and the mixture of the VB-carborane and the 

acetal-PEG-b-PLA-MA were performed by the KBr pellet method. The VB-carborane spectrum 

shows the characteristic peaks of VB-carborane at 2578 cm
-1

 ((B-H)) and 3070 cm
-1

 ((C-H)) 

(Figures 2(A)(a) and 2(B)(a)). The peak of the CH group of the VB-carborane was also observed at 

the same wavenumber (3071 cm
-1

) in the spectrum of the mixture of the MeO-PEG-OH and the 

VB-carborane (Figure 2(A)(c)). This indicates that there might be no interaction between the CH 

group of the VB-carborane and PEG chains. On the other hand, the peak of the CH group of the 

VB-carborane was shifted to 3057 cm
-1

 in the spectrum of the mixture of the 

acetal-PEG-b-PLA-MA and the VB-carborane (Figure 2(B)(c)). This result strongly indicates the 

existence of the hydrogen bonds between the CH group of the VB-carborane and the O atom of the 

carbonyl group (C=O) in the PLA segments, because shifting of the peak of the CH group of 

carboranes in the presence of the hydrogen bond of the C-H
…

O=C has been reported previously 
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[21]. From these results, we concluded that the interaction between carborane and PLA chain via 

hydrogen bonds might be one of the reasons for the higher loading content of the carborane. 

Degradation of the NPM and PM micelles were analyzed using a SEC system equipped with a RI 

detector and a Superose 6 10/300 GL column. As shown in Figures S6(a) and (b), the peaks 

attributed to the NPM and PM micelles were observed by RI detection at 16 min in the region of the 

exclusion limit (Mn > 300,000) at 0 day after incubation. After several days incubation, the peaks 

were appeared at 23 min (Mn = ca. 5,400) attributed to free PEG and the micellar peaks decreased in 

both charts of the NPM and PM micelles dependent the incubation days. Consequently, both the 

NPM and PM micellar peaks were disappeared completely after 19 and 25 days incubation, 

respectively. These results strongly indicate that the PM micelles were able to be degraded via 

biodegradation under the physiological conditions similarly the NPM micelles even though the core 

of the micelles was polymerized. 

It has been reported that certain types of hydrophobic compounds incorporated in polymeric 

micelles by physical entrapment are leaked rapidly after they are administered by intravenous 

injection due to the interaction, and this rapid leakage occurs between the micelles and some blood 

components [13-15]. The leakage of the boron compounds, which are encapsulated in the micelles, 

is potentially toxic to the normal tissues after the irradiation of the thermal neutrons in BNCT. In 

our previous report, the leakage of polymerizable carborane bearing two vinylbenzyl groups 

(1,2-bis(4-vinylbenzyl)-closo-carborane) from the non cross-linked micelles occurred immediately 

under physiological conditions in the presence of 10 % FBS, whereas the cross-linked micelles 

showed complete suppression of carborane leakage under the same conditions, which can be 

attributed to the covalent bonds between the boron compounds and the PLA segments in the 
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micellar core [16]. In this study, the VB-carborane bearing a vinylbenzyl group and a CH group was 

loaded in the micelles. In order to confirm the stability of the PM and the NPM micelles under 

physiological conditions, the leakage of VB-carborane from both micelles was evaluated by dialysis 

at 37 ºC in PBS with 10 % FBS, as shown in Figure 3. The amounts of leaked VB-carborane from 

the micelles were determined by ICP-AES, and the results were based on the concentration of boron 

atoms in the solution of the outside of dialysis bags. Significant amounts (ca. 50%) of 

VB-carborane had leaked from the NPM micelles after 12 h. This means that the stability of the 

VB-carborane physically entrapped in the acetal-PEG-b-PLA-MA micelles was insufficient under 

physiological conditions in the presence of serum proteins, even though there were interactions 

between VB-carborane and the PLA core. In sharp contrast, the PM micelles showed no leakage of 

the VB-carborane even after 48 h, likely due to the existence of covalent bonds between 

VB-carborane and the PLA core. From these facts, we conclude that covalent conjugation, rather 

than physical entrapment, is required for in vivo stabilization in the case of VB-carborane. The 

cytotoxicity of the PM micelles, NPM micelles, and VB-carborane against colon-26 cells was 

evaluated in the presence of 10% FBS in the cell culture medium as shown in Figure S8. Note that 

the PM micelles showed no toxicity even at high concentration ([B] = 10 mM). In contrast, 50 % 

inhibitory concentration (IC50) values of the NPM micelles and VB-carborane were 4.3 mM and 1.4 

mM, respectively. Moreover, the cytotoxicity of the VB-carborane is lower than the nido-carborane 

derivative (IC50 = 0.5 mM) [24] which has been used in the 
10

B-compound-conjugated liposomes 

[11,23]. Notably that the cytotoxicity of the PM micelles (IC50 = not determined) was significantly 

lower than that of the NPM micelles (IC50 = 4.3 mM). These results indicate that the leakage of the 

VB-carborane from the NPM micelles occurred in the presence of 10% FBS, leading to the 
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cytotoxicity caused by the free VB-carborane. In sharp contrast, the leakage of VB-carborane from 

the PM micelles was suppressed even in the presence of 10% FBS because the VB-carborane was 

conjugated with the core of micelles through the covalent bonds. It can be concluded that the PM 

micelle system is utilized for BNCT from the standpoint of the cytotoxicity. It is important to note 

that the present synthetic method is simple modification of a well-known emulsion polymerization 

technique. Thus, large scale production with reproducible manner of 
10

B-enriched PM micelle is 

strongly anticipated for clinical trials in future. 

