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Abstract We consider fixed–size estimation for a linear function of means
from independent and normally distributed populations having unknown and
respective variances. We construct a fixed–width confidence interval with re-
quired accuracy about the magnitude of the length and the confidence coeffi-
cient. We propose a two–stage estimation methodology having the asymptotic
second–order consistency with the required accuracy. The key is the asymp-
totic second–order analysis about the risk function. We give a variety of asymp-
totic characteristics about the estimation methodology, such as asymptotic
sample size and asymptotic Fisher–information. With the help of the asymp-
totic second–order analysis, we also explore a number of generalizations and
extensions of the two–stage methodology to such as bounded risk point es-
timation, multiple comparisons among components between the populations,
and power analysis in equivalence tests to plan the appropriate sample size for
a study.
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1 Introduction

Suppose that there exist k independent and normally distributed populations
πi : N(µi, σ

2
i ), i = 1, ..., k, where µi’s and σ2

i ’s are both unknown. Let
Xi1, Xi2, ... be a sequence of independent and identically distributed random
variables from each πi. Having recorded Xi1, ..., Xini for each πi, let us write
Xini =

∑ni

j=1 Xij/ni and n = (n1, ..., nk). We are interested in estimating the
linear function µ =

∑k
i=1 biµi, where bi’s are known and nonzero scalars. Let

Tn =
∑k

i=1 biXini . We want to construct a fixed–width confidence interval
such that

Pθ(|Tn − µ| < d) ≥ 1 − α (1)

for all θ = (µ1, ..., µk, σ2
1 , ..., σ2

k), where d (> 0) and α ∈ (0, 1) are both pre-
specified. Since

Pθ(|Tn − µ| < d) = G

d2

(
k∑

i=1

b2
i σ

2
i

ni

)−1
 (2)

with G(·) the cumulative distribution function (c.d.f.) of a chi–square random
variable having one degree of freedom (d.f.), requirement (1) is satisfied if

d2

(
k∑

i=1

b2
i σ

2
i

ni

)−1

≥ a, (3)

where a is the constant such that G(a) = 1 − α. It is easy to see that the
sample sizes n which minimize the sum

∑k
i=1 ni subject to (3) are given as

the smallest integer such that

ni ≥
a

d2
|bi|σi

k∑
j=1

|bj |σj (= Ci, say) (4)

for each πi. However, since σi’s are unknown, the optimal fixed–sample–sizes
Ci’s should be estimated by using pilot samples from every πi. It should be
noted from Dantzig (1940) that any fixed–sample–size design cannot claim
requirement (1).

Takada and Aoshima (1997) gave a two–stage estimation methodology in
the spirit of Stein (1945) to satisfy requirement (1) for all the parameters. For
the two–sample problem, see Banerjee (1967), Schwabe (1995) and Takada and
Aoshima (1996). However, it tends to be oversampling especially when the pilot
sample is fixed small compared to the size of Ci. Later, Takada (2004) gave a
modification of the Takada–Aoshima procedure so as to make it asymptotically
second–order efficient, i.e., lim supd→0 Eθ(Ni − Ci) < ∞. Such a modification
had been created and explored for the one–sample problem and the other
problems by Mukhopadhyay and Duggan (1997, 1999), Aoshima and Takada
(2000), and Aoshima and Mukhopadhyay (2002) among others. One may refer
to Aoshima (2005) for a review of two–stage estimation methodologies.



Asymptotic second-order consistency 3

Here, we summarize a modified two–stage procedure due to Takada (2004):
Along the lines of Mukhopadhyay and Duggan (1997, 1999), we assume that
there exists a known and positive lower bound σi? for σi such that

σi > σi?, i = 1, ..., k. (5)

(T1) Having m0 (≥ 4) fixed, define

m = max

m0,

 a

d2
min

1≤i≤k
|bi|σi?

k∑
j=1

|bj |σj?

 + 1

 , (6)

where [x] denotes the largest integer less than x. Take a pilot sample Xi1, ...,
Xim of size m and calculate S2

i =
∑m

j=1(Xij − Xim)2/ν for each πi, where
Xim =

∑m
j=1 Xij/m and ν = m−1. Define the total sample size of each πi by

Ni = max

m,

 u

d2
|bi|Si

k∑
j=1

|bj |Sj

 + 1

 , (7)

where the design constant u is chosen as

u = a

(
1 +

a + 2k − 1
2ν

)
. (8)

Let N = (N1, ..., Nk).
(T2) Take an additional sample Xim+1, ..., XiNi of size Ni−m from each πi.

By combining the initial sample and the additional sample, calculate XiNi =
N−1

i

∑Ni

j=1 Xij for each πi. Finally, construct the fixed–width confidence in-

terval with TN =
∑k

i=1 biXiNi .
Then, it holds as d → 0 that

Pθ(|TN − µ| < d) ≥ 1 − α + o(d2) for all θ.

However, the modification in those literatures has as yet been unable to prevent
oversampling in two–stage estimation methodologies.

In this paper, we make an improvement on the two–stage procedure so as
to make it asymptotically second–order consistent with the required accuracy
as d → 0, i.e.,

Pθ(|TN − µ| < d) = 1 − α + o(d2) for all θ. (9)

With such an improvement, the required sample size is drastically reduced es-
pecially when k is large. The key is the asymptotic second–order analysis about
the risk function. In Section 2, we show the asymptotic second–order consis-
tency for such the modified two–stage procedure along with its asymptotic
second–order characteristics. Also, we discuss asymptotic Fisher–information
in the modified two–stage estimation methodology. In Section 3, with the
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help of the asymptotic second–order analysis, we explore a number of gen-
eralizations and extensions of the modified two–stage methodology to such
as bounded risk point estimation, and multiple comparisons among compo-
nents between the populations. In Section 4, we apply the modified two–stage
methodology to power analysis in equivalence tests to plan the appropriate
sample size for a study. In Section 5, we report the findings of simulation
studies and compare performance of our methodology with those of earlier
literatures.

2 Asymptotic second–order consistency

Throughout this section, we write that

τ? = min
1≤i≤k

|bi|σi?

k∑
j=1

|bj |σj?, fi = |bi|σi

 k∑
j=1

|bj |σj

−1

(i = 1, ..., k).

Theorem 1 Choose u in (7) as u = a(1 + ν−1ŝ) instead of (8), where

ŝ = 1 +
(a − 1)

∑k
i=1 b2

i S
2
i − kτ?

2(
∑k

i=1 |bi|Si)2
(10)

with S2
i ’s calculated in (T1). Then, the two–stage procedure (6)–(7) is asymp-

totically second–order consistent as d → 0 as stated in (9).

Proof We have from (2) that

Pθ (|TN − µ| < d) =Eθ

G

d2

(
k∑

i=1

b2
i σ

2
i

Ni

)−1


=Eθ

G

a

(
k∑

i=1

fi
Ci

Ni

)−1
 . (11)

Now, let us define a new function as follows. We write

g(u1, ..., uk) = G(av−1), v = f1u
−1
1 + · · · + fku−1

k for ui > 0, i = 1, ..., k.

