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SUMMARY  Fairness is one of the important notion for pro-
gramming language, such as process algebras like CCS, that in-
cludes concurrency (or parallelism) and nondeterminism. This
ensures that while repeatedly choosing among a set of alterna-
tives, no alternative will be postponed forever. However, the
fairness does not mention at what frequency these alternatives
are selected. In this paper, we propose a quantitative fairness,
which is called economic-oriented fairness, to each alternatives.
This fairness ensures that the expected number of selection for
each alternatives are same. We give a condition for probabil-
ity assignment of selection of each alternative to be satisfied for
economic-oriented fairness. First we show a simple probability
assignment rule. In this assignment, between any two alternatives,
if an alternative is selected n times and the other m times then the
probability to select the former alternative is (m+1)/(n+1) times
the probability for the latter. We prove that this assignment satis-
fies the condition of economic-oriented fairness. For a model of
the economic-oriented fairness, we adopt a probabilistic process
algebra. Finally, we elaborate with two process models of the
economic-oriented fairness. The first one is a server and client
model, where each client communicates only with the server, but
not among them. In this model, the expected number of commu-
nication by each client are equal. The second model considers
communication between two processes. In practice, a process has
several subprocesses. Each subprocess communicates via a com-
munication port. In the second model, there is economic-oriented
fairness where the expected number of communications via each
communication port are equal.

key words: fairness, economic-oriented fairness, process algebra,
cCS

1. Introduction

Fairness[5],[10] is one of the important notion for
programming language, such as process algebras like
CCS[8], which includes concurrency (or parallelism)
and nondeterminism. This ensures that while repeat-
edly choosing among a set of alternatives, no alternative
will be postponed forever. For example, in a network
system a node P sends a message to either a node Q
or R repeatedly. When this network system does not
satisfy the fairness, one of @ or R may not be able to
receive any message.

In general, fairness is implicitly assumed. So both
Q and R will receive a message eventually in a practi-
cal system. However, the fairness does not say anything
about the frequency at which Q and R receive messages.
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Even though @ receives several thousand messages, R
may receive only one. Is it really “fair” in practice? This
paper introduces the concept of quantitative fairness.
Paper 5] named such fairness as “economic-oriented.”
So we also call this fairness economic-oriented fairness.
In this paper, we consider the economic-oriented fair-
ness as a probabilistic fairness. In the above example,
if economic-oriented fairness is satisfied, the probability
that Q and R receive a message from P are same. More
precisely, the expected number of received messages of
each process at different step must be same. Therefore,
P must assign probability while sending messages to
different destinations.

Section 2 briefly introduces probabilistic process
algebra and related definition of economic-oriented fair-
ness. This probabilistic process algebra is a subset of
probabilistic CCS[6],[8] with a special operator [].
This is a compositional operator whose subprocesses
satisfy the economic-oriented fairness.

Section 3 demonstrates two process models as the
examples of the economic-oriented fairness. The mod-
els do not consider any silent actions. The first one
is a server and client model, where each client com-
municates only with the server, but not among them.
In this model, the expected number of communication
by each client are equal. The second model considers
communication between two processes. In practice, a
process has several subprocesses. Subprocesses commu-
nicate via communication ports. In the second model,
there is economic-oriented fairness where the expected
number of communication via each communication port
are equal.

For these models, we give a condition for proba-
bility assignment of selection of each alternative to be
satisfied for economic-oriented fairness. We show a sim-
ple probability assignment rule. In this assignment, be-
tween any two alternatives, if an alternative is selected
n times and the other m times then the probability to
select the former alternative is (m +1)/(n+1) times the
probability for the latter. The addition of | is necessary
for the case where n = 0. We prove that this assignment
satisfies the condition of economic-oriented fairness.

Finally, we conclude this paper in Sect. 4.
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2. Process Algebras and Its Economic-Oriented
Fairness

First, we briefly introduce a probabilistic process alge-
bra. It is a subset of probabilistic CCS[6],[8] with a
special operator [[. This is a compositional operator
whose subprocesses satisfy the economic-oriented fair-
ness.

