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Abstract 

In this paper, we use continuous urban structure instead of zonal model, try to calculate 

unbiased excess commuting with joint distribution of homes and workplaces developed by 

Vaughan (1974), and describe the relationship between urban structure and commuting distance 

explicitly and theoretically for generalized home-workplace assignment pattern. We simplify the 

quadrivariate distribution model to a model with three important parameters: the spread of 

homes, the spread of workplaces, and the spatial correlation of homes and workplaces. Then we 

show that excess commuting and capacity utilization are expressed by the imbalance and the 

spatial correlation of jobs-housing structure in a theoretical context, moreover it explicitly 

evaluates targeting US and Japanese/Korean cities. 

 

 

Keywords: jobs-housing balance, spatial correlation, commuting efficiency, excess commuting, 

urban structure 
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1. Introduction 

 

Many researchers have challenged the measurement of excess commuting, which is calculated 

as the difference between the actual and minimum average commuting distances (or times). The 

latter is obtained by solving the transportation problem using linear programming, with the 

distribution of homes and workplaces being fixed. Excess commuting may be interpreted as the 

commuting that can be eliminated by adjusting the locations of homes or workplaces. If the 

excess is large, the commuting distance (or time) can be drastically reduced by controlled 

matching of homes and workplaces. 

Since White (1988) re-examined the fundamental assumption of cost minimization by 

applying linear programming, many empirical studies have been carried out in this regard. 

These studies aim to estimate the excess commuting in sample cities and assess the usefulness 

of urban policies intended to balance jobs and housing (e.g., Frost et al., 1998; Kim, 1995; 

Merriman et al., 1995; O‘Kelly and Lee, 2005; Small and Song, 1992).  

Other studies on excess commuting have provided methodological extensions, 

especially on the conceptual side. In particular, researchers have introduced the concept of 

maximum commute, which is calculated using linear programming, to maximize the commuting 

cost for trips between homes and workplaces (e.g., Boussauw et al., 2011; Charron, 2007; 

Horner, 2002; Layman and Horner, 2010; Ma and Banister, 2006b; Murphy, 2009; Murphy and 

Killen, 2010). The theoretical range of the commute, i.e., the difference between the maximum 

and minimum commutes, is the available commuting potential of a city. The ratio of the actual 

excess commute and the theoretical commute range is an indicator of commuting efficiency.  

However, in the aforementioned studies, the researchers could not decide how the 

urban structure, i.e., the distribution of homes and workplaces, influences excess commuting. 

Merriman et al. (1995) carried out a simulation study to show that any structural change toward 

the decentralization of employment centers would result in an increase in excess commuting. 

Ma and Banister (2007) discussed the relationship between changes in the trip length and urban 

form, as well as that between changes in the urban form and urban commuting capacity, in 

relation to the measurement of urban spatial change and excess commuting. However, as 

pointed out by Horner and Murray (2002), in the abovementioned researches, the modifiable 

areal unit problem was overlooked. This was because the exact extent of the excess was not 

determined, which in turn was because of the imperfect measurement methodology used: a 

zonal approach that yields aggregation biases. 

The estimated value of excess commuting is very sensitive to errors in the 

measurement method, geographical boundaries, and data resolution, as well as to differences in 

the individual commuting behavior across various cities. For this reason, it is difficult to draw 

general conclusions from empirical studies when this approach is used. 

Very few theoretical studies have been carried out to evaluate the best employee 

distribution for a desirable urban structure. One reason for this is that it is difficult to express 

clearly the spatial distribution of homes and workplaces and its relation to commuting. 

Therefore, in this study, we adopt an analysis method based on Vaughan‘s (1974) joint 

distribution of homes and workplaces. Although this model can be used to express such 

complicated relations at a macro level, it has not been used frequently thus far. 

This study aims to describe the relationship between urban structure and commuting 

distance explicitly and theoretically for generalized home and workplace assignment patterns. 

Accordingly, we try to calculate the unbiased excess commuting by using a joint distribution 

model of homes and workplaces and a continuous urban structure instead of a zonal model. 

Section 2 presents a review of the debate on excess commuting. In Section 3, we 

describe a model to verify the relation between urban structure and commuting distance. First, 

we simplify the quadrivariate distribution model (Vaughan, 1974) to a model with three 

important parameters: (1) spread of homes, (2) spread of workplaces, and (3) the spatial 

correlation between homes and workplaces. Second, we show that the average commuting 
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distance can be evaluated explicitly by the abovementioned three parameters and that excess 

commuting and capacity utilization can be theoretically expressed by the imbalance and spatial 

correlation between the jobs and housing structure. In Section 4, we present our findings along 

with a comparison of the results obtained for some US and Japanese/Korean cities. Section 5 

presents our conclusions. 

 

 

2. Debate on excess commuting and its extensions 

 

Excess commuting is defined as the difference between the actual and the minimum average 

commute for a given distribution of homes and workplaces. By measuring excess commuting, 

we can determine the extent to which commuting distance or time is an inevitable result of the 

functioning of a vast interconnected economic system and the extent to which it is the result of 

inefficient matching of homes and workplaces. 

Hamilton (1982) carried out a test on excess commuting using a monocentric model in 

which the workers were assumed to be distributed according to a Clark-type model. He 

concluded that for several US cities, the excess was 80% or more of the actual commuting 

distance. He focused on the fact that commuters do not necessarily minimize their commuting 

costs, as is often assumed in models of urban economics. 