Denoting G′(w), G′′(w) for the first and second derivatives of G(w) respec-
tively, one can verify the following expressions of the partial derivatives of
g(u1, ..., uk). For all 1 ≤ i 6= j ≤ k, we have that

∂g

∂ui
= aG′(a/v)fiv

−2u−2
i ,

∂2g

∂u2
i

= a{aG′′(a/v)f2
i v−4u−4

i + 2G′(a/v)f2
i v−3u−4

i − 2G′(a/v)fiv
−2u−3

i },

∂2g

∂ui∂uj
= a{aG′′(a/v)fifjv

−4u−2
i u−2

j + 2G′(a/v)fifjv
−3u−2

i u−2
j }.
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From (11), we use the Taylor expansion to claim that

Pθ(|TN − µ| < d) = Eθ

{
g

(
N1

C1
, ...,

Nk

Ck

)}
= 1 − α + aG′(a)

k∑
i=1

fiEθ

(
Ni − Ci

Ci

)

+
a

2

k∑
i=1

(aG′′(a)f2
i + 2G′(a)f2

i − 2G′(a)fi)Eθ

{(
Ni − Ci

Ci

)2
}

+
a

2

∑
i6=j

(aG′′(a)fifj + 2G′(a)fifj)Eθ

{(
Ni − Ci

Ci

)(
Nj − Cj

Cj

)}
+Eθ(<), (12)

where

Eθ(<) =
1
6

∑
i,j,`

Eθ

{
∂3g

∂ui∂uj∂u`

∣∣
u=ξ

(
Ni − Ci

Ci

)(
Nj − Cj

Cj

)(
N` − C`

C`

)}
(13)

with suitable random variables ξi’s between 1 and Ni/Ci, i = 1, ..., k, u =
(u1, ..., uk) and ξ = (ξ1, ..., ξk). With the help of Lemmas 5 and 6 in Appendix,
we obtain the following expansion from (12):

Pθ(|TN − µ| < d) = 1 − α

+
aG′(a)

ν

(
s − 1 +

1
2

k∑
i=1

fiBi +
k∑

i=1

f2
i + a

G′′(a)
G′(a)

k∑
i=1

f2
i

)
+ o(ν−1), (14)

where Bi = C−1
i ν and s is a constant such that Eθ(ŝ) = s + o(1). Combining

the results that
∑k

i=1 fiBi = kτ?(
∑k

i=1 |bi|σi)−2 +O(d2) and aG′′(a)/G′(a) =
(−a − 1)/2 with (14), we claim assertion (9) as d → 0. 2

Remark 1 Liu and Wang (2007) gave a three–stage estimation methodology
satisfying requirement (9) when k = 2. In fact, their results are verified under
the assumption (3.1), in the literature, that requires known lower bounds such
as (5) tacitly.

Remark 2 From Lemma 2 in Takada (2004), the constant u given by (8) is
coincident with the one originally given by Takada and Aoshima (1997) upto
the order O(ν−1). For the two–stage procedure (6)–(7) with (8), by putting
s = (a + 2k − 1)/2 in (14), one has as d → 0 that

Pθ(|TN − µ| < d) = 1 − α

+
aG′(a)

2ν

(
a + 2k − 3 +

kτ? + (1 − a)
∑k

i=1 b2
i σ

2
i

(
∑k

i=1 |bi|σi)2

)
+ o(d2) for all θ.

Note that ŝ < (a + 2k − 1)/2 w.p.1. The use of (10) saves more samples when
k is large.
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Theorem 2 The two–stage procedure (6)–(7) with (10) has as d → 0:

(i) Eθ(Ni − Ci) = (2τ?)−1{ |bi|σi

∑k
j=1 |bj |σj + (a − 1)fi

∑k
j=1 b2

jσ
2
j + b2

i σ
2
i }

+1
2 (1 − kfi) + o(1) for i = 1, ..., k,

(ii) Eθ(
∑k

i=1 Ni −
∑k

i=1 Ci) = (2τ?)−1{ (
∑k

i=1 |bi|σi)2 + a
∑k

i=1 b2
i σ

2
i } + o(1).

Proof The results are obtained by Lemma 5 in Appendix straightforwardly.

2

Remark 3 Let us consider two cases that the lower bounds σi?’s are misiden-
tified: (i) σi? is much smaller than the true value of σi; (ii) several σi?’s are
larger than the true values of σi’s so that it causes m > min1≤i≤k Ci. For case
(i), as observed in Theorem 2, it causes oversampling although requirement
(9) is satisfied. For case (ii), the two–stage procedure (6)–(7) with (10) has as
d → 0 that

Pθ(|TN − µ| < d) > 1 − α + O(d2) for all θ.

Now, we evaluate the Fisher information in the statistic TN that is calcu-
lated in (T2) with the constant u given by (10). We write the Fisher informa-
tion in TN about µ as FTN

(µ).

Theorem 3 The two–stage procedure (6)–(7) with (10) has the Fisher infor-
mation in TN as d → 0:

FTN
(µ)

FTC
(µ)

= 1 +
d2(a + 1)

∑k
i=1 b2

i σ
2
i

2aτ?(
∑k

i=1 |bi|σi)2
+ o(d2), (15)

where C = (C1, ..., Ck) is defined by (4).

Proof In a way similar to Theorem 2.1 in Mukhopadhyay (2005), we have that

FTN
(µ) = Eθ


(

k∑
i=1

b2
i σ

2
i

Ni

)−1


= Eθ

 a

d2

(
k∑

i=1

fi
Ci

Ni

)−1
 .

Then, one has that FTC
(µ) = (

∑k
i=1 b2

i σ
2
i /Ci)−1 = ad−2. So, we may write

that

FTN
(µ)

FTC
(µ)

= Eθ


(

k∑
i=1

fi
Ci

Ni

)−1
 . (16)
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From (16), we use the Taylor expansion to claim that

FTN
(µ)

FTC
(µ)

= 1 +
k∑

i=1

fiEθ

(
Ni − Ci

Ci

)
+

k∑
i=1

(f2
i − fi)Eθ

{(
Ni − Ci

Ci

)2
}

+
∑
i6=j

fifjEθ

{(
Ni − Ci

Ci

)(
Nj − Cj

Cj

)}
+ Eθ(<), (17)

where

Eθ(<) =
1
6

∑
i,j,`

Eθ

{
∂3v−1

∂ui∂uj∂u`

∣∣
u=ξ

(
Ni − Ci

Ci

)(
Nj − Cj

Cj

)(
N` − C`

C`

)}

with v =
∑k

i=1 fiu
−1
i for ui > 0, i = 1, ..., k, suitable random variables ξi’s

between 1 and Ni/Ci, i = 1, ..., k, u = (u1, ..., uk) and ξ = (ξ1, ..., ξk). With
the help of Lemmas 5 and 6 in Appendix, we obtain the following expansion
from (17):

