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Abstract 

The detonation propagation phenomena in curved channels were experimentally studied in order 

to determine the stable propagation condition. A stoichiometric ethylene-oxygen mixture gas and 

five types of rectangular-cross-section curved channels with different inner radii of curvature were 

employed. The detonation waves propagating through the curved channels were visualized using a 

high-speed video camera. Multi-frame short-time open-shutter photography (MSOP) was developed 

in the present study to simultaneously observe the front shock shape of the detonation wave and the 

trajectories of triple points on the detonation wave. The detonation wave became more stable under 

the conditions of a higher filling pressure of the mixture gas and/or a larger inner radius of curvature 

of the curved channel. The critical condition under which the propagation mode of the detonation 

wave transitioned from unstable to stable was having an inner radius of curvature of the curved 

channel (ri) equivalent to 21 to 32 times the normal detonation cell width (). In the stable 

propagation mode, the normal detonation velocity (Dn) increased with the distance from the inner 

wall of the curved channel and approached the velocity of the planar detonation propagating through 

the straight section of the curved channel (Dstr). The smallest Dn was observed on the inner wall and 

decreased with decreasing ri/. The distribution of Dn on the detonation wave in the stable mode was 

approximately formulated. The approximated Dn given by the formula agreed well with the 

experimental results. The front shock shape of the detonation wave could be reconstructed accurately 

using the formula. The local curvature of the detonation wave () nondimensionalized by  
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decreased with increasing distance from the inner wall. The largest  was observed on the inner 

wall and increased with increasing ri/. Dn/Dstr decreased with increasing . This 

nondimensionalized Dn- relation was nearly independent of ri/   (300 words) 

 

Keywords 

Detonation wave; curved channel; cell width; triple point trajectory; curvature 

 

Nomenclature 

D Detonation velocity 

m Exponent in Eq. (12) 

p Pressure 

r Distance from polar coordinate origin 

t Time 

T Temperature 

Greek symbols  

 Angular difference between rotational direction and tangential direction of detonation 

wave 

 Curvature of detonation wave
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 Detonation cell width

 Angle from initial line

 Angular velocity of detonation wave 

 

Subscripts 

0 Initial 

asy Asymptotic 

CJ Chapman-Jouguet state 

i Inner wall of curved section of flow channel 

k Index of position on detonation wave 

n Normal 

str Straight section 

trans Transient 
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1. Introduction 

A detonation wave is a self-sustained combustion wave which propagates at supersonic speed and 

instantaneously generates a high pressure and temperature gas. The adiabatic compression due to the 

passage of the front shock of the detonation increases the temperature of the combustible mixture 

above the ignition limit, and the chemical reaction of the gas is induced. The chemical reaction 

results in a heat energy release, and the expansion of the burned gas drives the front shock forward. 

The detonation wave propagates self-sustainingly due to the mutual interaction between the ignition 

of the combustible gas initiated by the front shock and the expansion of the burned gas.  

A rotating detonation engine (RDE) is a propulsion system which generates thrust by propagating 

a continuous detonation wave in an annular combustor (Braun et al. [1], Meredith et al. [2], 

Kindracki et al. [3], Hishida et al. [4], Falempin and Daniau [5]). Since the RDE cycle operates with 

near-constant volume combustion, RDE theoretically has a higher thermal efficiency than other 

conventional propulsion systems. The RDE needs only one ignition/ 

deflagration-to-detonation-transition (DDT) process in principle, since the RDE utilizes a detonation 

wave that propagates continuously. The increase of the thrust density of the RDE is also considered 

to be easy since the propellant can be supplied continuously into the combustor chamber. For the 

purpose of RDE design, it is important that the conditions for stable detonation wave propagation in 

an annular combustor be well understood. However, the study of the stability of the detonation wave 
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propagating through a curved channel, which is a basic element of an annular combustor, is limited.  

Several experimental and numerical studies on unsteady detonation waves in a curved channel (90 

deg or 180 deg bend with a rectangular or circular cross-section) have been performed (Tsuboi et al. 

[6], Liang et al. [7, 8], Edwards et al. [9], Thomas and Williams [10], Frolov et al. [11-14]). By 

contrast, only a few studies of steady detonation waves in a curved channel have been conducted. 

Kudo et al. [15] visualized the detonation waves of a stoichiometric ethylene-oxygen mixture gas 

propagating through the rectangular-cross-section curved channels with constant inner/outer radii of 

curvature shown in Fig. 1. They experimentally demonstrated that detonation waves could propagate 

steadily and stably through the curved channels. Sasamoto et al. [16] also showed the existence of a 

detonation wave propagating stably in a curved channel by two-dimensional numerical simulation. 

Kudo et al. [15] observed the propagation modes of the detonation waves in the curved channels. 