White (1988) adopted a zonal approach. She divided the targeted area into several 

zones and calculated the flow using an origin-destination matrix. She derived the minimum 

average commuting time by solving a transportation problem. After carrying out tests on some 

US cities, she evaluated the excess to be about 10% criticizing the inability of Hamilton‘s 

monocentric model to account for the actual distribution of residences and workplaces, but her 

method included an aggregation bias. Hamilton (1989) and Small and Song (1992) corrected the 

bias and found the excess to be more than 60%. 

Following Hamilton (1982, 1989) and White‘s (1988) study on the concept and 

estimation of excess commuting, many empirical studies have been carried out for different 

cities. For example, excess commuting in the Tokyo metropolitan area was studied by Merriman 

et al. (1995). In the zonal approach, the urbanized area within 60 km of the center of Tokyo was 

divided into 211 jurisdictional zones and the minimum average commuting time was 42 min, 

whereas the average observed commuting time was 49 min. Thus, the excess was 15%, which 

was significantly less than the actual figure for US cities. The excess increased to 36% when 

commuting distance was used instead of commuting time. In US cities, however, the excess was 

found to be above 60% even when commuting distance was used.  

Frost et al. (1998) studied excess commuting in a selection of UK cities. Kim (1995) 

developed models that predict the commuting distances for two-worker households and 

estimated the excess commuting in Los Angeles. O‘Kelly and Lee (2005) developed a trip 

distribution model that disaggregates journey-to-work data according to occupation type, in 

order to estimate actual commutes and to measure the theoretical minimum and maximum 

commutes via a linear program. They reported variations in the excess commuting and the 

jobs-housing balance for different occupation types. 
Recently, Horner (2010) also focused various worker groups and looked at the matter that 

in general the theoretical minimum commute might be overestimated using aggregated data within 

the measurement of excess commuting. To clarify the error potential in the minimum commute 

calculation by using disaggregating worker data, several computational calculations were estimated 

based all possible combinations on the proportional allocation method and random allocation 

method. Much larger theoretical minimum commutes gained by disaggregating worker data into 

finer groupings. 
Several trials extending or reinterpreting the excess commuting method have been 

carried out using the transportation optimization problem. The first trial was performed by 

Black and Katakos (1987). They considered the urban spatial structure for which the commute 
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is maximized by using an optimization method; this method is equivalent to that proposed in 

previous studies on excess commuting. To classify different urban structures, they calculated an 

urban consolidation index, which is defined as the ratio of the minimum and maximum 

commuting distances for a given city. 

Horner (2002) introduced the theoretical maximization concept to provide insights 

into the degree of decentralization of an urban form. He suggested an index commuting 

potential consumed, which is identical to capacity utilization mentioned in this paper and is an 

indication of how much of the available commuting range has been consumed. Commuting 

potential consumed is defined as the ratio of the difference between the observed and theoretical 

minimum commuting distances to that between the theoretical maximum and minimum 

commuting distances. This index is useful for comparing the commuting efficiency of cities 

because it is an improvement over the traditional definition of excess commuting. Horner 

(2002) also showed the variation in excess commuting for a selection of US cities and the 

relative use of commuting resources in each city. He showed that the commuting potential of 

these cities did not reach the upper limit, although the excess values for the cities were 

drastically different.  

Following Horner‘s approach, Murphy (2009) analyzed the excess commuting in 

Dublin for 1991 and 2001 and investigated the potential impact of increases in the network 

density for public and private transport. He showed that public-transport users can dramatically 

reduce their commuting distance if the density of the public-transport network is increased 

considerably. 

Charron (2007) proposed a new framework for excess commuting, introducing the 

concept of random average commute and the distribution of commuting possibilities. The 

random average commute, the value of which lies usually between the observed and maximum 

commuting distances, is the most probable commuting outcome (theoretically) if commuting 

behavior is not influenced by distance. In this framework, the observed commuting distance is 

lower than the average value of the commuting possibilities (the random average commute). 

Fifty metropolitan areas of the US were studied to find the dynamic relationship between the 

spatial behavior and the urban form. Most recently, Murphy and Killen (2011) also applied the 

random commuting concept for measuring the efficiency of regional commuting patterns. They 

considered the average random commute is a more appropriate base measure because it relates solely 

to a specific type of behavior where cost is irrelevant in decision-making. They proposed two new 

measures of commuting efficiency: commuting economy and normalized commuting economy. On 

this basis, they found out that the average actual commute has moved further away from the average 

random commute, implying that greater intermixing of jobs and housing has led to more efficient 

commuting behavior in the Greater Dublin Area. 
 There has been a debate on the methodological issues concerning the measurement of 

excess commuting using linear programming (Horner, 2004; Ma and Banister, 2006a). For 

example, Horner and Murray (2002) claimed that aggregation and the spatial unit definition (the 

modifiable areal unit problem) affected the estimation of excess commuting. In many 

applications, the commuting cost is considered together with the commuting time or distance 

(Euclidean or network distance), and this directly affects the estimation. The estimation is also 

sensitive to the spatial definition of the zonal units. In this regard, Horner (2010) discussed the 

grey transportation costs, which are defined as the lower and upper bounds on the travel time 

between a given origin and destination. 

Some researchers tried to clarify the relationship between excess commuting and 

spatial distribution patterns (spatial structure). Ma and Banister (2006b) suggested an extended 

excess commuting technique involving the calculation of the maximum and minimum 

commutes, which indicate the quantitative and qualitative imbalance between workplaces and 

residential locations with respect to the urban spatial dispersal. Quantitative imbalance is 

defined as the difference between the minimum and zero commutes. Thus, quantitative balance 

(or numerical equality) signifies that the physical land use is well mixed. Qualitative imbalance 
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is defined as the difference between the observed and minimum commutes; this difference is 

conventionally referred to as excess commuting. Ma and Banister (2007) adopted the 

framework of Brotchie‘s urban triangle model (Brotchie, 1984; Brotchie et al., 1996), which 

provides useful insights into the relationship between urban spatial change and urban travel. 