FTN
(µ)

FTC
(µ)

= 1 + ν−1

(
s − 1 +

k∑
i=1

f2
i +

1
2

k∑
i=1

fiBi

)
+ o(ν−1), (18)

where Bi = C−1
i ν and s is a constant such that Eθ(ŝ) = s + o(1). Combining

the result that
∑k

i=1 fiBi = kτ?(
∑k

i=1 |bi|σi)−2 + O(d2) with (18), we claim
assertion (15) as d → 0. 2

Remark 4 For simplicity, we let k = 1 (b = 1). Then, C = aσ2/d2. Under the
assumption that FXN

(µ) exceeds FXC
(µ) for every fixed (µ, σ2), Mukhopad-

hyay (2005) proposed to determine the pilot sample size m for Stein’s (1945)
two–stage estimation methodology as

m = smallest positive integer such that FXN
(µ)/FXC

(µ) ≤ 1 + ε

for a prespecified quantity ε (> 0) which is free from (µ, σ2). Mukhopadhyay
showed that FXN

(µ) = σ−2Eσ2(N) and suggested that one may determine
the pilot sample size m as

m = smallest positive integer such that Eσ2(N)/C ≤ 1 + ε + o(m−1).

Let us write that Eσ2(N)/C = 1 + x/m + o(m−1) with the design constant
u = a(1+s/m)+O(m−2) where x is a constant free from m and s = (a+1)/2
for Stein’s methodology. If m is completely free from σ2, we should choose m in
order O(dc) with c ∈ (−1, 0) in order to specify quantity ε free from σ2. Then,
we have that x = s, so that m = s/ε which is exactly the one given by (3.7)
in Mukhopadhyay (2005). Now, let us say c = −0.5 and choose m in order
O(d−1/2). Let us simply write m = sd−1/2. Then, we have that ε = s/m =
d1/2. When ε is specified as ε = 0.1 (0.01), we have that d = 10−2 (10−4),
so that C should be very large. It would cause oversampling in the two–stage
estimation methodology.



8 M. Aoshima, K. Yata

Remark 5 From (15), we have as d → 0 that

FTN
(µ)/FTC

(µ) ≤ 1 + ε + o(m−1),

with ε = (2aτ?)−1(a + 1)d2. On the other hand, from (18) with s = (a + 2k −
1)/2, which is coincide with the one for Stein’s (1945) methodology for k = 1,
the two–stage procedure (6)–(7) with (8) has the Fisher information in TN as
d → 0:

FTN
(µ)

FTC
(µ)

= 1 +
d2

2aτ?

(
a + 2k − 3 +

2
∑k

i=1 b2
i σ

2
i + kτ?

(
∑k

i=1 |bi|σi)2

)
+ o(d2). (19)

From (19), we have ε = (2aτ?)−1(a + 3k − 1)d2. It should be noted that the ε
part (redundancy) becomes small when we utilize (10) instead of (8).

Remark 6 If we choose u in (7) as u = a(1 + ν−1ŝ) with

ŝ = 1 −
2

∑k
i=1 b2

i S
2
i + kτ?

2(
∑k

i=1 |bi|Si)2
(20)

instead of (10), the two–stage procedure (6)–(7) has the Fisher information in
TN as d → 0:

FTN
(µ)/FTC

(µ) = 1 + o(m−1).

Then, it holds as d → 0:

(i) Eθ(Ni −Ci) = (2τ?)−1{ |bi|σi

∑k
j=1 |bj |σj − (2

∑k
j=1 b2

jσ
2
j + kτ?)fi + b2

i σ
2
i }

+1
2 + o(1) for i = 1, ..., k,

(ii) Eθ(
∑k

i=1 Ni −
∑k

i=1 Ci) = (2τ?)−1{ (
∑k

i=1 |bi|σi)2 −
∑k

i=1 b2
i σ

2
i } + o(1).

3 Applications

3.1 Bounded risk estimation

Suppose that there exist k independent and normally distributed popula-
tions πi : Np(µi,Σi), i = 1, ..., k, where µi’s ∈ Rp and Σi’s are both un-
known, but Σi’s are p × p p.d. matrices. Let Xi1,Xi2, ... be a sequence of
independent and identically distributed random vectors from each πi. Having
recorded Xi1, ...,Xini for each πi, let us write Xini =

∑ni

j=1 Xij/ni and n =
(n1, ..., nk). We are interested in estimating the linear function µ =

∑k
i=1 biµi,

where bi’s are known and nonzero scalars. Let T n =
∑k

i=1 biXini . For a pre-
specified constant W (> 0), we want to construct T n such that

Eθ(||T n − µ||2) ≤ W (21)
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for all θ = (µ1, ...,µk,Σ1, ...,Σk), where || · || is the Euclidean norm. Since

Eθ(||T n − µ||2) =
k∑

i=1

b2
i tr(Σi)/ni, (22)

it is easy to see that the sample sizes n which minimize the sum
∑k

i=1 ni

subject to (21) are given as the smallest integer such that

ni ≥
1
W

|bi|
√

tr(Σi)
k∑

j=1

|bj |
√

tr(Σj) (= Ci, say) (23)

for each πi.
When p = 1, Ghosh et al. (1997, Chap. 6) considered a two–stage esti-

mation methodology to satisfy requirement (21). Later, Aoshima and Takada
(2002) considered the present problem and gave a different two–stage estima-
tion methodology. Aoshima and Takada showed that their procedure satisfies
requirement (21) with fewer samples than those in Ghosh et al. When applying
the asymptotic second–order analysis to the present problem, we make an im-
provement on the two–stage estimation methodology to hold the asymptotic
second–order consistency as W → 0 as stated in (28): We assume that there
exists a known and positive lower bound σi? for (tr(Σi))1/2 such that

√
tr(Σi) > σi?, i = 1, ..., k. (24)

(T1) Having m0 (≥ 4) fixed, define

m = max

m0,

 1
W

min
1≤i≤k

|bi|σi?

k∑
j=1

|bj |σj?

 + 1

 . (25)

Take a pilot sample Xi1, ...,Xim of size m and calculate Si =
∑m

j=1(Xij −
Xim)(Xij −Xim)′/ν for each πi, where Xim =

∑m
j=1 Xij/m and ν = m− 1.

Define the total sample size of each πi by

Ni = max

m,

 u

W
|bi|

√
tr(Si)

k∑
j=1

|bj |
√

tr(Sj)

 + 1

 , (26)

where u is chosen as u = 1+ ν−1ŝ with ŝ given by (27). Let N = (N1, ..., Nk).
(T2) Take an additional sample Xim+1, ...,XiNi of size Ni − m from

each πi. By combining the initial sample and the additional sample, calculate
XiNi = N−1

i

∑Ni

j=1 Xij for each πi. Finally, estimate µ by TN =
∑k

i=1 biXiNi .
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Theorem 4 Let τ? = min1≤i≤k |bi|σi?