 

3.3. Pharmacokinetics studies of the micelles and boron species 

 

In a recent study, we found that compared to the non cross-linked micelles physically 

encapsulating the carboranes, the core cross-linked and boron-conjugated micelles prepared by 

polymerization of acetal-PEG-b-PLA-MA with polymerizable carborane bearing two vinylbenzyl 

groups (1,2-bis(4-vinylbenzyl)-closo-carborane) showed higher tumor accumulation of boron 

species at 24 h after injection, although the tumor accumulation of both micelles at 24 h after 

injection was similar [16]. This means that the distribution of boron species (carboranes) in the 

cross-linked and non cross-linked micelles was different, perhaps due to the leakage of the 

carborane into the bloodstream. In this study, we performed pharmacokinetic measurements, to 

clarify the distribution of both the micelles and the boron species after injection. 

The micelle and boron concentrations in various tissues, such as liver, kidney, spleen, tumor, and 

blood, were measured at defined time periods after their injection into tumor-bearing mice. For the 

pharmacokinetics study of the micelles, a radioisotope (
125

I) was introduced at the end of the 
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PEG-chain after L-tyrosine installation, as described in our previous report [16,20]. The acetal 

groups at the end of PEG chains on the micelles were de-protected through acid treatment to 

convert the reactive aldehyde groups, and this was followed by the addition of L-tyrosine hydrazide 

and sodium cyanoborohydride as a reductant. 
125

I-labeling was performed using the conventional 

chloramine T method (Supplementary data, Figure S7). The radioactivity level of the 
125

I-labeled 

PM and NPM micelles in each of tissues and blood were expressed as a percentage of the injected 

dose per gram tissue (%ID/g) at specified times after intravenous injection in tumor-bearing mice, 

as shown in Figures 4 and S9. The area under concentration curve (AUC) values in each tissue at 

48 h after injection, and the AUC ratios (PM/NPM) are summarized in Table 2. Note that 9.5%ID/g 

of 
125

I-labeled PM micelles remained in the bloodstream after 48 h, whereas only 5.6%ID/g of 

125
I-labeled NPM micelles remained 48 h after injection (Figure 4(a)). The AUC value of the 

125
I-labeled PM micelles in blood (943.4) was higher than that of the 

125
I-labeled NPM micelles 

(495.1) (AUC ratio: 1.91). Additionally, the 
125

I-labeled NPM micelles (8.2%ID/g) showed higher 

radioactivity levels than the 
125

I-labeled PM micelles (3.2%ID/g) in the kidney after 1 h (Figure 

S9(c)), indicating that a portion of the NPM disintegrated in the bloodstream and was excreted via 

the renal pathway. In contrast, the PM micelles showed extremely high stability in the bloodstream 

due to the covalent conjugation of the PLA segment in the micelles with VB-carborane. The longer 

circulation times of these micelles are suitable for accumulation in tumor regions via the EPR effect. 

The AUC values of the 
125

I-labeled PM micelles in both liver (619.1) and spleen (581.0) were 

slightly higher than those of the 
125

I-labeled NPM micelles (liver: 350.7, spleen: 409.6). These 

increments are probably due to the prolongation of the blood circulation time of the 
125

I-labeled PM 

micelles. In contrast, there were no significant differences in the radioactivity levels in the tumor 
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(AUC ratio (PM/NPM): 1.24) between the 
125

I-labeled PM micelles and the 
125

I-labeled NPM 

micelles (Figure 4(b)). These results mean that the effects of micelle core-polymerization on the 

pharmacokinetics were similar to those of micelle core-cross linking, consistent with our previous 

report [16]. 

In order to confirm the pharmacokinetics of the boron species in the tumor-bearing mice after 

injection of the PM micelles, the NPM micelles and BSH, the concentration of boron atoms in 

tissues was evaluated using ICP-AES. Figures 5 and S10 show the distribution of boron species in 

the tumor-bearing mice after the injection of the PM micelles, the NPM micelles and free BSH. The 

concentrations of the boron atoms in each of the tissues and blood at specific times after the 

intravenous injection are expressed as %ID/g, as determined by ICP-AES. The AUC values of 

boron species in each of the tissues and blood after injection and the corresponding AUC ratios 

(PM/NPM) are summarized in Table 3. The boron species of both NPM micelles (1.1%ID/g) and 

PM micelles (4.6%ID/g) remained in the bloodstream even 48 h after the injection, whereas over 