They also explained the extended excess commuting measure, proposed the use of both 

minimum and maximum levels to understand the concept of commuting potential, and discussed 

the relationship between commuting potential and urban form. Furthermore, Boussauw et al. 

(2011) detected the process of spatial separation using a time series approach of the minimum 

commuting distance that measured in the excess commuting framework. Niedzieski (2006) 

introduced spatially disaggregated measures of commuting efficiency including excess 

commuting that allows us to consider zonal commuting efficiency in greater spatial detail. 

Most recently, Layman and Horner (2010) attempted to investigate connections 

between jobs-housing balance that is expressed as the metrics of worker and job locations, and 

transportation. It also has developed from the concept of excess commuting to seek to the urban 

structural changes. In their paper, the theoretical minimum and maximum commutes, and the 

random average commute on the job and worker growth scenarios are computed to explore the 

relationships between these interrelated metrics. 

 Three issues have been identified on the basis of this literature review. The first is the 

definition of the commuting cost. Usually, distance or time is used to determine excess 

commuting, and the result varies depending on the parameter chosen. The excess calculated 

using the commuting distance is larger than that calculated using commuting time (Merriman et 

al., 1995). Moreover, the commuting distance can be measured using the Euclidean distance or 

the actual network distance. For example, Giuliano and Small (1993), Ma and Banister (2006b), 

and Murphy (2009) used the network distance for obtaining more reliable results.  

 Second, excess commuting is caused by multiple factors, including jobs-housing 

imbalance. Direct comparison of the excess commuting values of different cities is difficult 

because of variations in the deciding factors across the cities, such as household characteristics, 

job locations, occupation types, housing prices, and housing locations. 

 Third, the modifiable areal unit problem (MAUP) should not be overlooked. As 

aggregation occurs or the number of zones decreases, the range of the excess commuting 

estimates becomes smaller (Horner and Murray, 2002). Using a small number of zones gives 

poor results because the excess commuting calculated by solving the transportation problem is 

small. Thus, disaggregate and deductive approaches should be considered. The traditional zonal 

approach is based on a network representation associated with a discrete set of coordinates such 

as locations of jurisdictional centers. Every point in geographic space is assigned to a particular 

zone, and every zone is associated with one or more nodes in the network. This approach often 

causes aggregation problems such as biases in the measurement of excess commuting. 

In this study, we will focus especially on the third issue. We show theoretically that the 

commuting distance can increase or decrease depending on the jobs-housing balance and the 

correlation between the locations of homes and workplaces. If the urban space is represented as 

a field, we no longer need to consider a zonal system or a transportation network. Distributions 

of the population, employment, and spatial interactions such as commuting trips are given as 

continuous distributions. This approach can be used for a simple and economical estimation of 

the spatial pattern of travel in a city and is particularly suitable for macroscopic studies. This 

approach is a complement to the traditional transportation planning methods rather than an 

alternative. 

Continuous distribution is never a new approach. Clark distribution that Hamilton 

(1982) used in his work is the most typical continuous function of population or employment. 

However, in this paper, we introduce not only spatial distribution of workers but also spatial 

correlation between homes and workplaces – that means commuting distance is not decided 

only by spatial structure. In this paper, we will show that it is possible to draw a more realistic 

commuting patterns including reverse commuting by introducing one more dimension – 
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correlation between homes and workplaces, even though we use a theoretical modeling 

approach. 

 

 

3. Description of the relation between urban structure and commuting distance 

 

3.1 Joint distribution of homes and workplaces 

 

In this section, we define home as the home end of a work trip and workplace as the destination 

end. The total number of homes and workplaces is denoted by P. 

 Vaughan (1987) summarized the notion of the joint distribution of homes and 

workplaces that he formulated in 1974. Usually, administrative zones are used to describe the 

movement of commuters from one part of a city to another. However, in the continuous 

approach adopted here, we use mathematical expressions to find the number of trips between 

any two unit zones. 

Continuous urban models have been extensively researched. Clark (1951) 

approximated residential densities by a negative exponential function, and Alonso (1964) 

suggested that rents decrease with an increase in the distance from the city center. The 

distribution of population or rents and the spatial interaction of the geometrical representation 

are associated with a continuous coordinate system. Angel and Hyman (1972) established a 

radially symmetric continuous model to represent the spatial distribution of accessibility to jobs 

and homes and that of traffic flow. They introduced the notion of the trip density function, the 

number of trips from a unit area at an origin to a unit area at a destination; this notion is similar 

to our concept of the joint distribution of homes and workplaces. 

Haight (1964) carried out research on the trip length between two points in a 

continuous context. Fairthorne (1965) considered the average distance between pairs of points 

and used it to measure the accessibility of homes and workplaces with various routing systems, 

including direct routing. 

The analysis in this study is based on Vaughan‘s (1974) joint distribution of homes and 

workplaces. Wilkins (1969) took the first step to the development of a realistic model by 

assuming that homes and workplaces were distributed according to Sherratt-type model, which 

is identical to the two-dimensional normal distribution, but uncorrelated. Vaughan (1974) 

realized that a spatial correlation effect could be introduced when using the quadrivariate 

normal distribution that allows homes and workplaces to remain individually distributed in 

accordance with Sherratt-type model. This continuous model of work trips can be used in 

urban-commuting models. 