∑k
j=1 |bj |σj?, where σi? is given by

(24). Choose u in (26) as u = 1 + ν−1ŝ, where

ŝ =

∑k
i=1(tr(S

2
i )/(tr(Si))2)

(
b2
i tr(Si) + |bi|

√
tr(Si)

∑k
j=1 |bj |

√
tr(Sj)

)
(∑k

i=1 |bi|
√

tr(Si)
)2

− kτ?

2
(∑k

i=1 |bi|
√

tr(Si)
)2 (27)

with Si’s calculated in (T1). Then, the two–stage procedure (25)–(26) is asymp-
totically second–order consistent as W → 0, i.e.,

Eθ(||T N − µ||2) = W + o(W 2) for all θ. (28)

Proof We have from (22) that

Eθ(‖TN − µ‖)2 =Eθ

(
k∑

i=1

b2
i tr(Σi)/Ni

)

=WEθ

(
k∑

i=1

fi
Ci

Ni

)
,

where fi = |bi|
√

tr(Σi)/
∑k

j=1 |bj |
√

tr(Σj). Use the Taylor expansion to claim
that

Eθ

(
k∑

i=1

fi
Ci

Ni

)
=1 −

k∑
i=1

fiEθ

(
Ni − Ci

Ci

)
+

k∑
i=1

fiEθ

{(
Ni − Ci

Ci

)2
}

+ Eθ(<), (29)

where Eθ(<) = −
∑k

i=1 fiEθ

{
ξ−4
i C−3

i (Ni − Ci)3
}

with suitable random vari-
ables ξi’s between 1 and Ni/Ci, i = 1, ..., k. One may apply Lemma 6 in
Appendix to claim that Eθ(<) = o(ν−1) as W → 0. With the help of Remark
18 in Appendix, we obtain the following expansion from (29):

Eθ

(
k∑

i=1

fi
Ci

Ni

)

=1 +
1
2ν

k∑
i=1

fi

−2s − Bi + Ai

(
fi +

3
2

)
+

k∑
j=1

fjAj

(
fj +

1
2

) + o(ν−1),

(30)

where Ai = tr(Σ2
i )/(tr(Σi))2, Bi = νC−1

i , and s is a constant such that
Eθ(ŝ) = s + o(1). From (30), we obtain (28) straightforwardly. 2

Remark 7 The two–stage procedure (25)–(26) with (27) has as W → 0:
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(i) Eθ(Ni − Ci) = (2τ?)−1{ 3
2 |bi|

√
tr(Σi)

∑k
j=1 |bj |Aj

√
tr(Σj) + b2

i Aitr(Σi)

+(2
∑k

j=1 b2
jAjtr(Σj))fi − 1

2 |bi|Ai

√
tr(Σi)

∑k
j=1 |bj |

√
tr(Σj) }

+ 1
2 (1 − kfi) + o(1) for i = 1, ..., k,

(ii) Eθ(
∑k

i=1 Ni −
∑k

i=1 Ci) = (2τ?)−1{
∑

i,j |bi|
√

tr(Σi)|bj |Aj

√
tr(Σj)

+3
∑k

j=1 |bj |Aj

√
tr(Σj) } + o(1).

Remark 8 Aoshima and Takada (2002) gave a two–stage estimation methodol-
ogy to satisfy requirement (21) without assumption (24). In their methodology,
the constant u in (26) is given by u = ν/(ν−2) = 1+2/ν +O(ν−2). Then, for
the two–stage procedure (25)–(26) with u = 1 + 2/ν, one has from (30) with
s = 2 that

Eθ(‖TN − µ‖)2

= W +
τ?

2ν2

(
2

k∑
i=1

fi(fi + 1)Ai − 4 − kτ?

( k∑
i=1

|bi|
√

tr(Σi)
)−2)

+ o(W 2) for all θ.

Note that ŝ < 2 w.p.1. The use of (27) saves more samples when k is large.

3.2 Multiple comparisons among components

Suppose that there exist k independent and normally distributed populations
πi : Np(µi,Σi), i = 1, ..., k, where p ≥ 2, and µi’s ∈ Rp and Σi’s are both
unknown, but Σi = (σ(i)rs) (> 0) has a spherical structure such that

σ(i)rr + σ(i)ss − 2σ(i)rs = 2δ2
i (1 ≤ r < s ≤ p) (31)

with δi (> 0) unknown parameter for each πi. A special case of such the model
is the intraclass correlation model, that is, Σi = σ2

i {(1−ρi)Ip +ρiJ} for some
ρi, where J denotes a p×p matrix of all 1’s. We consider multiple comparisons
experiments for correlated components of µ =

∑k
i=1 biµi. Let us write µ =

(ξ1, ..., ξp). Similarly to Section 3.1, we use T n =
∑k

i=1 biXini
as an estimate

of µ. Let us write T n = (T1n, ..., Tpn). For a prespecified constant d (> 0), we
define three types of simultaneous confidence intervals for (ξ1, ..., ξp):

(MCA) Rn = {µ| ξr − ξs ∈ [Trn − Tsn − d, Trn − Tsn + d], 1 ≤ r < s ≤ p};
(MCB)
Rn = {µ| ξr − max

s 6=r
ξs ∈ [−(Trn − max

s 6=r
Tsn − d)−, +(Trn − max

s 6=r
Tsn + d)+],

r = 1, ..., p},
where +x+ = max{0, x} and −x− = min{0, x};

(MCC) Rn = {µ| ξr − ξp ∈ [Trn − Tpn − d, Trn − Tpn + d], r = 1, ..., p − 1}.
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For the details of these multiple comparisons methods, see Aoshima and Kushi-
da (2005) and its references. For each of them, for d (> 0) and α ∈ (0, 1) both
specified, we want to construct Rn such that

Pθ(µ ∈ Rn) ≥ 1 − α for all θ = (µ1, ...,µk,Σ1, ...,Σk) (32)

with Σi’s defined by (31).
It is shown for MCA and MCC that

Pθ(µ ∈ Rn) = Gp

d2

(
k∑

i=1

b2
i δ

2
i

ni

)−1
 ,

where Gp(y) for y > 0 is defined by

Gp(y) = p

∫ ∞

−∞
{Φ(x) − Φ(x −√

y)}p−1dΦ(x) (for MCA), (33)

Gp(y) =
∫ ∞

−∞
{Φ(x +

√
y) − Φ(x −√

y)}p−1dΦ(x) (for MCC) (34)

with Φ(·) the c.d.f. of a N(0, 1) random variable. It is shown for MCB that

Pθ(µ ∈ Rn) ≥ Gp

d2

(
k∑

i=1

b2
i δ

2
i

ni

)−1
 ,

where
Gp(y) =

∫ ∞

−∞
{Φ(x +

√
y)}p−1dΦ(x). (35)

So, the sample sizes n that minimize the sum
∑k

i=1 ni while satisfying require-
ment (32) are given as the smallest integer such that

ni ≥
a

d2
|bi|δi

k∑
j=1

|bj |δj (= Ci, say)

for each πi, where a (> 0) is a constant such that Gp(a) = 1 − α with Gp(·)
defined for each method by (33), (34) or (35), respectively.