Let A be a finite or infinite set of actions. £ is a
set of process expressions, which is a minimum set sat-
isfying the following conditions, where X is a set of all
process variables:

1.0€g,

2 XCé,

3.ifac Aand E€ £ thena.E €€,
4. fE,Fe&then E+ F €é&,

5.if XeXand E€& thenfix X.Ecf.

0 is called an inaction, which does not perform any ac-
tions. a.E is called an action prefix. It performs an
action a and becomes a process E. E + F is a sum-
mation, which performs a process E or F'. The choice
between E and F are nondeterministic. The semantics
of a process expression is given by the transition relation
— C& x Ax &, which is defined as follows. We omit

(E,a,F) €e-» by E 5 F. Intuitively, E = F means
that E performs the action a and becomes F. For any
E,Fc&,ac Aand X € X, the transition relation —
is a minimum relation satisfying the followings:

l.a.E%E,

2.ifESE thenE+F 3 E,

LifFSF thenE+F S F,

4. if E{fix X.E/X} 5 E' then ix X.E > E/,

where E{F/X} is a process expression E. Here all free
occurrences of X in E are replaced by F. The notions
of free and boundness are as usual. A bound process
expression is called a process. In the rest of this paper,
we deal with processes only.

The economic-oriented fairness in this paper en-
sures that while one has to repeatedly choose among
a set of alternatives, i.e. processes, expected number of
selection of each alternative are equal at each transition
step. The rest of this section introduces the new process
operator [], which is a compositional operator whose
subprocesses satisfy the economic-oriented fairness.

First, we introduce a probabilistic transition rela-
tion for a process to calculate the expected number of
each alternatives.
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Definition 2.1: Let N > 1 and each P; a process where
0 <i <N —1. Then for any n; 2 0, Hfiglni : P,
is a compositional process. In the case of N = 2,
]—[3:0 n; : P; could be simply expressed as Py ngl[n, P1-
g
The semantic of a compositional process is defined
by the probabilistic labeled transition relation —. The
probabilistic transition relation — CP x A x P x Pr,
where P is a set of all compositional processes and
Pr = {pr | 0 < pr < 1}. We express (P,a,Q,p) €—
by P =, @, which means P can perform the action
a with probability p, and after action a, it becomes
Q. The probability p of —, is defined by the func-
tion pu: P x Ax P — [0,1]. This is a total function
called the probabilistic transition function, satisfying the
following restriction: VP € P,

Z #(Pa,Q) =1

a€A.QeP

To satisfy the economic-oriented fairness, the prob-
ability of a transition depends on n;s of the composi-
tional process vazal n; : P;,. The number n; can be
considered as characteristic number. It may be changed
at each transition. In the next section, two process mod-
els are illustrated.

We can easily extend the above transition relation
to an action sequence. That is, u(P,e,P) = 1 and
vt € A*, if u(P,t,Q) = p and pu(Q,a,R) = gq, then
u(P,t-a,R) = p-q. It is obvious that for any process
Pandm 2 0:

Y wPtQ) =1

QEP teA™

From the probabilistic transition function pu, we
can calculate the expected number to define the
economical-oriented fairness. For a compositional pro-
cess P, the expected number can be calculated at each
transition step m. It depends on the number of alter-
natives N. The definition of expected number also de-
pends on what is fair with respect to the model. So
there exists model dependent parameter t. We can de-
scribe the expected number by EX (P, N, m,t).

We define the economic-oriented fairness for com-
positional processes as follows.

Definition 2.2: Let P € P and N the number of sub-
processes of an operator [| in P. P satisfies the
economic-oriented fairness, if for any transition step m
and model dependent parameter ¢, the expected num-
ber EX(P,N,m,t) =m/N. a

3. Process Models of Economic-Oriented Fairness

This section demonstrates two process models as exam-
ples of the economic-oriented fairness. Both models do
not consider any silent actions. Thus, we assume that
the set of actions A has no silent actions.
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Fig. 1 A server and client model.

3.1 A Server and Client Model

The first one is a server and client model, where each
client communicates only with the server, but not among
them. The number of server is one, as we consider the
server as the environment of the model. The clients are
expressed by subprocesses of []. Figure 1 illustrates a
server and client mode!, which has three clients Py, P,
and P,. This model is expressed by ]'[?=0 n;: P,

If the economic-oriented fairness is satisfied in this
model, then the server (i.e. the environment) must ex-
tend services (in this case, communication opportuni-
ties) equally to each client. Therefore, the expected
number in Definition 2.2 is defined as the number of
actions from each subprocesses of [].