Vaughan‘s (1974) joint distribution of homes and workplaces can be written as a 

general quadrivariate normal distribution: 
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is the variance-covariance matrix of the coordinates, in which the standard deviation of xh is 
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denoted by 2

hx  and the covariance of two coordinates xh and yw is denoted by ),( wh yxCov . 

2

hx  indicates the spread of homes in the x direction and can be derived by 
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The variances 2

wx , 2

hy , and 2

wy are defined similarly. The covariance of two variables, for 

instance xh, and yw, is given by 
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with similar definitions for the other pairs of coordinates. The marginal densities of homes and 

workplaces derived from (1) become Sherratt‘s normal distributions (nonuniform, infinite 

boundary, radially symmetric, exponentially decreasing functions), which are convenient to 

handle mathematically. Blumenfeld and Weiss (1974) and Blumenfeld (1977) showed that 

Sherratt-type model was more suitable for representing the distribution of homes in UK cities. 

They also found a good fit for the distribution of workplaces. 

 

3.2 Simplification 

 

The above quadrivariate normal joint distribution model was simplified by Vaughan (1974). The 

model contains fourteen parameters, but under reasonable assumptions, the number of 

parameters reduces to three. The first simplification is centralization. The centroid of homes and 

can be made to coincide with the centroid of workplaces by setting 

0μ        (5) 

without loss of generality. 

 Second, we can simplify the joint distribution model by assuming identical direction 

of growth. If the directions of growth of homes and workplaces are the same, the covariance of 

the x and y coordinates of a home and a workplace can be set to zero. Therefore, 

0),(),(  wwhh yxCovyxCov .      (6) 

Similarly, if every point is equally accessible from every other point in the city, it is likely that 

the covariance between the x coordinate of a home and the y coordinate of a workplace and that 

between the x coordinate of a workplace and the y coordinate of a home will be zero. Therefore, 

0),(),(  hwwh yxCovyxCov .      (7) 

 The most important covariances are those between the home and workplace positions 

of an individual in two directions, given by ),( wh xxCov  and ),( wh yyCov . These variables 

indicate a worker‘s desire to live close to his/her workplace in the x and y directions, 

respectively. We transform them to scale-free measures, i.e., the correlations are given by 

wh xx
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These variables satisfy 

1x , 1y .       (10) 

Moreover, if we assume circularly symmetric correlation, i.e., no bias of development toward 

the x or y directions, the spreads of homes and workplaces in the two directions take a common 

value. 
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Similarly, by assuming symmetric correlation, we have 
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so that the variance-covariance matrix can be rewritten as 
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which has only three parameters. This is the third simplification. Hence, the joint distribution of 

homes and workplaces can be rewritten as 
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This model is the simplest among those developed to date and takes into account the three basic 

factors affecting the distribution of commuting trips: the spread of homes h , the spread of 

workplaces w , and the spatial correlation   between home and workplace locations. The 

studies by Vaughan (1974) and Blumenfeld (1977) indicate that the simplification is reasonable 

if the city does not have a geographical peculiarity. Blumenfeld (1977) and other researchers 

attempted to obtain the maximum likelihood estimates of the three parameters. 

The marginal densities of homes and workplaces derived from (15) are given by the 

following Sherratt-type models: 
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Fig. 1 shows a section of these marginal distributions. Wilkins‘ (1969) model, which assumes 

that commuters select their homes without considering their workplace locations, is a special 

case of the joint distribution, fhw, in which homes and workplaces are independent, i.e., 0 . 

In this case, the joint distribution can be written as the product of the two marginal distributions 

divided by P. 

In summary, the following three variables are important: (1) h , (2) w , and (3)  . 

Let us introduce a parameter hw    to replace w . Since h  is usually greater than w  

(homes are spread over a larger area of the city than are workplaces), we can assume that 

10  . 

 Fig. 2 shows the change in the distribution of homes for those who work at xw = 1, 

with respect to   when 2/1 hw  . Eq. (15) can be rewritten as 
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where fh|w(xh, yh| xw, yw) is the conditional distribution of homes for workers who work at (xw, yw). 
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A section of the distribution fh|w(xh, yh|1,0) is shown in Fig. 2. If 0 , i.e., Wilkins‘ model, the 

distribution of homes for a given workplace does not depend on the workplace location and 

coincides with the marginal distribution of homes, the peak of which is at x = 0. In this case, 

assignment of a home to a workplace is a random assignment. If 1 , the locations of homes 

and workplaces are perfectly correlated, so that all those who work at xw = 1 live at xh = 2. We 

refer to this as minisum assignment because the average commuting distance is minimized with 

respect to  , as will be proved later. In contrast, if 1 , the locations of homes and 

workplaces are perfectly correlated, so that all those who work at xw = 1 live at xh = -2, which is 

located beyond the city center. Thus, all workers must cross the center of the city. In this case, 

the average commuting distance is maximized with respect to  , and therefore, we refer to this 

as maxisum assignment. For a general  , the distribution of homes has a peak in the interval -2 

< x < 2. In particular, if   , the peak of the distribution of homes at a given workplace 

coincides with the workplace location. In the example shown in Fig. 2, the distribution of homes 

for those who work at xw = 1 has a peak at x = 1 for 2/1 . We refer to this as neighbor 

assignment. 