Using the normal detonation velocity on the inner wall of a curved channel (Dn,i) and CJ detonation 

velocity (DCJ), they categorized the propagation modes into three types: the stable mode (Dn,i/DCJ ≥ 

0.8), the critical mode (Dn,i/DCJ ≥ 0.6), and the unstable mode (Dn,i/DCJ < 0.6). They also showed that 

the critical condition under which the propagation mode of the detonation wave in a curved channel 

transitioned from unstable to stable was having an inner radius of curvature of the curved channel 

equivalent to 14 to 40 times the normal detonation cell width. They used the detonation cell width 

from the Detonation Database (Kanesige and Shepherd [17], Abid et al. [18], Knystautas [19], 
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Strehlow [20]) of the California Institute of Technology to reduce their experimental data. They have 

also proposed a formula which gives a geometrical front shock shape of a detonation wave 

propagating through a curved channel at the CJ detonation velocity.  

A simultaneous observation of the front shock shape of the detonation wave and the trajectories of 

triple points on the detonation wave is ideal as a way to experimentally investigate the conditions of 

a stable detonation wave propagating through a curved channel. We developed a new visualization 

method to perform such a simultaneous observation and examined the conditions of the stable 

detonation wave propagation in a curved channel by alternating the inner radius of the curved 

channel and the filling pressure of the mixture gas parametrically. We also propose a formula which 

gives a rigorous geometrical front shock shape for a detonation wave propagating stably through a 

curved channel and examine the relation between the normal detonation velocity and the local 

curvature of the detonation wave.  

 

2. Geometric front shock shape of stable detonation wave in a curved channel 

2.1 Geometric shape proposed by Kudo et al. 

As shown in Fig. 1, the center of the inner/outer radius of curvature of a curved channel is defined 

as the origin, and the boundary between the curved section and the straight section of the curved 

channel is defined as the initial line in a two-dimensional polar coordinate system. The variable r 



H. Nakayama, T. Moriya, J. Kasahara, A. Matsuo, and I. Funaki,  
Combustion and Flame, Vol. 159 (2012) pp. 859-869. 

 8

represents the distance from the origin, and  is the angle from the initial line. If we assume that the 

angular velocity of the detonation wave propagating stably through a curved channel is constant 

everywhere on the detonation wave and the angular velocity is time-unvarying, the detonation wave 

propagates through the curved channel while maintaining a specific shape [15]. If dr, dt, and d are 

sufficiently small, one can consider the gray-colored areas in Fig. 1 to be right triangles. The 

geometric relations can then be established at an arbitrary point P(r, ) on the detonation wave, 




r
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where  is the angular difference between the rotational direction and the tangential direction of the 

detonation wave at P(r, ), Dn is the normal detonation velocity at P(r, ), and  is the angular 

velocity of the detonation wave. The following differential equation is derived from Eq. (1) and Eq. 

(2): 
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If Dn is equal to the CJ detonation velocity (DCJ) everywhere on the detonation wave and the 

detonation wave is perpendicular to the inner wall of the curved channel, Dn is equal to the product 

of the inner radius of curvature of the curved channel (ri) and . Thus, the integration of Eq. (3) 

gives a geometrical front shock shape of the detonation wave propagating through a curved channel 
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at a constant normal detonation velocity of DCJ in terms of the relation between r and  as follows 

[15]: 

1tan1
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where i is the angle from the initial line to the detonation wave front on the inner wall of the curved 

channel. The front shock shape of the detonation wave given by Eq. (4) becomes independent of Dn 

since Dn is assumed to be constant everywhere on the detonation wave.  

The experiment by Kudo et al. [15] showed that Dn on the inner wall of the curved channel is 

lower than DCJ due to the expansion waves from the inner wall, even though the detonation wave 

propagates stably in the curved channel. Hence, Eq. (4) is applicable only under the limited 

condition of a sufficiently high filling pressure of mixture gas and a large inner radius of curvature of 

the curved channel in which Dn becomes almost equivalent to DCJ. Some modifications are 

considered to be necessary in Eq. (4) to reconstruct the front shock shape of the detonation wave 

propagating stably through a curved channel in other conditions. In order to derive a formula which 

gives a rigorous geometrical front shock shape of the detonation wave under a wide range of 

conditions, the deficit of Dn caused by the expansion waves from the inner wall should be taken into 

account.  
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2.2 Geometric shape proposed in the present study 

If the composition and temperature of the mixture gas are fixed, the velocity of the planar 

detonation wave propagating through the straight section of a curved channel (Dstr) and the normal 

detonation cell width () can be determined. Therefore, only the four variables, ri, , r, and Dstr are 

considered to be the physical quantities which determine the value of Dn of the detonation wave 

propagating stably through a curved channel. Therefore, Dn is expressed as a function of these 

parameters as follows:  

 stri1n ,,, DrrfD  .     (5) 