The number n; of a composition process Hf:)l n;:
P; expresses how many actions the subprocess P; per-
forms. So the number n; at the initial state of a compo-
sition process is zero. For example, P ,||3Q shows that
five actions are performed from its initial composition
process Py of|oQo. Two are by P and three are by Q
in some order. At this point, if P performs an action
and becomes P’, then its result composition process is
P 4ll5Q.

The probabilistic transition relation under the
server and client mode! is defined as follows.
Definition 3.1: The probabilistic transition relation
under the server and client model — is a minimum re-

lation which satisfies the following condition: for any
ac€A and0<Lj<N -1,

N-1
if Pj =, Q then Hnl J Hn P!,
=0 1=0

where n} = n;(i £ j) orn;+1(i = j) and P/ = P;(i + j)
or Q(i = j). p and p are defined by u(P;j,a,Q) and
w5 i : Piya, 151 nl - P!) respectively. o

The condition to be satisfied for economic-oriented
fairness is as follows. Before introducing the theorem,
we define some notations. Let N be the number of al-
ternatives. Corresponding to each alternative, a number
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from 0 to N — 1 is used. At the transition step m, we
can assign a number 0 to N™ — 1 to each transition
state as follows. Let the state at the transition step 0
correspond to 0. From z-th transition state at the tran-
sition step m, suppose the y-th alternative is selected.
Then the transition state after this selection, i.e. at the
(m 4 1)-th transition step, is assigned as =N + y. With
this rule, each transition state corresponds to a unique
number. Let p,,,(i) be the probability at the i-th tran-
sition state and the transition step m. p,,(i,j) is the
probability to select j-th alternative at the transition
state 7 and the transition step m. It is obvious that
pm—i—l(ijv +]) pm( ) pm(z .])

In the case of compositional processes, a model de-
pendent parameter t is each subprocess number j. Thus,
EX(P,N,m,j) means the expected number of actions
which P; performed. Let n,,(i,j) be the number of ac-
tions Wthh subprocess P; performed from the initial
process to the one at the transition state 7 and the tran-
sition step m. Until m-th transition step, m actions are
performed. Thus for any ¢ and m, ZJN :,1 (i, 7) = m.
At the transition state z and the transition step m, if
the y-th subprocess is selected, then the transition state
x becomes the (xN + y)-th transition state at the tran-
sition step (m + 1), where 0 < 2 < N™ —1 and 0 £
y £ N — 1. Therefore, nypi1(zN +j,j) = npm(x,j) + 1
and nu,41(zN +y,j) = nm(2,y) if y + j. The expected
number EX(P, N, m,j) is defined as follows:

N™—1

Z nm(i-j) X pm(i)

i=0

X(P,N,m,j) =

The theorem to be satisfied for economic-oriented
fairness is introduced.
Theorem 3.2: Let P € P under the server and client
model, and N the number of subprocesses of an opera-
tor [T in P. P satisfies the economic-oriented fairness,
iff for any transition step m = 1:

N™ -1

v] Z p77l

Proof: (:>) Since P satisfies the economic-oriented
fairness, the expected number EX(P,N,m,j) =
Z,N:Q—l nm(ivj) ) pm(i) = ‘m/N' For EX(P,N,m +
1,7), the followings are derived.

pm i,j) = 1/N

EX(P,N,m+1.j)
NI

= Z Nmt1(7, J) “Pm+1(2)
=0
N™"—-1N-1

Z Z nm+l(l‘]v + y]) 'pm+l(xjv + y)

r=0 y=0

N"™_1( /N-1
Z {(Z N (2,7) * P (Z)Pm ($.y))

=0 y=0

f
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+p"l(‘r)pm(1"j)}

N™ -1 N-1
) { (nm(x,ﬂpm(z) ) pm(l‘.y))

r=0 y=0

+ P (T)pm (T, J)