99% of the injected dose of free BSH was immediately eliminated from the bloodstream by renal 

clearance, because the amounts of BSH accumulated in the kidney 1 h after the injection 

(22.8%ID/g) were apparently higher than those of both the NPM (12.6 %ID/g) and the PM micelles 

(5.1%ID/g) (Figures 5(a) and S10(c)). The post-injection AUC value of PM micelles in blood 

(916.0) was 2.8-fold higher than that of the NPM micelles (330.4). These data indicate that the 

blood circulation time of boron species in the PM micelles was prolonged, likely due to the covalent 

conjugation of VB-carborane to the micelle core matrix. It has also been shown that a large amount 

of VB-carborane is leaked from the NPM micelles into the bloodstream due to the interaction with 

the serum proteins. The distribution of the boron species of the NPM micelles in kidney at 1 h after 
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injection (12.6%ID/g) was 2.5-fold higher than that of the PM micelles (5.1%ID/g) (Figure S10(c)), 

and higher than those of the 
125

I-labeled NPM micelles (8.2%ID/g). These data suggest that the 

VB-carborane was leaked from the NPM micelles easily, and eliminated from the bloodstream more 

readily than the micelles (polymers) by renal clearance, due to the low-molecular weight of NPM 

micelles. Figure 5(b) shows the tumor accumulation amounts of boron species in the PM micelles, 

the NPM micelles and free BSH. The accumulation level of boron species in the tumor tissues of 

the mice treated with the PM micelles was 5.7%ID/g at 48 h after the injection, whereas those of the 

NPM micelles at 48 h and free BSH at 1 h after the injection were only 0.7%ID/g and 1.6%ID/g, 

respectively. Note that the AUC ratio (PM/NPM) of the boron species of the micelles in tumor 

tissues (AUC ratio: 7.29) was remarkably higher than that of the 
125

I-labeled micelles (AUC ratio: 

1.24) (Tables 2 and 3). It should be noted that the PM micelles were remained in the tumor tissues 

for 48 h after the injection by EPR effect, whereas BSH was excreted from the tumor rapidly. This 

indicates that there is enough time to precisely determine the 
10

B concentration by several 

techniques after injection of the PM micelles because the 
10

B concentration in tumor is constant for 

several days, suggesting that the effective radiation of the thermal neutrons is permitted by utilizing 

the PM micelles. Using the obtained data, tumor-to-blood (T/B) ratios of the boron concentration in 

the tumor-bearing mice were determined as a function of time as shown in Figures 6. Although 

no remarkable difference between the T/B ratios of the micelles, viz., the PM and NPM micelles 

was observed as shown in Figure 6(a), a significant difference in T/B ratio was observed in terms 

of the boron species. For example, the T/B ratio of boron species increased gradually up to 48 h 

when the PM micelle was used as the carrier, while it did not increase with the NPM micelle 

(Figure 6(b)). These data strongly suggest that in the case of PM micelles, the VB-carborane and 
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the micelles concomitantly accumulated in tumor tissues because of the covalent conjugation of the 

VB-carborane with the block copolymer. On the other hand, the VB-carborane in the NPM micelles 

was leaked easily during circulation in the bloodstream after the injection, leading to lower 

accumulation of boron species than that of the micelles in tumor tissues. These results strongly 

indicate that the PM micelles were sutable boron carriers for tumor regions due to the high stability 

in the bloodstream. Further improvement in tumor accumulation is now under investigation and will 

be publish elsewhere. 

We have demonstrated the high accumulation tendency of the boron-conjugated PM micelles to 

tumor regions by performing covalent conjugation of VB-carborane to the core of the micelles. 

Because the covalent conjugation of the core of the micelles via VB-carborane increases the 

molecular weight of the matrix, it may also alter the excretion of the PM micelles from the body. 

Long-term accumulation of certain types of nanoparticles in the body often causes unexpected 

toxicity [22]. Long-term distribution of boron species in major tissues (blood, liver, spleen, and 

kidney) after intravenous injection of the PM and NPM micelles was investigated up to two weeks 

using normal mice. As can be seen in Figure 7, both boron species in the PM and NPM micelles 

were almost completely eliminated from major organs at 7 d after injection, which was determined 

by the ICP-AES measurements. Even though VB-carborane was conjugated covalently in the core 

of the PM micelles, almost complete excretion of the boron species was confirmed, which was 

probably caused by hydrolysis of the ester linkage in the PLA segment. These results strongly 

suggest that the PM micelles are useful not only for enhancing their selective accumulation in tumor 

tissues, but also for promoting the safety of the micelles. 
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3.4. BNCT for tumor-bearing mice 

 