By using ri,  and r, we can define two significant dimensionless variables, ri/ and r/ri. The 

variable ri/ represents the ratio of the representative physical length scales of the flow field and 

detonation wave, and the variable r/ri represents the normalized front shock position of the 

detonation waves. Considering that the physical dimensions of both sides of an equation need to be 

equivalent, Eq. (5) may be reduced into the following dimensionless form by introducing these two 

dimensionless variables:  
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If f2 is determined, the following relation between r and , which gives the front shock shape of 

the detonation wave propagating stably through a curved channel, is derived by substituting Eq. (6) 

into Eq. (3) and integrating Eq. (3): 
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Since Dn,i is equal to ri, Eq. (7) can be reduced into the following equation: 
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That is to say, the front shock shape of the detonation wave can be determined if f2, ri and  are 

given.  

Generally, the local curvature of the detonation wave () can be calculated from the following 

equation: 
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From Eq. (8), we can see that dr/d and d2r/d2 become a product of r and a function of ri/ and ri/r. 

Therefore, by substituting dr/d and d2r/d2 derived from Eq. (8) into Eq. (9), Eq. (9) can be reduced 

into a function of ri/, ri/r and r as follows: 
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Eq. (10) can be reduced into the following dimensionless form by multiplying both sides of Eq. (10) 

by : 
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The following equation is derived by solving Eq. (11) for r/ri and substituting the equation into Eq. 

(6):  
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h
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D
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The bottom line is that the front shock shape of the detonation wave and the relation between Dn/Dstr 

and ri/ or between Dn/Dstr and  can be derived if f2 is determined. 

The expansion waves from the inner wall of the curved channel decrease Dn since the expansion 

waves diffract the detonation wave. The influence of the expansion waves is the strongest on the 

inner wall and becomes negligible at a distance sufficiently far away from the inner wall. Therefore, 

we can suppose that Dn becomes the smallest on the inner wall of the curved channel where the 

influence of the expansion waves becomes the strongest. We can also suppose that Dn increases as if 

to approach asymptotically to a certain value at a distance sufficiently far from the inner wall since 

the influence of the expansion waves decrease with distance from the inner wall. As a formula that 

gives approximately such Dn characteristics, we propose the following formula which is a 

phenomenological dependence: 
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where Dn,asy and m are constant, and Dn,asy is the asymptotic value of Dn at a distance sufficiently far 

from the inner wall. The influence of ri and  on Dn is expressed by these three constants, Dn,asy, Dn,i, 

and m. Dn increases from Dn,i to Dn,asy asymptotically with increasing r in Eq. (13). Dn,i and Dn at 

arbitrary points on the detonation wave are preliminarily acquired at a given ri and  in an 

experiment. Dn,asy and m are determined by applying the least-square method to the experimental Dn,i 

using Eq. (13). Although one can assume that Dn,asy/Dstr = 1 at a distance sufficiently far from the 

inner wall, we determined Dn,asy by the least-square method in order to increase the flexibility and 

accuracy of the approximation in the vicinity of the inner wall in the present study. 

  If a detonation wave propagates stably through a curved channel while maintaining a specific 

shape at a constant angular velocity, Dn can be determined from Eq. (3). The following equation is 

obtained by solving Eq. (3) for Dn: 
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The value of dr/d in Eq. (14) is approximately obtained by the Taylor series expansion of r with 

respect to  and by neglecting high-order terms. By taking into account the terms to the second-order, 

dr/d is discretely approximated by the following equation: 
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d2r/d2 can also be discretely approximated using the following equation: 
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If the interval of  is constant, Eq. (16) is the so-called second-order accurate central-difference of r 

with respect to . By recording the detonation wave shape at an arbitrary time interval and dividing 

it at a regular interval as shown in Fig. 1, one can pick up the coordinate values of the points of 

division and obtain the  of each point by observing the alternation of their positions from moment 

to moment. If the  values of each point are equivalent to each other and are time-unvarying, the 

values of Dn on the points of division are determined from Eqs. (14)-(16) using the  and the 

coordinate values of the points of division. 

Since Eq. (7) and Eq. (13) give the front shock shape of the detonation wave as a continuous 

function of r and ,  can be calculated from Eq. (9). dr/d and d2r/d2 are derived from Eq. (3) and 

the derivative of Eq. (3) with respect to , respectively.  

 

3. Visualization method 

3.1 Short-time open-shutter photography (SOP) 

The front shock shape of the detonation wave propagating through a curved channel and the 
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trajectories of triple points on the detonation wave were simultaneously recorded by Short-time 

Open-shutter Photography (SOP). The concept of SOP is shown in Fig. 2. A detonation wave is 

propagating through a curved channel from the lower right to the upper left and is recorded by SOP 

at an exposure time of t in Fig. 2. By limiting the exposure time to a few microseconds, only the 

triple point trajectories within the area swept by the detonation wave front are recorded in the 

exposure time. The forward or backward edges of the triple point trajectories recorded in the SOP 

image give the front shock shape of the detonation wave of the moment. The influence of the 

luminescence of burned gas can also be minimized in the SOP image by setting the exposure time 

appropriately.  