N™-1
EX(P,N.m,j)+ Y pm(@)pm(.])
z=0

= (m + 1)/]\]

Therefore, Z;V:O_l Pm(2)pm(z,j) = 1/N.
(=) Same as the above proof. O

Next, we discuss assignment of the transition prob-
ability, i.e. pm(i,j). Indeed, for any m, i and j,
if pm(i,j) = 1/N, where N is the number of al-
ternatives, then Theorem 3.2 is satisfied. Thus, this
is one of the definition for economic-oriented fair-
ness. However this assignment is too simple to maich
any practical situation. Let a compositional process
P = fix X.a.X (|ofix X.b.X. For an action sequence
t = a---a, where the number of a is m, suppose

P L P'. From the above assignment, even though no b
is performed, the probability of selecting a or b is 1/2
respectively. We would like to increase probability of
selecting b over a.

Here, we define another probability assignment

rule. In this assignment, between any two alternatives,
if an alternative is selected n times and the other m
times then the probability to select the former alterna-
tive is (m + 1)/(n + 1) times the probability for the
latter. The addition of 1 is necessary for the case where
n =0. Let P be a compositional process which has N
subprocesses. As we have already mentioned, a num-
ber could be assigned to a transition state of P. Let its
transition probability p,,(¢,j) be the sum of all transi-
tion probabilities from j-th subprocess at i-th transition
state and m-th transition step. The following definition
of p,,(7, ) satisfies the above property.
Definition 3.3: Let P be a compositional process un-
der the server and client model which has N subpro-
cesses. After m actions are performed, suppose P
becomes ]_LALBI n; : P;. The transition probability
pm(i,7), which has occurred from j-th subprocess at i-
th transition state and m-th transition step, is defined
as

N-1
pmlid) = [ [T+ | /> [k +1)
ks v=0 kty

O

It is easy to check that p,,(i,z)/pm(i,y) = (ny +
1)/(nz+1) for any z and y. By the definition of pn (3, j),
the probability p,,(7) is defined as the rule mentioned
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Fig.2 Anexample of a part of an economical-fair probabilistic
transition tree.

after Definition 3.1. The following proposition shows
that a compositional process satisfying the previous def-
inition satisfies economic-oriented fairness.
Proposition 3.4: Let P be a compositional process un-
der the server and client model which has N subpro-
cesses. For any transition step m, transition state ¢ and
subprocess j:

N -1

¥i. Y pm(i)-pm(ij) =1/N

=0

Proof: By induction on m. O

Figure 2 shows an example of a transition tree ac-
cording to Definition 3.3. In this figure, the number p at
each transition relation R &> S shows the value of tran-
sition probability p,,(i, ), where R is a process at the
transition state i and the transition step m. By perform-
ing an action at j-th subprocess, R becomes S. mP+nQ
under each compositional process in this figure means
that the sum of the expected number of actions by P’s
subprocesses is m and that by Q’s is n. For example, at
P’ |1Q’, expected number of actions both by P and Q
are 2/6- 1. The expected number of actions from P and
Q) at second transition step is 1.

3.2 Communication between Two Processes

The second model considers communication between
two processes. In practice, a process has several sub-
processes. Each subprocess communicates via respective
communication port. In Fig. 3, processes P and @ have
two subprocesses each, Py, P; and Qo, @, respectively.
P, communicates to Q via the port a. P; communicates
to Q, via either port b or c. The assignment of the tran-
sition probability in Definition 3.3 ensures that subpro-
cesses of P and Q satisfy the economic-oriented fairness,
i.e. the expected number of actions which are performed
by each subprocess is equal. However, with what fre-
quency the communication ports are selected? P; and
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(communication link)

Fig.3  Anexample of a system of two communicating processes.

Q1 can communicate only via port b, even though the
economic-oriented fairness is satisfied. In such models,
each communication port is not ensured to be fair. In
the rest of this section, we introduce the new assign-
ment of the transition probability based on the fairness
for communication ports. For this assignment, the tran-
sition system in Definition 3.1 is also modified.

In general, there is one physical communication
link between P and Q. This link is logically di-
vided and used by several ports. The economic-oriented
fairness for communication ports provides the fairness
about link throughput.