 

3.3 Average commuting distance 

 

We do not derive the average commuting distance by calculating the mean direct trip length 

defined by 

   



















.dddd),,,()()(

])()([

22

22

whwhwhwhhwwhwh

whwh

yyxxyyxxfyyxx

yyxxEd
 (19) 

Instead, we follow Blumenfeld‘s (1977) approach and derive the expected value of the 

commuting distance: 
22 )()( whwh yyxxd  .      (20) 

Since each of the four variables, xh, xw, yh, and yw, has a univariate normal distribution with 

variances that are equivalent to the spreads of homes or workplaces, we have 

),0(, 2

hhh Nyx ～ ,       (21) 

),0(, 2

www Nyx ～ .       (22) 

We also have the following relation derived on the basis of the discussion so far: 

whwhwh yyCovxxCov  ),(),( .     (23) 

Therefore, the difference in the location of a home and a workplace is also distributed according 

to a normal distribution, i.e., 

)2,0(, 22

whwhwhwh Nyyxx   ～ .    (24) 

By standardizing the variables, we obtain 

)1,0(
2

,
2 2222

N
yyxx

whwh

wh

whwh

wh ～
 






.   (25) 

The square of d is the sum of the square of two variables. Thus, 

)2(
2

)()(

2

2

22

22

22

2




～
whwh

whwh

whwh

yyxxd







.   (26) 

The probability density function of x for the 2  distribution with two degrees of freedom is 

)exp(
22

1 x . Therefore, the probability density function of 2du   is given by 


















 )2(2
exp

)2(2

1
2222

whwhwhwh

u


.   (27) 
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The mean of d, d , is given by 

,)2(
2

)(22

d
)2(2

exp
)2(2

1
)(

22

2
322

0 2222

2

whwhwhwh

whwhwhwh

u
u

udEd
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




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

















 



 (28) 

which indicates that the average commuting distance is explained by the previously mentioned 

three parameters. Using hw    instead of w , we can rewrite (28) as 

)21(
2

2 


  hd .      (29) 

 

3.4 Urban structure and average commuting distance 

 

The parameter hw   represents the difference not only between the spreads of homes and 

workplaces but also between the densities of homes and workplaces in the city center, i.e., 

2

2

2

)0,0(

)0,0(







h

w

w

h

f

f
,       (30) 

which can be called jobs-housing balance. Usually, h  is larger than w , and hence, we can 

assume that 10  . If   is close to 1, h  and w  are almost equal, and jobs-housing 

balance is achieved in an employment-decentralized (dispersed) urban structure. If   is small, 

the difference between h  and w  is large, and employment concentration in the city center 

destroys the jobs-housing balance. In this study, the parameter   is used to determine the 

urban structure. Then, Eq. (29) implies that d  is determined by the following three 

parameters: h ,  , and the jobs-housing balance  . h  has a simple proportional effect on 

d , and hence, we focus on the effects of the other two parameters. 

Fig. 3 shows how d  varies with   and  ; this plot is called Brotchie‘s urban 

triangle. From this figure, we observe the following: 

i) If jobs are completely concentrated, i.e., 0 , the average distance is given by 

hd 


2
 ,    (31) 

and the same distance is achieved if  2 . d  becomes smaller than this criterion 

only if  2  (intense concentration or strong correlation). 

ii) If jobs are perfectly dispersed (implies that 1 ) and fully correlated (implies that 

1 ), the locations of homes and workplaces perfectly coincide and commuting 

disappears, i.e., 0d . 

iii) If   is known, the parameter  , which contributes to the minimization of d , is 

found by solving the following first-order condition of the rooted term of Eq. (29): 

0)(2)21( 2 






.   (32) 

Thus, we have 

  .     (33) 

If   is given a priori, we can control   on the basis of some land-use policies. If 

  , we obtain 0/  d , and the average commuting distance increases owing to 

workplace decentralization. On the other hand, if   , we obtain 0/  d , and the 

average distance decreases owing to workplace decentralization. 
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3.5 Average distance for typical correlations of homes and workplaces 

 

Recall the four typical types of home-workplace assignment defined in Section 3.2: random, 

minisum, maxisum, and neighbor assignment. We will calculate the average commuting 

distances for these assignments. 

 

3.5.1 Random assignment 

  

Random assignment is the case where 0  and workers choose their workplace randomly 

without considering the location of their homes. This assignment brings about a random 

commute. The random average commute distance is given by 

)1(
2

)(
2

222 





 hwhrandd .     (34) 

 

3.5.2 Minisum assignment 

 

The full correlation, 1 , between homes and workplaces minimizes the total commuting 

distance ( is constant in this case), and hence, brings about a minimum average commute. The 

minimum average commute distance is given by 

)1(
2

)(
2

min 





 hwhd .     (35) 

 

3.5.3 Maxisum assignment 

 

The full negative correlation, 1 , between homes and workplaces maximizes the total 

commuting distance (  is constant), and hence, brings about a maximum average commute. 

The maximum average commute distance is given by 

)1(
2

)(
2

max 





 hwhd .     (36) 

 

3.5.4 Neighbor assignment 

  

In the case of   , the average commuting distance is minimized for a given   and is 

obtained by 

)1(
2

)(
2

222 





 hwhneid .     (37) 

This should be close to the real-world commuting pattern because the assignment pattern has a 

peak in the conditional distribution of homes at the corresponding workplaces. Thus, we call 

this neighbor average commute distance and see it as an estimate of the observed average 

commute distance. 

If we can know two of these average distances, we can obtain estimates of h  and 

w , and, thus, obtain jobs-housing balance  . Then we can also obtain the estimate of spatial 

correlation   by using Eq. (29). 