When applying the asymptotic second–order analysis to this problem, we
make an improvement on the two–stage estimation methodology to hold the
asymptotic second–order consistency as d → 0 as stated in (40)–(41): We
assume that there exists a known and positive lower bound σi? for δi such
that

δi > σi?, i = 1, ..., k. (36)

(T1) Having m0 (≥ 4) fixed, define

m = max

m0,

 a

d2
min

1≤i≤k
|bi|σi?

k∑
j=1

|bj |σj?

 + 1

 . (37)
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Take a pilot sample Xij = (Xij1, ..., Xijp), j = 1, ...,m, and calculate S2
ip =

ν−1
p

∑p
r=1

∑m
j=1(Xijr −Xij. − Xi.r + Xi..)2 with νp = (p − 1)(m − 1) for

each πi. Here, Xij. = p−1
∑p

r=1 Xijr, Xi.r = m−1
∑m

j=1 Xijr and Xi.. =
(pm)−1

∑p
r=1

∑m
j=1 Xijr. Note that νpS

2
ip/δ2

i is distributed as a chi–square
distribution with νp d.f. Define the total sample size of each πi by

Ni = max

m,

 u

d2
|bi|Sip

k∑
j=1

|bj |Sjp

 + 1

 , (38)

where u is chosen as u = a(1+ν−1
p ŝ) with a given for each method and ŝ given

by (39). Let N = (N1, ..., Nk).
(T2) Take an additional sample Xim+1, ...,XiNi

of size Ni − m from
each πi. By combining the initial sample and the additional sample, calcu-
late XiNi = N−1

i

∑Ni

j=1 Xij for each πi. Finally, for each method, construct
RN with the components (T1N, ..., TpN) of TN =

∑k
i=1 biXiNi

.

The following theorem can be obtained similarly to Theorem 1.

Theorem 5 Let τ? = min1≤i≤k |bi|σi?

∑k
j=1 |bj |σj?, where σi? is given by

(36). Choose u in (38) as u = a(1 + ν−1
p ŝ) with a given for each method,

where

ŝ = 1 −
2(aG′′

p (a)

G′
p(a) + 1)

∑k
i=1 b2

i S
2
ip + k(p − 1)τ?

2(
∑k

i=1 |bi|Sip)2
(39)

with S2
ip’s calculated in (T1). Then, the two–stage procedure (37)–(38) is

asymptotically second–order consistent as d → 0, i.e.,

Pθ(µ ∈ RN) = 1 − α + o(d2) for all θ (MCA, MCC); (40)
Pθ(µ ∈ RN) ≥ 1 − α + o(d2) for all θ (MCB). (41)

Remark 9 The two–stage procedure (37)–(38) with (39) has as d → 0:

(i) Eθ(Ni − Ci)

= (2(p − 1)τ?)−1{ |bi|δi

∑k
j=1 |bj |δj − 2

(
a

G′′
p (a)

G′
p(a) + 1

)
fi

∑k
j=1 b2

jδ
2
j + b2

i δ
2
i }

+ 1
2 (1 − kfi) + o(1) for i = 1, ..., k,

(ii) Eθ(
∑k

i=1 Ni −
∑k

i=1 Ci)

= (2(p − 1)τ?)−1{ (
∑k

i=1 |bi|δi)2 − 2
(
a

G′′
p (a)

G′
p(a) + 1

2

) ∑k
i=1 b2

i δ
2
i } + o(1),

where fi = |bi|δi(
∑k

j=1 |bj |δj)−1.

Remark 10 The two–stage estimation methodology (37)–(38) was given by
Ao-shima and Kushida (2005), but they chose the constant u in (38) as u =
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a(1 + ν−1
p s) with s = k − 1 − aG′′

p(a)/G′
p(a). For their two–stage procedure,

we have as d → 0 that

Pθ(µ ∈ RN) ≥ 1 − α

+
aG′

p(a)
νp

(
k − 2 +

1
2

k(p − 1)τ?

(
∑k

i=1 |bi|δi)2
+

k∑
i=1

f2
i + a

G′′
p(a)

G′
p(a)

(
k∑

i=1

f2
i − 1)

)
+ o(d2) for all θ,

where the equality holds for MCA and MCC. For a nominal value of α, note
that aG′

p(a)/Gp(a) ≤ −1. Then, from (39), we have that ŝ < s w.p.1. The use
of (39) saves more samples when k is large.

4 Testing for equivalence

We consider the problem to test the equivalence of two independent normal
populations πi : N(µi, σ

2
i ), i = 1, 2, with µi’s and σ2

i ’s both unknown. We
want to design a test of

H0 : |µ| = |µ1 − µ2| ≥ d against Ha : |µ| < d (42)

which has size α and power no less than 1 − β at |µ| ≤ γd for all θ =
(µ1, µ2, σ

2
1 , σ2

2), where α, β ∈ (0, 1), γ ∈ [0, 1), and d > 0 (the limit of equiv-
alence) are four prescribed constants. Let us write Xini

=
∑ni

j=1 Xij/ni, i =
1, 2, similarly to Section 1. If σ2

i ’s had been known, we would take a sample
from each πi of size

ni ≥
δ2

d2
σi

2∑
j=1

σj (= Ci, say)

and test the hypothesis by

rejecting H0 ⇐⇒ |X1n1 − X2n2 | <

(
2∑

i=1

σ2
i

Ci

)1/2

R

d

(
2∑

i=1

σ2
i

Ci

)−1/2


=
dR(δ)

δ
.

Here, the function R(·) is determined uniquely by the equation

P (|N(0, 1) + x| < R(x)) = α

with N(0, 1) a standard normal random variable, and δ = δ(α, β, γ) is the
unique solution of the equation

P (|N(0, 1) + γδ| < R(δ)) = 1 − β.
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When σ2
i ’s are unknown but common (σ2

1 = σ2
2), Liu (2003) proposed

k (≥ 3)–stage procedure having the size α+o(n−1) and the minimum power 1−
β+o(n−1). When applying the asymptotic second–order analysis to the present
problem, we give a two–stage estimation methodology to hold the asymptotic
second–order consistency, which has the accuracy of the same degree as in
Liu, as stated in (49): We assume that there exists a known and positive lower
bound σi? for σi such that

σi > σi?, i = 1, 2. (43)

(T1) Having m0 (≥ 4) fixed, define

m = max

m0,

 δ2

d2
min

1≤i≤2
σi?

2∑
j=1

σj?