The effects of 
10

B-enriched PM micelles, NPM micelles and BSH on tumor growth suppression 

were examined with thermal neutron irradiation. The 
10

B-enriched PM and NPM micelles were 

prepared from 
10

B-enriched VB-carborane by means of the same procedure as for the PM, NPM 

micelles described above. The average diameter of the 
10

B-enriched PM micelles (61.0 nm, 2/
2
 = 

0.120) and 
10

B-enriched NPM micelles (60.6 nm, 2/
2
 = 0.101) were similar to those of the PM 

micelles (67.3 nm, μ2/Γ
2
 = 0.113) and the NPM micelles (60.2 nm, μ2/Γ

2
 = 0.119) prepared using 

naturally abundant VB-carborane. The 
10

B atoms concentrations in each tissue (blood, liver, spleen, 

kidney, and tumor) of the tumor-bearing mice at 24 h after injecting the 
10

B-enriched PM or NPM 

micelles were determined using ICP-AES (Figure 8). The 
10

B atoms concentration at 24 h after 

injection of the 
10

B-enriched PM micelles in the tumor (14.0 ppm) was about 4.2-fold higher than 

that of the 
10

B-enriched NPM micelles (3.3 ppm), suggesting that the high colloidal stability of 

10
B-enriched PM micelles in the blood stream increased its accumulation in the tumor region via the 

EPR effect. Since the highest accumulation of boron species in tumor tissues was observed at 1 h 

after injecting BSH as described above (Figure 5(b)), the 
10

B atoms concentration in each tissue 

was evaluated at 1 h after injecting BSH (Figure 8). The result shows that the 
10

B atoms 

concentration in the tumor at 1 h after injecting BSH was reached 12.3 ppm. From the obtained data 

on PM, NPM micelles and BSH, it is indicated that the sufficient 
10

B atoms concentration was 

achieved after injecting the 
10

B-enriched PM micelles even at a half dose of BSH (
10

B-enriched PM 

micelles: 15.6 
10

B mg/kg, BSH: 30.0 
10

B mg/kg). As stated above, the distributed PM micelles in 

normal organs were confirmed to eliminate completely within 7 days after injection (Figure 7(a)), 
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indicating no further concern on the serious issues in term of toxicity. It should be also emphasized 

that the 
10

B-enriched PM micelles and the 
10

B-enriched NPM micelles showed no acute toxicity 

even at a dose of 15.6 mg 
10

B/kg, while nido-carborane conjugated liposome showed strong acute 

toxicity within one day even at a dose of 6.0 mg 
10

B/kg [23]. 

Figure 9 shows the changes in the tumor volume of mice bearing colon-26 tumors (n = 5) with 

thermal neutron irradiation for 37 min (1.6–1.8 × 10
12

 neutrons/cm
2
) after injecting the 

10
B-enriched 

PM, NPM micelles, free BSH, or normal saline. The tumor growth in mice treated with the 

10
B-enriched PM micelles without irradiation was similar to that in mice treated with normal saline 

without the irradiation. This indicates that the 
10

B-enriched PM micelles alone and the thermal 

neutron irradiation alone did not suppress the tumor growth. Additionally, no suppression of the 

tumor growth was observed in the mice treated with the 
10

B-enriched NPM micelles with the 

irradiation of the thermal neutrons due to the insufficient concentration of the 
10

B atoms in the 

tumor tissues (3.3 ppm). In sharp contrast, significant suppression of tumor growth was observed in 

the mice treated with the 
10

B-enriched PM micelles with thermal neutron irradiation, after 12 days 

(p < 0.01). Consequently, at day 25, 2 of 5 tumors disappeared completely in the mice treated with 

the 
10

B-enriched PM micelles. Even though the concentration of 
10

B atoms in tumor tissues of the 

mice (14.0 ppm) treated with the 
10

B-enriched PM micelles was almost equal to the concentration in 

mice treated with BSH (12.3 ppm), the 
10

B-enriched PM micelles showed significant therapeutic 

effects after neutron irradiation, compared to those shown by BSH. These data might indicate that 

BSH was extracted from tumor tissues during the irradiation (37 min) due to the short retention time 

of BSH in tumor tissues (< 1 h) as described above (Figure 5(b)). In contrast, the 
10

B atoms were 

able to remain in the tumor tissues of the mice treated with the 
10

B-enriched PM micelles for at least 
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48 h by the EPR effect, consistent with the pharmacokinetics study (Figure 5(b)). These results 

strongly suggest that the retention of 
10

B atoms for longer times in tumor tissues is an important 

factor for achieving beneficial therapeutic effects in BNCT. Figure 10 shows the time course of 

body weight change in mice bearing colon-26 tumor (n = 5) with thermal neutron irradiation for 37 

min after treatment with 
10

B-enriched PM micelles, 
10

B-enriched NPM micelles, free BSH, or 

normal saline. The mice treated with 
10

B-enriched PM micelles, 
10

B-enriched NPM micelles and 

normal saline showed no significant body weight loss compared to the starting weight. On the basis 

of these results, we conclude that the 
10

B-enriched PM micelles are suitable candidates for boron 

carriers in cancer BNCT, and that they exhibit beneficial therapeutic effects without any side-effects. 

Further study on the precise influence of the irradiation against normal organs is currently underway 

in our laboratory. 