The functional forms of the average commuting distances for the four typical 

assignment patterns with respect to changes in   are shown in Fig. 4. The average distance 

under random assignment increases as the jobs-housing relation becomes balanced and 

decreases as the jobs are dispersed under minisum assignment. The average distance under 
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neighbor assignment decreases to a small extent as the urban structure becomes balanced. 

 

3.6 Jobs-housing imbalance and excess commuting 

 

Excess commuting is defined as the difference between the observed average and the minimum 

average commute distance or time. It is usually presented as the excess ratio (called excess 

hereafter), Ec, which is defined as the ratio of the aforementioned difference and the observed 

average commute. Therefore, 









21

1
1

2
1

222

min
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
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





whwh

wh
c

d

dd
E ,   (38) 

which implies that the excess can be expressed by   and   (the scale variable h  has been 

eliminated). 

Fig. 5 shows the relation among the three variables: spatial correlation, jobs-housing 

balance, and excess commuting. We observe the following: 

i) If 0 , i.e., workplaces are perfectly centralized, no excess exists. At the other 

extreme, if 1 , i.e., the distributions of homes and workplaces coincide, all 

commutes have excess. 

ii) The excess decreases as   decreases. In other words, a highly job centralized city 

has less excess commuting. 

iii) The excess decreases as   increases. In other words, a city in which jobs and 

housing are highly positively correlated and sectorially structured has less excess 

commuting. 

We cannot say what the actual assignment pattern of homes and workplaces is, 

because this pattern is complicated in practice. However, from a macroscopic view, we can 

regard neighbor assignment as the actual assignment pattern. This is because for almost all cities, 

the inner commute is dominant and a greater number of workers live close to the city center 

than away from the center. Therefore, we take the neighbor assignment to be the actual 

assignment. 

By considering   , we express the excess as 

2

min

1

1
1













nei

nei
c

d

dd
E ,     (39) 

where   is the only variable. Excess commuting under the neighbor assignment is explained 

by the jobs-housing balance, as shown in Fig. 5. This graph shows that the greater the dispersion 

of jobs, the higher is the excess. This explains the difference in the excess between US and 

Japanese/Korean cities. 

 

3.7 Jobs-housing imbalance and capacity utilization 

 

Capacity utilization, Cu, is defined as the usage of the available commuting range, given a fixed 

spatial distribution of residences and workplaces. This value is useful for comparing the 

commuting efficiency of different cities. Cu is calculated by dividing the excess commuting by 

the total commuting capacity, i.e., the difference between the maximum and minimum 

commutes (Charron, 2007; Horner, 2002; Murphy, 2009). Therefore, 

,
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   (40) 

which implies that Cu can be expressed in terms of the variables   and  . 
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Fig. 6 shows the relation among the three variables: spatial correlation, jobs-housing 

balance, and capacity utilization. We observe the following: 

i) If 1 , i.e., homes and workplaces are perfectly positively correlated (commuting 

distance is minimized), no commuting capacity is used. At the other extreme, if 

1 , i.e., homes and workplaces are perfectly negatively correlated (commuting 

distance is maximized), all the commuting capacity is utilized. 

ii) The Cu decreases as the jobs-housing balance,  , decreases. In other words, a highly 

job centralized city has less capacity utilization. 

iii) The Cu decreases as   increases. In other words, a city in which jobs and housing 

are highly positively correlated and sectorially structured has less capacity utilization. 

By considering   , we express the Cu as 





2

)1(1 2

minmax

min 







dd

dd
C nei

u ,     (41) 

where   is the only variable. The Cu under the neighbor assignment is explained by the 

jobs-housing balance, as shown in Fig. 6. This graph shows that the smaller the Cu, the larger is 

the number of jobs dispersed.  

 

3.8 Commuting economy and normalized commuting economy 

 

Commuting economy, Ce, is defined as the extent to which the observed average commute is 

falling below or above the random average commute – that is, the extent to which collective 

behavior as expressed by the observed trip pattern is departing from random behavior and 

reacting to the consumption of zonal separation (Murphy and Killen, 2011). Ce is calculated by 
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which implies that Cu can be expressed in terms of the variables   and  . By considering 

  , we express the Ce as 
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e
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where   is the only variable. 

Normalized commuting economy, NCe, is the extent to which the observed average 

commute is below the random average commute relative to the minimum average commute, 

given a fixed spatial distribution of residences and workplaces (Murphy and Killen, 2011). This 

value is calculated by 
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which implies that NCe also can be expressed in terms of the variables   and  . By 

considering   , we express the NCe as 
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where   is the only variable.  
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4. Discussion 

 

We have explained the relationship between urban structure and commuting distance explicitly 

and theoretically. We used Vaughan‘s (1974) model to calculate the unbiased excess commuting 

using a continuous urban structure instead of a zonal model. 

 The average commuting distance is clearly described by the jobs-housing balance and 

the spatial correlation, and this can explain many results discussed in previous literatures. The 

degree of decentralization of workplaces can contribute to an increase or a decrease in the 

average commuting distance depending on the spatial correlation, as has already been observed 

by Ma and Banister (2007). Van Ommeren et al. (1996) found that the residence and workplace 

locations can be jointly determined and that the residential mobility and labor market mobility 

are mutually dependent. They used a bivariate duration model of residential and labor market 

mobility and took into account commuting costs, with the aim of developing a simultaneous 

search model for labor and housing markets. Their empirical results showed that residential 

mobility and labor mobility are positively related. Thus, it is natural that we consider the 

locations of homes and workplaces to be interrelated. 