 + 1

 . (44)

Take a pilot sample Xi1, ..., Xim of size m and calculate S2
i =

∑m
j=1(Xij −

Xim)2/ν with ν = m − 1 for each πi. Define the total sample size of each πi

by

Ni = max

m,

 u

d2
Si

2∑
j=1

Sj

 + 1

 , (45)

where u is chosen as u = δ2(1 + ν−1ŝ) with ŝ given by (47).
(T2) Take an additional sample Xim+1, ..., XiNi of size Ni−m from each πi.

By combining the initial sample and the additional sample, calculate XiNi =
N−1

i

∑Ni

j=1 Xij for each πi. Then, test the hypothesis by

rejecting H0 ⇐⇒ |X1N1 − X2N2 | <
√

λ
dR(δ)

δ
, (46)

where λ is chosen as λ = 1 + ν−1t̂ with t̂ given by (48).

Theorem 6 Let τ? = min1≤i≤2 σi?

∑2
j=1 σj?, where σi? is given by (43).

Choose u and λ in (45)–(46) as u = δ2(1 + ν−1ŝ) and λ = 1 + ν−1t̂, re-
spectively, with

ŝ = 1 +
(

ε1η3 − η1ε3

ε1η2 − η1ε2
− 1

) ∑2
i=1 S2

i

2(
∑2

i=1 Si)2
− τ?

(
∑2

i=1 Si)2
, (47)

t̂ =
ε3η2 − ε2η3

2R(δ) (ε1η2 − ε2η1)

∑2
i=1 S2

i

(
∑2

i=1 Si)2
, (48)
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where S2
i ’s are calculated in (T1), φ(·) is the p.d.f. of N(0, 1), and

ε1 = φ(R(δ) − δ) + φ(R(δ) + δ),
ε2 = (R(δ) − δ)φ(R(δ) − δ) + (R(δ) + δ)φ(R(δ) + δ),

ε3 = (R(δ) − δ)3φ(R(δ) − δ) + (R(δ) + δ)3φ(R(δ) + δ),
η1 = φ(R(δ) − γδ) + φ(R(δ) + γδ),
η2 = (R(δ) − γδ)φ(R(δ) − γδ) + (R(δ) + γδ)φ(R(δ) + γδ),

η3 = (R(δ) − γδ)3φ(R(δ) − γδ) + (R(δ) + γδ)3φ(R(δ) + γδ).

Then, the test (46) of (42), with (44)–(45), is asymptotically second–order
consistent as d → 0, i.e.,

size = α + o(d2) and minimum power = 1 − β + o(d2) for all θ. (49)

Proof From (46), we have the size at |µ1 − µ2| = d that

Eθ

Φ

(
√

λR(δ) − δ)

(
2∑

i=1

fi
Ci

Ni

)−1/2


− Eθ

Φ

−(
√

λR(δ) + δ)

(
2∑

i=1

fi
Ci

Ni

)−1/2


=Φ (R(δ) − δ) − Φ (−R(δ) − δ) +
R(δ)tε1

2ν

+
ε2

4ν

(
2s − 2 +

2∑
i=1

fiBi +
2∑

i=1

f2
i

)
− ε3

4ν

2∑
i=1

f2
i + Eθ(<α) + o(ν−1), (50)

where fi = σi(
∑2

j=1 σj)−1, i = 1, 2, and

Eθ(<α)

=
2∑

i=1

Eθ

{
∂2gα

∂λ∂ui

∣∣
u=ξ

(λ − 1)
(

Ni − Ci

Ci

)}
+

1
2
Eθ

{
∂2gα

∂λ2

∣∣
u=ξ

(λ − 1)2
}

+
1
6

∑
i,j,`

Eθ

{
∂3gα

∂ui∂uj∂u`

∣∣
u=ξ

(
Ni − Ci

Ci

)(
Nj − Cj

Cj

)(
N` − C`

C`

)}
,

with

gα(λ, u1, u2) = Φ
(
(λ1/2R(δ) − δ)v−1/2

)
− Φ

(
−(λ1/2R(δ) + δ)v−1/2

)
,

v = f1u
−1
1 + f2u

−1
2
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for ui > 0, i = 1, 2. With suitable random variables ξλ between 1 and λ
and ξi’s between 1 and Ni/Ci, i = 1, 2, u = (λ, u1, u2) and ξ = (ξλ, ξ1, ξ2).
Similarly, we have the minimum power at |µ1 − µ2| = γd that

Eθ

Φ

(
√

λR(δ) − γδ)

(
2∑

i=1

fi
Ci

Ni

)−1/2


− Eθ

Φ

−(
√

λR(δ) + γδ)

(
2∑

i=1

fi
Ci

Ni

)−1/2


=Φ (R(δ) − γδ) − Φ (−R(δ) − γδ) +
R(δ)tη1

2ν

+
η2

4ν

(
2s − 2 +

2∑
i=1

fiBi +
2∑

i=1

f2
i

)
− η3

4ν

2∑
i=1

f2
i + Eθ(<β) + o(ν−1), (51)

where Eθ(<β) is defined by replacing gα(λ, u1, u2) with

gβ(λ, u1, u2) = Φ
(
(λ1/2R(δ) − γδ)v−1/2

)
− Φ

(
−(λ1/2R(δ) + γδ)v−1/2

)
in Eθ(<α). Here, in both (50)–(51), s and t are constants such that Eθ(ŝ) =
s + o(1) and Eθ(t̂) = t + o(1). One may apply Lemma 6 and Remark 19 in
Appendix to claim that Eθ(<α) = o(ν−1) and Eθ(<β) = o(ν−1) as d → 0 in
(50)–(51). Note that Φ(R(δ) − δ) − Φ(−R(δ) − δ) = α and Φ(R(δ) − γδ) −
Φ(−R(δ)− γδ) = 1− β. The assertion (49) can be shown straightforwardly. 2

Remark 11 When σ2
i ’s are unknown but common (σ2

1 = σ2
2), define the total

sample size as N1 = N2 = max{m, [(u/d2)
∑2

j=1 S2
j ] + 1}. Choose

ŝ =
1
4

(
ε1η3 − η1ε3

ε1η2 − η1ε2
+ 1

)
− τ?

2
∑2

i=1 S2
i

, t̂ =
ε3η2 − ε2η3

4R(δ) (ε1η2 − ε2η1)
.

Then, the test (46) of (42) is asymptotically second–order consistent as d → 0
as stated in (49).