 

 

Conclusion 

 

In this study, PM micelles composed of acetal-PEG-b-PLA-MA and VB-carborane were prepared 

to suppress non-specific release of boron compounds into the bloodstream. The PM micelles were 

able to incorporate the high amounts of boron compounds. The release of VB-carborane from the 

PM micelles was completely suppressed in the presence of FBS due to the introduction of covalent 

bonds between the VB-carborane and the PLA core. Additionally, the PM micelles showed 

prolonged blood circulation time and enhanced accumulation of boron species in tumor tissues, in 

compared with the NPM micelles. Both boron species in the PM and NPM micelles were 
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eliminated completely from the body within 7 days after the intravenous injection. It is worth 

noticing that the 
10

B-enriched PM micelles showed remarkable therapeutic efficacy in BNCT; viz, 

selective and non-invasive BNCT was achieved. Therefore, the 
10

B-enriched PM micelles represent 

a promising approach to the creation of boron carriers for cancer BNCT. Additionally, the 

10
B-enriched PM micelles are expected to be accommodated patient treatments since the procedures 

to prepare the micelles require simple processes. 
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1. I would like you to make a slight change to the title, giving it more focus.. Please change it to ' Pharmacokinetics 

of Core-Polymerized, Boron-Conjugated Micelles Designed for Boron Neutron Capture Therapy for Cancer'. 

 

2. You use the word 'novel' in the manuscript. This is not necessary and detracts from the scientific rigour. I would 

like you to delete the word. The same applies to 'new' and similar words, which should not be substituted for 'novel' 

 

3. In the references you should use the accepted abbreviated form for the journal titles - you are inconsistent with 

this. These can be found in standard databases such as PubMed. 
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    Thank you very much for your comments. According to your comments, we modified the manuscript. 
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for Cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer to reviewer 1: 

 



Thank you very much for your courteous review and kind comments. According to your comments, we revised 

the manuscript as follows (the red colored sentences were revised or newly added sentences in the new 

manuscripts): 

 

Comment 

 

This work is concerned with the synthesis of a new boron compound for BNCT based on delivering a 

carborane molecule by micelles (nanoparticles) constructed by copolymerization (PM micelles). In another recent 

article published by some of the authors (Sumitani S, Oishi M, Nagasaki Y. Carborane confined nanoparticles for 

boron neutron capture therapy: Improved stability, blood circulation time and tumor accumulation. React Funct 

Polym, 2011;71:684-693), a synthesis of a very similar compound (same technique to produce the micelles) but 

cross-linking (CL) the carborane instead of integrating the molecule to the micelle by copolymerization was 

presented. According to their comments in the present manuscript, the CL compound was unable to deliver 

therapeutic amounts of boron to the tumor according to their estimations (yet, no BNCT irradiation was performed 

to investigate the degree of tumor control). Then, in the present manuscript, they chose to prepare the carborane 

co-monomer with only one functional group instead of two as in their previous work with the aim of loading a 

greater amount of boron to the micelles. For comparison, non-polymerized micelles (NPM) containing also a 

carborane molecule were used to test the ability of the PM to preserve their boron load without leaking when 

exposed to serum proteins, concluding that covalent interaction was the cause of the PM stability. In addition, an 

animal model was used in this opportunity to understand its pharmacokinetics and biodistribution and the degree of 

tumor control achieved when irradiated with thermal neutrons. It is of great importance for the future of BNCT to 

have interdisciplinary research groups committed to face sustained efforts in creating new boron compounds and 

delivery strategies. This work is contributory since it integrates several specialties equally important for obtaining a 

suitable compound and therefore deserves to be published. 

 

However, there are still some issues that must be considered when proposing a new boron delivery agent and 

would be of great importance if the authors state them clearly in this work.  

The manuscript is clear and well written and does not demand extensive grammatical corrections, perhaps just 

checking for typing mistakes. 

 

[Q1] The idea of sustained blood circulation is important since it permits the compound to have enough time to 

traverse the barriers that must be crossed to reach the tumor cells; however, it is also a drawback since normal tissues 

could be exposed to high boron radiation doses, unless the compound does not leave the normal vasculature and 

enters the interstitium. The authors should comment on this, perhaps anticipating the need for further investigations 

in terms of boron accumulation in normal tissues that must be protected, e.g., the organs at risk in the future 

treatment. 

 

Answer 

    Thank you for your comment. We understand the importance of the risk at normal organs after the irradiation. 
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Materials 

 

Tetrahydrofuran (THF; Kanto Chemicals Co. Ltd., Tokyo, Japan) was dried over lithium 

aluminum hydride and distilled under nitrogen atmosphere. 3,3-Diethoxy-1-propanol (Aldrich 

Chemical Co. Ltd., Milwaukee, WI) was dried over sodium and distilled under reduced pressure. 

Ethylene oxide (EO; Sumitomo Seika Chemicals Co. Ltd., Hyogo, Japan) was purified by 

distillation over CaH2. D,L-lactide (LA, Wako Pure Chemical Industries, Ltd., Osaka, Japan) was 

purified by sublimation under reduced pressure after recrystallization twice from ethyl acetate. 