First, we introduce new notation of a process to
count the number of actions at each communication
port. It is a process with a counting set, expressed as
Pc, where P is a process and C is a counting set. The
counting set is a set of 2-tuples. The first term is a port
name, and the second term a natural number. They
represent how many communications the process per-
forms via each communication port. A set of actions
included in a process is called a sort. Let Sort(P) be a
sort in P. The counting set C' of an initial process P is
C = {(a,0) | a € Sort(P)}.

For example, Py(, 2).(5.3)} shows that the sort of the
initial process of P is {a,b}, and two as and three bs
are executed in some order from the initial process of
P. If P executes an a and becomes @, then the counting
set of Q is {(a,3),(b,3)}. The transition probability is
decided from this counting set.

Note that if the sort of a process is finite, then
the expression of a process with counting set can be
transfered to a compositional process in Definition 2.1.
Therefore, the definition of fairness in Definition 2.2
can be applied to a process with counting set if the sort
is finite. Let N be the number of actions in a sort.
Then, we can correspond a number from 0 to N — 1 to
each action in the sort. As in the case of client-server
model, we can assign a number 0 to N™ — 1 to each
transition state at the transition step m. We can also
define the probability p,,(¢,7) and p,,(i). The former
is the probability to select j-th action at the transition
state 2 and the transition step m. The latter is the prob-
ability at the i-th transition state and the transition step
m. Then, Theorem 3.2 is also satisfied.

The semantics of a process with a counting set is
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defined by the following probabilistic transition system.
Definition 3.5: The probabilistic transition relation —
between two processes with each counting set is a min-
imum relation which satisfies the following condition:
for any a € Sort(P),

if (a,n) € C and P = Q then Pc %, Q¢

where p = u(P,a,Q) and C' = (C—{(a,n)})U{(a,n+
D} O

From the above definition, we can define the assign-
ment of a transition probability p,,(,7) as in Defini-
tion 3.3. From Proposition 3.4, this assignment satisfies
the economic-oriented fairness.

4. Conclusion

In this paper, the notion of economical-oriented fair-
ness for a compositional processes is introduced. We
demonstrated the economic-oriented fairness with two
common models, a client and server model and a sys-
tem of two communicating processes. We also proved
that the defined conditions actually ensured economic-
oriented fairness. The economical-oriented fairness is
defined under compositional processes. To extend the
economical-oriented fairness to general processes, we
need to solve several other problems.

First, there are some restrictions on the composi-
tional processes. The compositional operator [] is ap-
plicable only to interleaved processes, and thus the sub-
processes of [ are not allowed to communicate among
them. We need to deal with communication between
subprocesses, i.e. a silent action, to define the economic-
fairness for general processes. However, the environ-
ment cannot recognize silent actions. Therefore, it is
difficult to count the number of actions performed by
each subprocess.

The process operators in this paper are only basic
ones. Other process operators, especially a restriction
operator should be introduced. However, the follow-
ing problem will appear when dealing with the restric-
tion operator. That is, the effective transition proba-
bility of a probabilistic process is modified by the re-
striction operator (\ in CCS). The restriction opera-
tor restricts performing some actions. For example, let
P = (a.0 | b.0)\{b}, where the operator ‘|’ is a composi-
tional operator in CCS. By the restriction operator, P
cannot perform b (and b). Even if the transition proba-
bilities of two subprocesses are equal (i.e. 0.5), the latter
subprocess cannot perform any action. Therefore, the
effective transition probability of the former subprocess
should be 1.

In CCS, only communications between two pro-
cesses are allowed. It would be interesting to introduce
a process in a multi synchronization system, such as
CSP(7] or LOTOS[2].

Second, in this paper, the economic-fairness is de-
fined for communication between two (sub)processes.
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Fig. 4 A tree type topology of a process Po|Pi|Pa.