 

3.2 Multi-frame short-time open-shutter photography (MSOP) 

By performing SOP for each individual frame of a high-speed camera, the image of the overall 

triple point trajectories in a curved channel is visualized from the superimposition of these SOP 

images. This new visualization method is named Multi-frame Short-time Open-shutter Photography 

(MSOP) in the present study.  

 

4. Experimental setup and conditions 

The schematics of the curved channels and observation chamber used in the present study are 
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shown in Fig. 3. Five types of curved channels with different inner radii of curvature (5 mm, 10 mm, 

20 mm, 40 mm, and 60 mm) were used. The cross-section of these channels is rectangular and the 

width is 20 mm. The depth of these channels is set very thin (1 mm) so that the structures of the 

detonation waves propagating through the channels become two-dimensional. Thus, the trajectories 

of the triple points can be recorded clearly by MSOP.  

The observation chamber consists of circular-cross-section tubes of 25.8 mm in diameter, 

rectangular-cross-section tubes of 20 mm x 16 mm, and a curved channel. The mixture gas filled in 

the observation chamber is ignited by a spark plug mounted at the closed end of the 

circular-cross-section tube below the curved channel. A deflagration wave transitions to a detonation 

wave within the Shchelkin spiral section mounted in the tube. The detonation wave enters the curved 

channel via the rectangular-cross-section tube. A low-vacuum dump tank of 0.037 m3 is connected to 

the outlet port of the observation chamber, and a mylar film separates the dump tank and the 

observation chamber. The detonation wave passing through the curved channel ruptures the film, and 

the high pressure and temperature gas generated by the detonation wave is caught in the dump tank.  

  A stoichiometric ethylene-oxygen mixture gas was used in the present study. The mixture gas is 

filled at a given pressure into the observation chamber in which the air is evacuated. The temperature 

of the mixture gas is equal to the room temperature. The experimental conditions are summarized in 

Table 1, where p0 is the filling pressure of the mixture gas and T0 is the temperature of mixture gas.  
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The images of the detonation waves propagating through the curved channels were taken by a 

high-speed video camera (Shimadzu HPV-2) through an observation window of 120 mm in 

diameter. All the images were taken at 4-s time intervals in each experiment. The spatial 

resolution of the images is 0.3 mm. The output voltage of the piezoelectric transducer mounted near 

the closed-end of the circular-cross-section tube below the curved channel was used as a trigger to 

start shooting by the high-speed camera.  

 

5. Stable and unstable detonation waves in a curved channel 

5.1 Planarity and speed of detonation wave in a straight section 

The positions of the detonation wave propagating through the straight section of a curved channel 

were determined from an MSOP image. It was verified that the detonation wave in the straight 

section was planar since the forward edge of the triple point trajectories recorded was quite straight. 

Figure 4 shows the measurement results of Dstr. The symbols are the averages of three values 

measured at 4-s time intervals and the solid line is DCJ calculated using CEA [21]. The error bars 

represent the ranges of minimum-to-maximum deviation and the systematic error of the measured 

values. All the values of measured Dstr were 5% lower than DCJ. This velocity deficit was considered 

to have been caused by the thin depth (1 mm) of the curved channels, which forces the detonation 

structure to be two-dimensional.  
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5.2 Detonation cell width 

The value of  of the detonation wave propagating through the straight section of a curved 

channel was measured from an MSOP image. The measurement of  was conducted under 

conditions in which the filling pressure of the mixture gas was relatively low; that is to say, the 

detonation cell width became large (Shot No. 15，Shot No. 16，Shot No.24). Figure 5 shows the 

measurement results of . The values of the detonation cell width on the Detonation Database of the 

California Institute of Technology [17-20] are also shown in Fig. 5. In Fig. 5, the measured value in 

the present study is the average of ten values measured arbitrarily within the straight section. The 

error bars represent the ranges of minimum-to-maximum deviation of the measured values. The 

measurement results of  in the present study did not contradict those of other studies [17-20]. The 

relation of  = 70.020 x p0
-1.1270 could be obtained by applying the least-square method to all the data 

shown in Fig. 5.  