Potassium naphthalene was prepared according to a conventional method and the concentration was 

determined by titration. o-Carborane (Wako Pure Chemical Industries),
 10

B-enriched o-carborane 

(Katchem spol. s.r.o., Ltd., Prague, Czech) and butyllithium (BuLi; 1.6 M in n-hexane, Kanto 

Chemicals) were used as received. 4-Vinylbenzyl chloride (kindly provided by Seimi Chemical Co., 

Tokyo, Japan) was purified by passed through silica gel column and distilled under reduced 

pressure. High-resolution mass spectrometry using electrospray ionization mass spectrometry 

(HRMS (ESI+)) was conducted for the synthesized monomers on an Applied Biosystems 

QStar/Pulsar i. 

  

Synthesis of acetal-PEG-b-PLA-MA block copolymer (Scheme S1) 

 

 3,3-Diethoxy-1-propanol (79 L, 0.5 mmol) and THF (15 mL) were added to a round bottom flask 

equipped with a three-way stop-cock under nitrogen atmosphere. To this solution, potassium 

naphthalene solution (0.42 mol/L in THF, 1.2 mL) was added, and the reaction mixture was stirred 

for 30 min at room temperature to obtain of potassium alcholate as an initiator. The condensed EO 

(3.4 mL, 68.1 mmol) was added to the initiator solution via a cooled syringe, and the reaction 
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mixture was stirred for 2 days at room temperature. Aliquots of the reaction mixture were sampled 

for SEC measurement to determine the molecular weight of PEG. SEC measurement was carried 

out on an HLC-8020 system (Tosoh, Tokyo, Japan) equipped with an internal refractive index 

detector and a combination of TSKgel G4000HR and TSKgel G3000HR columns (Tosoh, Tokyo, 

Japan), using THF as an eluent (Figure S1). The molecular weight (Mn) and molecular weight 

distribution (Mw/Mn) of PEG were 5,600 and 1.02, respectively, as determined by SEC 

measurements based on the PEG calibration. After the polymerization of EO, a solution of 

D,L-lactide in THF (17.3 mmol, 21.6 mL, 0.8 M) was added, and the reaction mixture was further 

stirred for 2 h at room temperature. Methacrylic anhydride (1.6 mL, 10 mmol) was added to the 

reaction mixture to terminate the reaction and introduce the methacryloyl moiety to the living 

polymer chain end. The reaction mixture was poured into cold 2-propanol (900 mL), followed by 

the centrifuging for 15 min at 5000 rpm at -4 ºC. The recovered polymer was finally freeze-dried 

with benzene to obtain the acetal-PEG-b-PLA-MA polymer as a white powder 

(acetal-PEG-b-PLA-MA: 85.7 % yield). A 
1
H-NMR spectrum of acetal-PEG-b-PLA-MA is shown 

in Figure S2 with assignments, where the peaks of terminal methacryloyl moiety were observed at 

 5.6 and 6.2 ppm along with the peaks of acetal moiety were observed at  4.6 ppm. The segment 

length of PLA was estimated from the 
1
H-NMR spectrum based on the peak integral ratio of the 

methylene protons of PEG (OCH2CH2:  3.5 ppm) and the methine proton of the PLA unit 

(COCH(CH3):  5.2 ppm), assuming the Mn of PEG 5,600. The Mn of PLA segment was 5,100. The 

functionality of methacryloyl and acetal moiety was determined to be 90 and 99 %, respectively, as 

determined by the 
1
H-NMR spectroscopy. SEC Mn = 10,500, Mw/Mn = 1.07; 

1
H-NMR (270 MHz, 

CDCl3): (ppm) 1.18 (t, J = 7.0 Hz, 6H, CH3CH2O-), 1.57 (m, 213H, -COCH(CH3)-), 1.73 (br, 2H, 

acetal-CHCH2CH2O-) 1.76 (br, -C(CH3)=CH2), 3.69 (m, 509H, PEG backbone), 4.64 (t, J = 5.8 Hz, 

1H, acetal-CHCH2-), 5.15 (m, 71H, COCH(CH3)), 5.61 (d, J = 1.3 Hz 1H, -C(CH3)=CH2), 6.20 (d, 

J = 1.1 Hz, 1H, -C(CH3)=CH2).
 

 

Synthesis of natural abundance of 1-(4-vinylbenzyl)-closo-carborane (VB-carborane) (Scheme 

S2) 

 

 o-Carborane (0.38 g, 2.6 mmol) dissolved in THF (20 mL) was introduced in a round bottom flask 

equipped with a three-way stop-cock under nitrogen atmosphere, and the flask was cooled to 0 ºC. 