In this case, it is sufficient to consider the communi-
cation between a process and its environment. How-
ever, the economic-fairness between more than three
(sub)processes will be much complicated. For exam-
ple, consider the process P = Py|P;|P,. There are three
kind of internal communications, i.e. communications
between Py and P;, P; and P,, and P, and F,. In net-
work systems, the network topology of a process is very
important to define its fairness. Figure 4 shows a tree
type topology of P. In this topology, Py and P, are
connected by a port a, and Py and P, are connected
by a port b. Assume the three subprocess satisfies the
economic-oriented fairness in Definition 2.2. Therefore
the expected number of actions which each subprocess
performs is equal. However, if the port a and b are con-
cealed by the environment, i.e. no messages are sent to
or received from the environment, this assumption is in-
consistent. This is because, if the process P, and P, send
or receive the same number of messages, then P, send
or receive twice. When the economic-fairness based on
communication ports is defined, there is another prob-
lem. In Fig. 4, there is no connection between P, and
P,. Thus, if P, sends a message to P, then the message
is transmitted via Py. We will need to discriminate mes-
sages from P, to P; and those from P, to Py, to define
the fairness based on communication ports between P»
and P,.

Third, the expected number is always fixed to m/N
in Definition 2.2. In practice, it is useful to be able to
define the expected number by each subprocess. This
is related to the notion of a priority, i.e. larger expecta-
tion numbers has to be assigned to processes with higher
priorities.

The economic-oriented fairness in Sect. 3 is defined
as the expected number of performed actions from each
subprocess or each communication port is fair. The
number of performed actions is related to throughput,
which is the amount of communications per a unit time.
An another important characteristic appreciating net-
works performance is communication delay. In many
process algebras including CCS, however, an action is
atomic and instantiation. That is, there is no notion of
time in CCS. To represent the fairness for the communi-
cation delay, we must introduce timed process([1],[4],
for examples).
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As mentioned in the introduction, Papers[5],{10]
introduce the strong or weak fairness, which is general
fairness in process algebras. This ensures that while re-
peatedly choosing among a set of alternatives, no alter-
native will be postponed forever. Though the economic-
oriented fairness does not ensure the above fact, we can
prove that the probability that some alternative will be
postponed forever, is zero. This could be derived from
the property of probabilistic process[9].

References

[1] L. Aceto and A. Jeffrey, “A complete axiomatization of
timed bisimulation for a class of timed regular behaviours,”
Theoretical Computer Science, vol.152, pp.251-268, 1995.

[2] E. Brinksma, “A tutorial on LOTOS,” Proc. IFIP Work-
shop on Protocol Specification, Testing and Verification V,
North-Holland, pp.73-84, 1986.

[3] G. Costa and C. Stirling, “Weak and strong fairness in
CCS,” Information and Computation, vol.73, pp.207-244,
1987.

[4] J. Davies and S. Schneider, “A brief history of timed CSP,”
Theoretical Computer Science, vol.138, pp.243-271, 1995.

[5] N. Francez. “Fairness,” Springer-Verlag, 1986.

[6] C. Jou and S.A. Smolka, “Equivalences, congruences,
and complete axiomatizations for probabilistic processes,”
Lecture Notes in Computer Science, vol.458, pp.367-383,
1990.

[7] C.AR. Hoare, “Communicating Sequential Process,”
Prentice Hall, 1985.

[8] R. Milner, “Communication and Concurrency,” Prentice-
Hall, 1989.

[9] K. Seidel, “Probabilistic communicating processes,” The-
oretical Computer Science, vol.152, pp.219-249, 1995.
[10] S.A.Smolka and B. Steffen, “Priority as extremal probabil-
ity,” Lecture Notes in Computer Science, vol.458, pp.456-

466, 1990.

Shigetomo Kimura was born in 1967.
He received the D. Info. degree in infor-
mation science from Tohoku University,
in 1995. He is currently a Lecturer of In-
stitute of Information Sciences and Elec-
tronics, the University of Tsukuba, since
1995. His primary research interests are in
the areas of algebraic formulation of con-
current processes and program synthesis
by inductive inference. He is a member of
IPSJ and JSSS.

Yoshihiko Ebihara was born in 1947.
He received the D.E. degree in electrical
communication engineering all from To-
hoku University, in 1978. He is currently
a Professor of Institute of Information
Sciences and Electronics, the University
of Tsukuba, since 1993. His primary re-
search interest include computer network,
performance analyses and distributed pro-
cessing. He is a member of IPSJ.

NI | -El ectronic Library Service