Remark 12 The two–stage procedure (44)–(45) with (47) has as d → 0:

(i) Eθ(Ni − Ci) = (2τ?)−1{σi

∑2
j=1 σj + (st − 1)fi

∑2
j=1 σ2

j + σ2
i }

+1
2 (1 − 2fi) + o(1) for i = 1, 2,

(ii) Eθ(
∑2

i=1 Ni −
∑2

i=1 Ci) = (2τ?)−1{ (
∑2

i=1 σi)2 + st

∑2
i=1 σ2

i } + o(1),

where st = (ε1η3 − η1ε3)/(ε1η2 − η1ε2). It has the Fisher information in TN

as d → 0:
FTN

(µ)
FTC

(µ)
= 1 +

d2(st + 1)
∑2

i=1 σ2
i

2δ2τ?(
∑2

i=1 σi)2
+ o(d2).
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Remark 13 Let us consider the case that our goal is to design a one–sided
equivalence test of

H0 : µ = µ1 − µ2 ≤ −d against Ha : µ > −d (52)

which has size α and power no less than 1 − β at µ ≥ −γd for all θ. So,
one wants to demonstrate that a treatment is no worse than a standard or
one treatment is no worse than another treatment in paired comparison by
amount d. If σ2

i ’s had been known, we would take a sample from each πi of
size

ni ≥
(

zα − z1−β

(1 − γ)d

)2

σi

2∑
j=1

σj ,

and test the hypothesis by

rejecting H0 ⇐⇒ X1n1 − X2n2 > −d

(
γzα − z1−β

zα − z1−β

)
.

One may utilize the two–stage procedure for this goal as well. Replace δ2 with
(zα − z1−β)2/(1 − γ)2 in (44) and in the choice of u of (45). Choose

ŝ = 1 + (z2
α + z2

1−β + zαz1−β − 1)
∑2

i=1 S2
i

2(
∑2

i=1 Si)2
− τ?

(
∑2

i=1 Si)2
, (53)

t̂ = zαz1−β(zα + z1−β)
1 − γ

γzα − z1−β

∑2
i=1 S2

i

2(
∑2

i=1 Si)2
.

Then, the test of (52), given by

rejecting H0 ⇐⇒ X1N1 − X2N2 > −
√

λd

(
γzα − z1−β

zα − z1−β

)

with λ = 1 + ν−1t̂, is asymptotically second–order consistent as d → 0 as
stated in (49). Then, it holds as d → 0:

(i) Eθ(Ni − Ci) = (2τ?)−1{σi

∑2
j=1 σj + (so − 1)fi

∑2
j=1 σ2

j + σ2
i }

+1
2 (1 − 2fi) + o(1) for i = 1, 2,

(ii) Eθ(
∑2

i=1 Ni −
∑2

i=1 Ci) = (2τ?)−1{ (
∑2

i=1 σi)2 + so

∑2
i=1 σ2

i } + o(1),

where s0 = z2
α + z2

1−β + zαz1−β . It has the Fisher information in TN as d → 0:

FTN
(µ)

FTC
(µ)

= 1 +
(1 − γ)2d2(so + 1)

∑2
i=1 σ2

i

2τ?(zα − z1−β)2(
∑2

i=1 σi)2
+ o(d2).



Asymptotic second-order consistency 19

Remark 14 Let us consider the case that our goal is to design a two–sided test
of

H0 : µ = µ1 − µ2 = 0 against Ha : µ 6= 0 (54)

which has size α and power 1− β at |µ| = d for all θ, where α, β ∈ (0, 1) and
d > 0 are three prescribed constants. If σ2

i ’s had been known, we would take
a sample from each πi of size

ni ≥
c2(α, β)

d2
σi

2∑
j=1

σj

and test the hypothesis by

rejecting H0 ⇐⇒
∣∣X1n1 − X2n2

∣∣ >
dzα/2

c(α, β)
,

where zx is the upper x point of N(0, 1), and c(α, β) (> 0) is the unique
solution of the equation

P (|N(0, 1) + c(α, β)| > zα/2) = 1 − β.

One may utilize the two–stage procedure described above for this goal as well
after replacing (δ,R(δ), γ) with (c(α, β), zα/2, 0), respectively, in (44)–(45) and
(47)–(48). Then, the test of (54), given by

rejecting H0 ⇐⇒
∣∣X1n1 − X2n2

∣∣ >
√

λ
dzα/2

c(α, β)
,

is asymptotically second–order consistent as d → 0 as stated in (49).
For a one–sided equivalence test of

H0 : µ = µ1 − µ2 = 0 against Ha : µ < 0 (55)

which has size α and power 1−β at µ = −d for all θ, we would take a sample
from each πi of size

ni ≥
(

zα − z1−β

d

)2

σi

2∑
j=1

σj ,

and test the hypothesis by

rejecting H0 ⇐⇒ X1n1 − X2n2 < −d

(
zα

zα − z1−β

)
.

So, replace δ2 with (zα − z1−β)2 in (44) and in the choice of u of (45). Choose
ŝ as in (53) and choose

t̂ = −z1−β(zα + z1−β)
∑2

i=1 S2
i

2(
∑2

i=1 Si)2
.
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Then, the test of (55), given by

rejecting H0 ⇐⇒ X1N1 − X2N2 < −
√

λd

(
zα

zα − z1−β

)
with λ = 1 + ν−1t̂, is asymptotically second–order consistent as d → 0 as
stated in (49).

5 Computer simulations

In order to study the performance of our methodology, we take resort to com-
puter simulations. We shall compare our procedure given in Section 2 with the
earlier two–stage procedure or the three–stage procedure. We fix k = 2 and
(b1, b2) = (−1, 1). Our goal is to construct 95% fixed–width confidence inter-
vals for µ = µ1−µ2. In other words, we have α = 0.05 (that is, a = 3.841) and
we set d = 0.5. Let C =

∑2
i=1 Ci. We set (C1, C2) = (40, 60), whereas with

C = 100 one easily obtains from (4) that (σ1, σ2) = (1.02, 1.53). We consider
three cases that m = 10, 20, 30 (m0 = 4 which is kept fixed throughout) and
for each case (σ1?, σ2?) are chosen as σ1?/σ1 = σ2?/σ2 =

√
m/C1. Table 1

examines the performance of the two–stage procedure (6)–(7) with (10) in the
first block, the earlier two–stage procedure (6)–(7) with (8) due to Takada
(2004) in the second block, and the three–stage procedure due to Liu and
Wang (2007, Section 3) with c = 0.5, 0.7, 0.9 according to each set of fixed
(σ1?, σ2?) in the third block.

The findings obtained by averaging the outcomes from 10,000 (= R, say)
replications are summarized in each situation. Under a fixed scenario, suppose
that the rth replication ends with Ni = nir (i = 1, 2) observations and the
corresponding fixed–width confidence interval Rnr = {µ ∈ R : |Tnr − µ| < d}
based on nr = (n1r, n2r) for r = 1, ..., R. Now, ni = R−1

∑R
r=1 nir which

estimates Ci with its estimated standard error s(ni), where s2(ni) = (R2 −
R)−1

∑R
r=1(nir − ni)2, i = 1, 2. Then, n (= n1 + n2) estimates the total fixed

sample size C with its estimated standard error s(n), computed analogously.
In the end of the rth replication, we also check whether µ belongs to the
constructed confidence interval Rnr and define pr = 1 (or 0) accordingly as µ

does (or does not) belong to Rnr , r = 1, ..., R. Let p = R−1
∑R

r=1 pr, which
estimates the target coverage probability, having its estimated standard error
s(p) where s2(p) = R−1p(1 − p). For the two–stage procedure (6)–(7) with
(10), the value of u is given as the average number of the outcomes from
10,000 replications. At the last column, we gave the approximate value of
Eθ(Ni −Ci), which was obtained from Theorem 2 in Section 2, from Theorem
3 in Takada (2004), and from Theorem with (3.2) in Liu and Wang (2007),
respectively for each procedure.