To this solution, BuLi (1.6 M in hexane) was added dropwise (1.6 mL, 2.6 mmol), and the reaction 

mixture was stirred for 30 min at 0 ºC. The reaction mixture was allowed to warm to room 

temperature, and 4-vinylbenzyl chloride (0.38 mL, 2.6 mmol) was added dropwise. The reaction 

mixture was further stirred for 8 h at room temperature, and the proceeding of the reaction was 

monitored by TLC analysis using straight hexanes (Rf = 0.21). The solvent was subsequently 

removed by rotary evaporation, and the crude product was purified by silica gel column in straight 

hexane to yield the VB-carborane as a white solid (0.13 g, yields; 19.2 %). 
1
H NMR (270 MHz, 

CDCl3) (Figure S3):  (ppm) 1.4-3.5 (br, 11H, carborane), 3.51 (s, 2H, -CH2C(BH)10), 5.30 (dd, J = 

0.8 and 10.8 Hz, 1H, CH2=CHPh), 5.78 (dd, J = 0.8 and 17.6 Hz, 1H, CH2=CHPh), 6.74 (dd, J = 

10.8 and 17.6 Hz, 1H, CH2=CHPh), 7.10 (d, J = 8.2 Hz, 2H, Ph), 7.39 (d, J = 8.2 Hz, 2H, Ph). 

Elemental Analysis: Calcd. C 50.7 %, H 7.74 %. Found C 50.8 %, H 7.70 %. ICP-AES: B Calcd. 

41.5 %, Found 41.4 %. MS (ESI
+
): m/z calcd for C11H20B10 [M

+
]: 260.2568; found: 260.2571. 

 

Synthesis of 
10

B-enriched VB-carborane 

 

 
10

B-enriched o-carborane (0.10 g, 0.69 mmol) dissolved in THF (5.3 mL) was introduced in a 

round bottom flask equipped with a three-way stop-cock under nitrogen atmosphere, and the flask 

was cooled to 0 ºC. To this solution, BuLi (1.6 M in hexane) was added dropwise (0.42 mL, 0.69 
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mmol), and the reaction mixture was stirred for 30 min at 0 ºC. The reaction mixture was allowed to 

warm to room temperature, and 4-vinylbenzyl chloride (0.11 mL, 0.69 mmol) was added dropwise. 

The reaction mixture was further stirred for 8 h at room temperature, and the proceeding of the 

reaction was monitored by TLC analysis using straight hexanes (Rf = 0.21). The solvent was 

subsequently removed by rotary evaporation, and the crude product was purified by silica gel 

column in straight hexane to yield the 
10

B-enriched VB-carborane as a white solid (65 mg, yields; 

37.4 %). 
1
H NMR (270 MHz, CDCl3):  (ppm) 1.4-3.5 (br, 11H, carborane), 3.51 (s, 2H, 

-CH2C(BH)10), 5.30 (dd, J = 0.8 and 10.8 Hz, 1H, CH2=CHPh), 5.78 (dd, J = 0.8 and 17.6 Hz, 1H, 

CH2=CHPh), 6.70 (dd, J = 10.8 and 17.6 Hz, 1H, CH2=CHPh), 7.10 (d, J = 8.2 Hz, 2H, Ph), 7.39 (d, 

J = 8.2 Hz, 2H, Ph). Elemental Analysis: Calcd. C 52.4 %, H 7.93 %. Found C 53.2 %, H 7.63 %. 

ICP-AES: B Calcd. 39.7 %, Found 40.1 %. 

 

Cell culture 

 

Colon-26 cells derived from mouse colorectal carcinoma cell line were obtained from RIKEN 

BioResource Center. The cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) that 

was supplemented with 10% FBS, 100 units mL
-1

 penicillin, and 100 g mL
-1

 streptomycin at 37 ºC 

in a humidified 5% CO2 atmosphere. 

 

In vitro cytotoxicity 

 

The colon-26 cells were seeded onto 96-well plate at a seeding density of 10
4
 cells/well and 

incubated for 24 h in 100 L DMEM containing 10 % FBS, 100 units/mL penicillin and 100 g/mL 

streptomycin at 37 ºC in humidified 5 % CO2 atmosphere. Then, the culture medium of each well 

was replaced with 90 L of fresh medium, followed by the addition of 10 L sample solutions 

containing various concentration of NPM micelles, PM micelles, or VB-carborane dissolved in 

DMSO. After incubation for 24 h, the metabolic activity of each well was evaluated by WST-8 

assay (Cell Counting Kit-8, Dojindo, Japan) The optical absorbance was measured at 450 nm, using 

an ARVO MX (PerkinElmer, Waltham, MA) and converted to the percentage (cell viability) relative 

to that for mock cells (buffer-treated cells). 