 

5.3 Detonation propagation characteristics in a curved channel 

The value of Dn,i was measured from the alternation of the forward edge position of the 

luminescence region on the inner wall as determined using the MSOP image. The propagation of the 

detonation wave through a curved channel was categorized based on how high Dn,i was. The typical 

histories of Dn,i are shown in Fig. 6. Dn,i is nondimensionalized by Dstr in Fig. 6. The error bars of the 
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rightmost symbols represent the ranges of systematic error of measurement. In the present study, the 

propagation mode that consistently satisfies the relation of Dn,i/Dstr ≥ 0.8 is defined as the stable 

mode, the mode that cannot satisfy the relation of Dn,i/Dstr ≥ 0.8 but can consistently satisfy the 

relation of Dn,i/Dstr ≥ 0.6 is defined as the critical mode, and the mode in which Dn,i/Dstr < 0.6 even 

just once is defined as the unstable mode. In Fig. 6, circles correspond to the stable mode, triangles 

to the critical mode, and crosses to the unstable mode.  

As shown in Fig. 6, the variation range of Dn,i/Dstr is narrow in the case of the stable mode, 

therefore we can consider the detonation wave in the stable mode to be the so-called steady 

detonation wave. On the other hand, the variation range of Dn,i/Dstr is wide in the case of the unstable 

mode. Therefore, we can consider the detonation wave in the unstable mode to be the so-called 

unsteady detonation wave. The detonation wave in the critical mode may be the intermediate 

between the steady and unsteady detonation waves.  

The typical MSOP images taken at a given ri (ri = 40 mm) are shown in Fig. 7. The images in Fig. 

7 were taken in the same experiments represented in Fig. 6. The arrows in Fig. 7 show the 

propagation direction of the detonation wave. Fig. 7(a) corresponds to the stable mode, Fig. 7(b) to 

the critical mode, and Fig. 7(c) to the unstable mode. At a given ri, a higher p0 makes the detonation 

wave in a curved channel more stable.  

The detonation cell in the vicinity of the inner wall of the curved channel is enlarged soon after the 
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detonation wave enters the curved section of the channel due to the expansion waves from the inner 

wall as shown in Fig. 7(a). When the cell has enlarged to about twice its normal size, new cells are 

generated smoothly within the enlarged cells in the vicinity of the inner wall. The smooth detonation 

wave front can be maintained consistently in the stable mode due to this smooth cell generation. It is 

possible that Dn,i/Dstr is maintained consistently above 0.8 in the stable mode in Fig. 6 due to this 

smooth cell generation. The detonation wave propagates while maintaining a specific shape, and the 

interval of the detonation wave front recorded in the MSOP image is constant within i = 45-90 deg.  

In the critical mode, the cell in the vicinity of the inner wall is also enlarged soon after the 

detonation wave enters the curved section as shown in Fig. 7(b). Although the collapse of the 

detonation cell structure has not yet been observed, the cell has increased to about three times its 

normal size within i = 60-90 deg. Dn,i/Dstr may fall below 0.8 in the critical mode in Fig. 6 due to 

this significant cell enlargement in the vicinity of the inner wall. The interval of the detonation wave 

front recorded in the MSOP image is not constant in the region where significant cell enlargement is 

observed.  

A collapse of the detonation cell structure occurs in the unstable mode. A temporary collapse of 

the detonation cell structure is observed in the vicinity of the inner wall around i = 35 deg in Fig. 

7(b). Although the detonation cell structure in the vicinity of the inner wall is recovered from around 

i = 45 deg by the generation of new fine cells, the detonation cell structure collapses completely 
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within i = 70-90 deg. It is possible that the detonation wave has once transitioned to the deflagration 

wave in such a region and that Dn,i/Dstr falls below 0.4 in the unstable mode in Fig. 6 due to this 

complete collapse of the detonation cell structure.  

The typical MSOP images taken at a given p0 (p0 = 31.0 ±1.0 kPa) are shown in Fig. 8. Fig. 8(a) 

corresponds to the stable mode, Fig. 8(b) to the critical mode, and Figs. 8(c)-(e) to the unstable mode. 

At a given p0, a larger ri makes the detonation wave more stable. That is to say, the increase of ri has 

the same effect as the increase of p0 on the stability of the detonation wave in a curved channel.  

 

5.4 Condition of stable detonation propagation in a curved channel 

The relation between ri and  is shown in Fig. 9 in terms of the propagation mode of the 

detonation wave propagating through a curved channel. At a given , a larger ri makes the detonation 

wave more stable. A smaller  also makes the detonation wave more stable at a given ri. From this 

result, we can see that the smaller the inner radius of the annular combustor of RDE is, the smaller  

(or the higher p0) is required for the stable operation of RDE. The stable operation range of p0 for 

RDE may be expanded by increasing the inner radius of the annular combustor of RDE. 