From the discussion in Section 3.5, if we assume that the actual home-workplace 

assignment is neighbor assignment, we can decrease the commuting distance by 

decentralization of workplaces. However, the decrease in this case is not large. If we can control 

  by adopting policies such as activation of the housing market, encouraging minisum 

assignment should be an effective way to reduce commuting time. 

How can we interpret the policies promoting the decentralization of workplaces, such 

as those promoted by the Japanese Government for the Tokyo region? If workplaces are already 

dispersed to some extent (   ), the commuting distance will increase as a result of the 

decentralization policy. In contrast, if workplaces are concentrated (   ), the commuting 

distance will decrease. The urban structure in the Tokyo region seems to correspond to the latter 

case, and therefore, the decentralization policy is justified. 

 We verified that the excess commuting, capacity utilization, and commuting economy 

can be expressed by the jobs-housing balance and the spatial correlation. Excess commuting is 

also an important measure of the appropriateness of the urban structure. We found that if the 

actual home-workplace assignment is close to neighbor assignment, excess commuting 

increases when the decentralization of workplaces is promoted. This implies that the potential 

for decreasing the commuting distance could be large when a decentralization policy is 

implemented. Combining this with a policy for the promotion of home-workplace matching 

appears to be a powerful option for shortening commutes. 

It is expected that   would increase with the city size since in a small city, every 

home is almost equally accessible from every workplace. In a large city, however, workplaces 

on the same side of the city as the worker‘s home will be more accessible than those on the 

other side of the city. Vaughan (1987) presented estimated values of   and   for UK and 

Australian cities: 6.0  and 2.0  in small cities, and 8.0   in large cities. 

Although we do not have a precise estimate, the Tokyo metropolitan area seems to 

have a much smaller   and a much larger  . If this is true, our theory predicts that 

decentralization contributes to a decrease in the commuting distance and that the excess takes 

smaller values. This is consistent with the observations in Section 2 of this paper and those in 

Merriman et al. (1995). 

Giuliano and Small (1993, p.1496) concluded that ―attempts to alter the 

metropolitan-wide structure of urban land use via policy intervention are likely to have 

disappointing impacts on commuting patterns, even if successful in changing the degree of 

jobs-housing balance.‖ Figs. 3 and 4 show that the average commuting distance is not affected 

by changes in   or  . Generally, since the growth of a city increases the spread of homes 
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and nullifies the decrease in d , the average commuting distance does not change drastically. 

Our model explains this to some extent and supports the results proposed by Giuliano and Small 

(1993). 

We clarified the positioning of cities by calculating the minimum and maximum 

commutes, in order to compare the relationship between the commuting efficiency and urban 

structure of different cities using two indices: excess commuting and capacity utilization. 

Fig. 7 presents the theoretical relationship between excess commuting and capacity 

utilization, and Fig. 8 shows the empirical relationship between the two indices in selected cities 

in the US and in Japan/Korea. The excess commuting and capacity utilization of the US cities 

are obtained from Horner (2002), and those for the Japanese/Korean cities are obtained from 

Lee et al. (2006). Table 1 gives the commuting distance, excess commuting, and capacity 

utilization obtained from these papers.  

As Fig. 8 shows, both excess commuting and capacity utilization are higher in the US 

cities than in the Japanese/Korean cities. However, there is no significant difference between the 

excess and Cu values in the Japanese and Korean cities. The results show that the urban spatial 

structure—the distribution of homes and workplaces—is more dispersed in US cities than in 

Japanese and Korean cities. Further, the commuting inefficiency is higher in the US cities than 

in the Japanese/Korean cities. The capacity utilization values, too, are high for the US cities. 

Murphy‘s (2009) claim that excess commuting is considerably greater for private transport than 

for public transport is also supported. The high commuting inefficiency in the US cities is 

because of the fact that the use of private transport is more common in the US than in 

Japan/Korea.  

The model presented in this paper still cannot cope with milticentric workers 

distribution because Vaughan‘s model has only one peak at the center. Therefore, the fitness to 

the model may be relatively low in cities that have multiple business centers. However, the 

introduction of spatial correlation allows us to widen the applicability of continuous modeling to 

the discussion on commuting efficiency. Especially, explicit expressions of several typical 

jobs-housing assignment ways are powerful in understanding the relationship between 

commuting and urban spatial structure, the concept of which is presented by Brotchie (1984). 

 

 

5. Conclusions 

 

This study shows that the relationship between urban structure, i.e., the distributions of homes 

and workplaces, and three indices—average commuting distance, excess commuting, and 

capacity utilization—can be theoretically analyzed by using two variables: the jobs-housing 

balance and the spatial correlation.  

 The results can be summarized as follows. First, decentralization of workplaces can 

cause an increase or a decrease in the average commuting distance depending on the spatial 

correlation. However, to decrease the commuting distance when neighbor assignment is 

assumed, the urban structure should become balanced to some extent. Moreover, the commuting 

distance is zero in the case of minisum assignment, i.e., if jobs are perfectly dispersed and fully 

correlated with homes. Thus, controlling the jobs-housing balance or the spatial correlation 

could be an effective way to reduce the commuting distance. 

 Second, excess commuting increases when decentralization of workplaces is promoted. 

This implies that the potential for decreasing the commuting distance could be large when a 

decentralization policy is implemented. This may help explain the differences in the urban 

structure among different cities. 

 Third, care should be taken when interpreting the efficiency of the urban structure of 

different cities using excess commuting, because the urban structure and commuting pattern are 

different for different cities, as observed by Ma and Banister (2007). Thus, both indices, i.e., 
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excess commuting and capacity utilization, are necessary to compare the commuting efficiency 

and urban structure of different cities. 