 

Conjugation of tyrosine residues with PM and NPM micelles 

 

To clarify the biodistribution of the micelles, the preparation of 
125

I (radioisotope)-labeled NPM 

and PM micelles were performed. A tyrosine residue (Tyr), as a site of radiolabeling, was 

introduced onto the NPM or PM micelles. An aqueous solution of NPM or PM micelles bearing 

acetal groups (10.0 mL, 2.0 mg/mL) was adjusted to pH 2 using 1.0 M hydrochloric acid, and the 

resulting solution was stirred for 2 h at room temperature to prepare NPM or PM micelles with 

aldehyde groups. Purification was performed with dialysis against a large quantity of water (2.0 L) 

using a pre-swollen semi-permeable membrane (MWCO. 12,000–14,000) for 24 h. The dialysate 

water was exchanged at 2, 5 and 8 h after the beginning of dialysis. To a solution of the NPM or PM 

micelles bearing aldehyde groups (10.0 mL, 1.3 mg/mL, [aldehyde] = ca. 90 M) in 10 mM 

phosphate buffer (pH = 6.5), L-tyrosine (Tyr) hydrazide (10.8 mg, 55 mol) was added, and the 

reaction mixture was stirred at room temperature for 1 h. Next, sodium cyanoborohydride (3.5 mg, 

51 mol) was added as a reducing agent to reduce the unstable hydrazone linkage (C=N-NH-), and 

then the mixture was stirred at room temperature for 24 h. Purification was performed with dialysis 

against a large quantity of water (2.0 L) using a pre-swollen semi-permeable membrane (MWCO: 

12,000–14,000) for 3 days. The dialysate water was exchanged at 2, 5, 8, 24 and 48 h after the 

beginning of dialysis. After purification, 3.0 mL of the solution was freeze-dried to determine the 
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concentration and the degree of the functionality of the Tyr residue in the 
1
H-NMR spectra. The 

1
H-NMR spectra of the lyophilized NPM or PM micelles in DMSO-d at 80 ºC showed the aromatic 

protons of the Tyr residue, and the degree of functionality of the Tyr residue of the NPM and PM 

micelles was 88 % and 83 %, respectively, as determined from the peak intensity ratio of the 

aromatic protons in Tyr ( 6.8 and 7.2 ppm) to the methine proton in the PLA segment ( 5.2 ppm) 

of the block copolymer. 

 

Radiolabeling of the Tyr-PM and Tyr-NPM micelles 

 

A solution of Na
125

I in 10 mM phosphate-buffered saline (PBS) (15 L, 74 MBq/mL, PerkinElmer, 

Inc., USA) was added to a solution of Tyr-labeled NPM or PM micelles in 10 mM PBS (300 L, 

2.0 mg/mL). A solution of chloramine T in 10 mM PBS (100 L, 2.0 mM) was added to the 

reaction mixture, which was incubated at room temperature for 10 min. Next, the reaction was 

quenched by the addition of a solution of sodium peroxodisulfate in 10 mM PBS (100 L, 40 mM). 

After shaking for a few minutes, the unreacted 
125

I and other chemicals were removed by passing 

the sample through a PD-10 column (GE Healthcare, USA) using PBS as an eluent prior to the 

biodistribution study. The radioactivity of each fraction was measured using a -counter (Aloka, 

Japan) (Figure S5). 
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Scheme S1. Synthesis of acetal-PEG-b-PLA-MA. 

 
 

 

 

 

Scheme S2. Synthesis of 1-(4-vinylbenzyl)-closo-carborane. 
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Figure S1. SEC charts of acetal-PEG (black line) and acetal-PEG-b-PLA-MA (red line). 

 

 

 

 

 

 

 
 

Figure S2. 
1
H-NMR spectrum of acetal-PEG-b-PLA-MA in CDCl3

 
at 25 ºC. 
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Figure S3. 
1
H-NMR spectrum of VB-carborane in CDCl3

 
at 25 ºC. 

 

 

 

 

 
 

Figure S4. The size distribution of the acetal-PEG-b-PLA-MA micelles (black squares), the NPM 

micelles (red circles) and the PM micelles (blue triangles). 
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Figure S5. 

1
H-NMR spectra of lyophilized PM micelles (a) and NPM micelles (b) in chloroform-d. 

 

 

 

 
 

Figure S6. SEC chart changes of the NPM micelles (a) and the PM micelles (b) dependent 

incubation days in 10 mM PBS at 37 ºC. (Column, Superose TM 6 10/300 GL; flow rate, 0.5 

mL/min; eluent, 10 mM phosphate buffer solution, pH 7.4; temperature, 40 ºC). 
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Figure S7. Elution profiles of 
125

I-labeled PM micelles (black squares) and NPM micelles (red 

circles) in purification through gel filtration chromatography (PD-10 column). 

 

 

 

 
 

Figure S8. Cytotoxicity of PM micelles (black squares), NPM micelles (red circles), and 

VB-carborane (blue squares), against colon-26 cells for 24 h. (n=5, mean ± SD). 
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Figure S9. Tissue distribution profiles of the 
125

I-labeled PM micelles (black squares) and the 
125

I-labeled NPM micelles (red circles) in liver (a), spleen (b) and kidney (c) after intravenous 

injection in tumor-bearing mice, determined based on the radioactivity (n = 3, mean ± SD). 
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Figure S10. Tissue distribution of the boron species after intravenous injection of the PM micelles 

(black squares), NPM micelles (red circles) and free BSH (blue triangles) in liver (a), spleen (b) and 

kidney (c) in tumor-bearing mice, determined by ICP-AES (n = 3, mean ± SD). 
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