In Fig. 9, one can see that the stable mode and critical mode as well as the critical mode and 

unstable mode may be separated by a line of ri/ = const. Therefore, we defined the stable zone, 

transitional zone, and unstable zone based on how high ri/ was. The zone where the stable mode is 
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consistently attained above a line of ri/ = const. is defined as the stable zone and the line is the 

threshold of the stable zone. The zone where no unstable mode is observed above a line of ri/ = 

const. but below the threshold of the stable zone is defined as the transitional zone and the line is the 

threshold of the transitional zone. The remaining zone is defined as the unstable zone. We altered the 

value of ri/ at the interval of 1 and found that ri/ = 32 and 21 were the thresholds of the stable zone 

and transitional zone, respectively. Therefore, the propagation mode of the detonation wave is 

considered to transition to the stable mode from the unstable mode within 21 ≤ ri/ ≤ 32 in the 

present study.  

 

6. Dn- relation of stable detonation wave in a curved channel 

The motion of the detonation wave propagating through a curved channel is analyzed under the 

condition of ri/ ≥ 32 where the propagation mode of the detonation wave is consistently stable. The 

cases of the analysis are shown in Table 2. The detonation cell width of these cases is 0.6 mm. The 

front shock shape of the detonation wave is quantified by dividing it into 15 parts at a regular 

interval as shown in Fig. 1 and picking up the coordinate values of the points of division. The ranges 

of i where the transition from a planar detonation wave to a fully-developed curved detonation 

wave was observed (trans) are also shown in Table 2. If i becomes larger than trans, the detonation 

wave takes a specific shape and the shape becomes steady. Therefore, three images in which the 
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detonation wave being close to the exit of the curved section was recorded were selected to pick up 

the coordinate values in order to analyze the motion of the detonation wave of which the shape was 

quite steady.  

 

6.1 Angular velocity of stable detonation wave in a curved channel 

The relation between  and r-ri is shown in Fig. 10. The error bars of the symbols represent the 

ranges of systematic error of measurement.  increases with decreasing ri. In all of the cases in the 

analysis,  is constant everywhere on the detonation wave and is time-unvarying.  

Since a detonation wave is self-sustaining, the detonation wave which is once decelerated by an 

expansion wave has an ability to recover its velocity again to DCJ if the detonation wave is not 

quenched by the expansion wave. In the case of the detonation wave propagating stably through a 

curved channel, expansion waves are continuously generated from the inner wall of the curved 

channel as long as the detonation wave continues propagating, and they forces the detonation wave 

to decrease its velocity. From the results shown in Fig. 10, we can suppose that these two effects, the 

accelerating effect which the decelerated detonation wave has and the decelerating effect by 

expansion waves, balances on the inner wall of the curved channel since the value of  becomes 

time-invariant. 

Figure 11 shows the schematic of the behavior of the stable detonation wave in a curved channel. 
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In figure 11, the solid line represents the front shock of the detonation wave, the dashed line 

represents the particle path which is perpendicular to the front shock, and the dashed-dotted line 

represents the expansion wave, respectively. On the inner wall of the curved channel, Dn = ri and 

the particle path is along the inner wall. Now, we focus our attention on the point P(ri+r, -) at a 

distance infinitely close to the inner wall (r,  << 1). Since the point P is not on the inner wall and 

 is time-invariant, the particle path from the point P is not along the inner wall and Dn is nearly 

equal to ri at the point P regardless of i. The particle path gradually gets away from the inner wall 

as the detonation wave propagates, and finally it reaches the outer wall of the curved channel. Dn 

increases gradually from the value of ri along the particle path. Since ri is constant, the conditions 

of expansion waves are also constant regardless of i. Therefore, the degree of the influence of the 

expansion waves on the particle path is constant at any i, and thus the shape of the particle path and 

the distribution of Dn on the particle path do not change with the value of i. Consequently, the value 

of Dn and its direction become constant on the line of r = const. This property may make the front 

shock shape of the detonation wave steady. Therefore, the value of  becomes constant everywhere 

on the detonation wave as shown in Fig. 10. 

 

6.2 Normal propagation speed of stable detonation wave in a curved channel 

The relation between Dn/Dstr and r-ri is shown in Fig. 12. The symbols represent the average of the 
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measured values of Dn of each point of division on the three detonation wave fronts corresponding to 

each i shown in Table 2. The error bars of the symbols represent the ranges of 

minimum-to-maximum deviation of the measured values. Dn,i becomes the smallest among the 

normal detonation velocities on the detonation wave and decreases with decreasing ri/. Dn increases 

as if to approach asymptotically to a certain value with increasing r-ri. The solid line in Fig. 12 is 

drawn by Eq. (13) and is in good agreement with the measured Dn. Hence, Eq. (13) is considered to 

be an appropriate formula which approximately gives the relation between Dn and r on the 

detonation wave at a given ri and . The relations between Dn,asy and ri/ and between m and ri/ are 

shown in Fig. 13. Dn,asy is nondimensionalized by Dstr in Fig. 13. Since Dn,asy is almost equivalent to 

Dstr under the condition of ri/ ≥ 67.3, one can consider Dn,asy/Dstr = 1 if ri/ is sufficiently large. 