 Finally, we suggested comparing the different urban structures of US and 

Japanese/Korean cities using excess commuting and capacity utilization. The excess is larger for 

US cities, but the commuting efficiency is poorer than that in Japanese or Korean cities; this is 

because US cities generally have a more dispersed and automobile-dependent urban structure 

than do Japanese or Korean cities. 

It is worthy that the theoretical modeling approach using continuous distribution is 

still has a possibility to draw a more realistic commuting structure by introducing spatial 

correlation between homes and workplaces. Several typical jobs-housing assignment ways 

enables us to express explicitly the conceptual notion of the relationship between commuting 

and urban spatial structure. 

Since the model proposed here is also a monocentric model as Hamilton‘s one, 

however, there are limitation to fit the actual urban spatial structure that often has multicentric 

patterns. The accuracy and limitation of the model need to be investigated by measuring spatial 

distribution of homes and workplaces, jobs-housing balance, spatial correlation between homes 

and workplaces, and benchmark measures of commuting efficiency of real-world cities. We 

compared some data for US and Japanese/Korean cities, but the number of samples is still 

limited. To measure the three key parameters mentioned in this study from actual commuting 

data, to analyze the effects of job decentralization policies, and to carry out model studies on the 

basis of multicentric continuous distribution are the remaining research agenda for the future. 
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Table 1. Average commuting distance, excess commuting, and capacity utilization in US and 
Japanese/Korean cities 

 

 
 

Source City Name Year Number of
work trips

Average 
Commuting Distance (km) Excess 

Commuting 
Capacity

UtilizationMin. Observed Max.

Horner 
(2002) 

US cities               
Atlanta 

1990 

1,279,104 7.64 16.77 38.77 0.544 0.293 
Baltimore 1,022,450 4.83 12.86 32.94 0.624 0.286 

Boise 87,382 3.48 6.68 10.07 0.481 0.486 
Boston 1,946,133 4.72 12.15 41.96 0.612 0.200 

Charlotte 423,873 6.58 12.38 37.85 0.468 0.185 
Cincinnati 684,950 5.02 11.96 29.77 0.580 0.280 
Cleveland 886,944 4.86 11.94 38.24 0.593 0.212 
Columbus 563,061 5.33 11.83 25.93 0.550 0.316 

Denver 941,325 4.63 12.28 35.73 0.622 0.246
Las Vegas 356,452 4.10 10.14 18.06 0.596 0.433 
Memphis 360,631 3.73 11.01 20.29 0.660 0.439 

Miami 826,175 5.63 11.84 23.64 0.525 0.345 
Milwaukee 775,000 3.80 10.65 37.19 0.644 0.205 

Minneapolis/St Paul 1,221,765 5.44 13.00 33.92 0.582 0.266 
Omaha 274,058 2.98 8.27 16.61 0.640 0.389 

Philadelphia 2,133,136 3.80 11.60 42.23 0.672 0.203 
Phoenix 919,386 5.21 12.76 29.31 0.591 0.313 

Pittsburgh 832,049 5.31 11.25 37.93 0.527 0.182 
Portland 687,845 5.75 11.65 40.41 0.506 0.170 

Rochester 395,118 6.08 11.81 23.71 0.485 0.325 
Sacramento 595,168 6.15 12.65 32.12 0.514 0.250 
San Antonio 506,666 4.52 12.02 21.53 0.624 0.441 
San Diego 1,126,712 4.88 14.55 40.28 0.665 0.273 

Seattle 1,156,219 6.60 13.79 44.37 0.522 0.190 
St Louis 1,026,857 6.41 14.18 35.49 0.549 0.268 
Wichita 198,394 4.18 9.64 16.00 0.567 0.463 

Lee et 
al. 

(2006) 

Japanese cities      

Tokyo 

2000 

17,261,325 6.71 11.02 50.49 0.391 0.098 
Sapporo 1,153,767 6.23 7.86 19.82 0.206 0.119 
Sendai 1,043,212 6.88 8.99 34.91 0.235 0.076 
Nagoya 4,466,042 4.99 8.04 40.97 0.379 0.085 
Osaka 8,636,059 5.59 9.30 50.72 0.399 0.082 

Hiroshima 993,002 5.45 7.47 24.05 0.271 0.109 
Kitakyusyu/Fukuoka 2,457,008 5.18 7.69 54.38 0.326 0.051 

Korean cities  *2% 
sample  

Seoul 

2000 

154,833 5.79 9.88 37.53 0.414 0.129 
Busan 32,713 6.22 8.80 34.03 0.293 0.093 
Daegu 20,410 6.26 8.30 25.39 0.245 0.106 

Daejeon 16,733 6.50 8.56 38.61 0.240 0.064 
Gwangju 10,768 6.85 8.38 21.54 0.182 0.104 

Table(s)
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Figure 1. Marginal distributions of homes and workplaces of the quadrivariate joint distribution model.
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Figure 2. Spatial correlation, ρ, and the conditional distributions of homes 
for those who work at x =1 (in the case of α=σ /σ =1/2).w w h
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Figure 3. Spatial correlation, jobs-housing balance, and average commuting distance.
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Figure 4. Average commuting distance under four typical assignment patterns.
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Figure 5. Spatial correlation, jobs-housing balance, and excess commuting.
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Figure 6. Spatial correlation, jobs-housing balance, and capacity utilization.
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Figure 7. Relationship between excess commuting and capacity utilization.
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Figure 8. Excess and capacity utilization of US (▲) , Japanese (●), and Korean (■) cities.