However, as Dn,asy tends to be smaller than Dstr under the condition of a smaller ri/, one should 

determine Dn,asy by the least-square method in such a condition. The parameter m increases with 

increasing ri/ in a linear manner.  

The experimental and reconstructed front shock shapes of the detonation waves, which are 

expressed by r- relations, are shown in Fig. 14. The symbols represent the average positions of each 

point of division on the three detonation wave fronts corresponding to each i shown in Table 2. The 

error bars represent the ranges of minimum-to-maximum deviation and systematic error of the 

measured values. The solid line is the front shock shape of the detonation wave reconstructed using 
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Eq. (7) and Eq. (13). The dashed-dotted line is the one reconstructed by using Eq. (4). The shape of 

the detonation wave reconstructed by using Eq. (7) and Eq. (13) agrees much better with the 

experimental result in all of the analysis cases than the one reconstructed by using Eq. (4) does. The 

result shown in Fig. 14 also shows that Eq. (13) is an appropriate formula for giving Dn 

approximately. 

 

6.3 Dn- relation 

The relation between  and (r-ri)/ derived from the reconstructed front shock shape of the 

detonation wave is shown in Fig. 15.  decreases with increasing (r-ri)/. The largest  is 

observed on the inner wall of the curved channel and increases with increasing ri/.  

The relation between Dn/Dstr and  is shown in Fig. 16. Dn/Dstr decreases with increasing . 

This nondimensionalized Dn- relation is nearly independent of the ri/ The Dn- relation, in which 

Dn and  are nondimensionalized by DCJ and the induction zone length scale respectively, has been 

examined theoretically by steady or quasi-steady one-dimensional analyses [22-25]. These analyses 

have shown that Dn is a function of only  in one-dimensional ZND detonation. The present study 

has experimentally shown that Dn/Dstr of a stoichiometric ethylene-oxygen mixture gas is also a 

function of only  as in the theoretical studies.  

However, the evaluation of the Dn- relation in the present study is limited to a certain high filling 
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pressure condition of the mixture gas. Therefore, the Dn- relation is not yet proven to be universal. 

Further evaluation of the Dn- relation throughout the stable zone shown in Fig. 9 is required in 

order to confirm that the Dn- relation is universal or not. However, it is difficult to define the front 

shock shapes of the detonation waves precisely from MSOP images under the low filling pressure 

conditions of the mixture gas. Therefore, we need the other visualization experiments employing 

another method specialized for the visualization of the front shock shapes in order to perform the 

further evaluation of the Dn- relation. 

 

6. Conclusions 

The detonation propagation phenomena in curved channels were experimentally studied in order 

to examine the stable propagation condition. A stoichiometric ethylene-oxygen mixture gas and five 

types of rectangular-cross-section curved channels with different inner radii of curvature were used. 

The inner radius of curvature of the curved channel (ri) and the filling pressure of the mixture gas 

(p0), that is to say, the normal detonation cell width (), were parametrically altered. The front shock 

shapes of detonation waves propagating through the curved channels and the trajectories of triple 

points on the detonation waves were simultaneously observed using Multi-frame Short-time 

Open-shutter Photography (MSOP), and the following results were obtained.   

When the detonation wave propagation in a curved channel was in the stable mode (ri/ ≥ 32), 
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new detonation cells were generated smoothly within the enlarged cells in the vicinity of the inner 

wall of the curved channel. This smooth cell generation consistently maintained the smooth 

detonation wave front in the stable mode. At a given ri, a higher p0 made the detonation wave more 

stable. And at a given p0, a larger ri also made the detonation wave more stable. The propagation 

mode of the detonation wave was considered to transition to the stable mode from the unstable mode 

within 21 ≤ ri/ ≤ 32.  

The normal detonation velocity (Dn) increased with distance from the inner wall and approached 

the velocity of the planar detonation entering the curved section of the curved channel (Dstr). The 

smallest Dn was observed on the inner wall of the curved channel and decreased with decreasing ri/. 

The distribution of Dn on the detonation wave in the stable mode was approximately formulated. The 

approximated Dn given by the formula agreed well with the experimental results. The front shock 

shape of the detonation wave could be reconstructed accurately using the formula.   

The local curvature of the detonation wave () nondimensionalized by  decreases with increasing 

distance from the inner wall of the curved channel. The largest  was observed on the inner wall of 

the curved channel and increased with increasing ri/. Dn/Dstr decreased with increasing . This 

nondimensionalized Dn- relation was nearly independent of ri/  

In the present study, the stable condition of the detonation wave propagating through curved 

channels was determined by using the two-dimensional curved channels. Since the actual 
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propagation of the detonation wave in the annular combustor of RDE is three-dimensional and 

another curvature may exist on the front shock of the detonation wave, its application to RDE may 

be limited even if a stoichiometric ethylene-oxygen mixture gas is employed as its propellant. The 

local curvature of the detonation wave may affect the stability of the detonation wave, however the 

relation between the local curvature and the stability of the detonation wave has not been revealed 

yet in the present study. Therefore, we need further experimental investigation in order to elucidate 

this relation. 
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Table 1. Experimental conditions (T0 = 298 ± 1 K). 

Shot 
No. 

p0 
[kPa]

ri 
[mm]


[mm]

Dstr 
[m/s] 

Propagation
mode 

1 21.0 5 2.3 2183.3 Unstable 
2 31.0 5 1.5 2232.3 Unstable 
3 41.0 5 1.1 2207.8 Unstable 
4 51.0 5 0.9 2232.3 Unstable 
5 61.0 5 0.7 2281.4 Unstable 
6 70.6 5 0.6 2281.4 Unstable 
7 80.6 5 0.5 2305.9 Unstable 
8 21.0 10 2.3 2177.9 Unstable 
9 31.0 10 1.5 2226.9 Unstable 
10 41.0 10 1.1 2226.9 Unstable 
11 51.0 10 0.9 2251.3 Unstable 
12 61.0 10 0.7 2275.8 Unstable 
13 70.6 10 0.6 2275.8 Critical 
14 80.6 10 0.5 2300.3 Critical 
15 20.3 20 2.4 2143.5 Unstable 
16 30.3 20 1.5 2192.8 Unstable 
17 36.5 20 1.2 2188.8 Unstable 
18 40.3 20 1.1 2217.4 Unstable 
19 45.3 20 1.0 2242.0 Unstable 
20 50.3 20 0.9 2266.7 Critical 
21 60.3 20 0.7 2291.3 Critical 
22 70.3 20 0.6 2315.9 Stable 
23 20.8 40 2.4 2139.3 Unstable 
24 25.8 40 1.8 2188.5 Critical 
25 31.5 40 1.5 2195.1 Critical 
26 36.5 40 1.2 2219.5 Stable 
27 40.8 40 1.1 2213.1 Stable 
28 50.8 40 0.9 2237.7 Stable 
29 60.8 40 0.7 2262.3 Stable 
30 70.6 40 0.6 2277.6 Stable 
31 20.8 60 2.4 2121.2 Critical 
32 26.5 60 1.8 2212.4 Stable 
33 28.5 60 1.7 2212.4 Stable 
34 30.8 60 1.5 2212.1 Stable 
35 40.8 60 1.1 2242.4 Stable 
36 50.8 60 0.9 2242.4 Stable 
37 60.8 60 0.7 2272.7 Stable 
38 70.8 60 0.6 2272.7 Stable 
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Table 2. Analysis cases of the motion of the stable detonation wave in a curved channel. 

Shot 
No. 

ri/ 
[-]

i 
[deg]

trans 
[deg]

22 33.5 116.6, 139.5, 162.1 71.3-93.8 
30 67.3 59.3, 71.6, 84.0 47.3-59.3 
38 101.3 68.5, 76.8, 85.2 43.5-52.0 
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Fig. 1. Geometric relationship in a stable detonation wave propagating through a rectangular 

cross-section curved channel with constant inner/outer curvature radii. 
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Fig. 2. Schematic illustrating the concept of Short-time Open-shutter Photography (SOP). 
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Fig. 3. Schematic of the channels and observation chamber. 
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Fig. 4. Velocity of the planar detonation wave propagating through the straight section of a curved 

channel. 
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Fig. 5. Detonation cell width of the planar detonation wave propagating through the straight section 

of a curved channel.
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Fig. 6. Typical histories of the normal detonation velocity on the inner wall of a curved channel. 
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Fig. 7. Typical images of Multi-frame Short-time Open-shutter Photography (MSOP) at a given 

inner radius of a curved channel (ri = 40 mm). 
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Fig. 8. Typical images of Multi-frame Short-time Open-shutter Photography (MSOP) at a given 

filling pressure of mixture gas (p0 = 31.0 ±1.0 kPa). 
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Fig. 9. Relation between the inner radius of the curved channel and the normal detonation cell width 

in terms of the propagation mode of the detonation wave propagating through a curved channel.
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Fig. 10. Distribution of the angular velocity on the detonation wave in the stable propagation mode. 
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Fig. 11. Schematic of the behavior of the detonation wave in the stable propagation mode.
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Fig. 12. Distribution of the normal detonation velocity on the detonation wave in the stable 

propagation mode. 
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Fig. 13. Variations of Dn,asy and m with ri/. 
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Fig. 14. Front shock shape of the detonation wave in the stable propagation mode. 
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Fig. 15. Relation between  and (r-ri)/ of the detonation wave in the stable propagation mode. 
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Fig. 16. Relation between Dn/Dstr and  of the detonation wave in the stable propagation mode. 

 