Let us explain, for example, the entries from the first block for the case
when m = 20 in Table 1, and hence (σ1?, σ2?) = (0.72, 1.08). From 10,000 inde-
pendent simulations, we observed u = 4.152, n1 = 43.11, s(n1) = 0.106, n2 =
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Table 1 Simulated results

u n s(n) p s(p) n − C E(N − C)

m = 10, (σ1?, σ2?) = (0.51, 0.77)
Two–stage procedure (6)–(7) with (10)

C 100 4.541 116.02 0.403 0.9482 0.00222 16.02 14.98
C1 40 46.20 0.167 6.20 5.86
C2 60 69.82 0.279 9.82 9.13

Two–stage procedure of Takada (2004)
C 100 5.302 135.16 0.464 0.9584 0.00200 35.16 31.81
C1 40 53.83 0.193 13.83 12.58
C2 60 81.33 0.321 21.33 19.22

Three–stage procedure of Liu and Wang (2007) with c = 0.5
C 100 106.66 0.228 0.9508 0.00216 6.66 5.84
C1 40 43.43 0.101 3.43 3.32
C2 60 63.23 0.148 3.23 2.52

m = 20, (σ1?, σ2?) = (0.72, 1.08)
Two–stage procedure (6)–(7) with (10)

C 100 4.152 108.14 0.253 0.9515 0.00215 8.14 7.49
C1 40 43.11 0.106 3.11 2.98
C2 60 65.03 0.175 5.03 4.52

Two–stage procedure of Takada (2004)
C 100 4.533 117.08 0.274 0.9556 0.00206 17.08 15.90
C1 40 46.79 0.115 6.79 6.34
C2 60 70.29 0.189 10.29 9.56

Three–stage procedure of Liu and wang (2007) with c = 0.7
C 100 104.36 0.179 0.9461 0.00226 4.36 4.17
C1 40 42.66 0.080 2.66 2.37
C2 60 61.70 0.116 1.70 1.80

m = 30, (σ1?, σ2?) = (0.88, 1.33)
Two–stage procedure (6)–(7) with (10)

C 100 4.031 105.43 0.196 0.9485 0.00221 5.43 5.00
C1 40 42.32 0.081 2.32 2.02
C2 60 63.11 0.137 3.11 2.98

Two–stage procedure of Takada (2004)
C 100 4.295 111.87 0.210 0.9573 0.00202 11.87 10.60
C1 40 44.83 0.088 4.83 4.26
C2 60 67.04 0.145 7.04 6.34

Three–stage procedure of Liu and wang (2007) with c = 0.9
C 100 105.02 0.161 0.9463 0.00225 5.02 3.25
C1 40 42.46 0.068 2.46 1.84
C2 60 62.56 0.107 2.56 1.40

65.03, s(n2) = 0.175, and n = 108.14, s(n) = 0.253. Also, we had p =
0.9515, s(p) = 0.00215, and n1−C1 = 3.11, n2−C2 = 5.03, n−C = 8.14. At
the last column, we had E(N1−C1) = 2.98, E(N2−C2) = 4.52, E(N −C) =
7.49 where N =

∑2
i=1 Ni. Theorem 2 indicates that one may expect ni−Ci to

fall in the vicinity of the value of E(Ni − Ci), i = 1, 2. One will observe that
the values of Eθ(Ni − Ci) are approximated fairly well by these asymptotic
values for small d.

Throughout, the two–stage procedure (6)–(7) with (10) reduces the sample
size required in the two–stage procedure due to Takada (2004). When σi? is
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specified well, the performance of the two–stage procedure (6)–(7) with (10)
can even compare with the performance of the three–stage procedure due to
Liu and Wang (2007). If the experimenter considers the cost of each sampling
seriously, the two–stage procedure (6)–(7) with (10) might be the most likely
candidate in such a real world.

Appendix

Throughout, we write that

τi = |bi|σi

∑k
j=1 |bj |σj , Yi = |bi|Si

∑k
j=1 |bj |Sj

for i = 1, ..., k. From (4), we write that Ci = aτi/d2. Let d (> 0) go to zero
thorough a sequence such that aτ?/d2 always remains an integer. Then, from
(6), we may write that m = aτ?/d2. We note that νS2

i /σ2
i , i = 1, ..., k, are

independently distributed as a chi–square distribution with ν d.f. Let Wi, i =
1, ..., k, denote random variables such that νWi, i = 1, ..., k, are independently
distributed as the chi–square distribution with ν d.f. Let wi = Wi−1. Then, we
have that S2

i = σ2
i (1+wi), and E(wi) = 0, E(w2

i ) = 2ν−1, E(w2t−1
i ) = O(ν−t)

and E(w2t
i ) = O(ν−t), t = 1, 2, ...

Lemma 1 For each i, we have as ν → ∞ that

Eθ(|Yi − τi|t) = O(ν−t/2) (t ≥ 2).

Proof We write that

SiSj − σiσj

= σiσj{(
√

1 + wi − 1)(
√

1 + wj − 1) + (
√

1 + wi − 1) + (
√

1 + wj − 1)}.

By noting that Eθ(|(1 + wi)1/2 − 1|t) = O(ν−t/2) (t ≥ 2), we have that
Eθ(|SiSj − σiσj |t) = O(ν−t/2) (t ≥ 2). Hence, it holds that

Eθ(|Yi − τi|t) = Eθ

∣∣∣∣∣∣
k∑

j=1

|bi||bj |(SiSj − σiσj)

∣∣∣∣∣∣
t = O(ν−t/2) (t ≥ 2).

The proof is completed. 2

Remark 15 As for (26), let τi = |bi|
√

tr(Σi)
∑k

j=1 |bj |
√

tr(Σj) and Yi =
|bi|

√
tr(Si)

∑k
j=1 |bj |

√
tr(Sj). Let Wij , i = 1, ..., k; j = 1, ..., p, denote

random variables such that νWij , i = 1, ..., k; j = 1, ..., p, are indepen-
dently distributed as a chi–square distribution with ν d.f. One may write that
tr(Si) = tr(Σi)+

∑p
j=1 λij(Wij −1), where λij ’s are latent roots of Σi. Then,

we can obtain the same result as in Lemma 1 for (26) as well.

Lemma 2 For the two–stage procedure (6)–(7) with (10), we have as d → 0
that

Eθ

(
Ni −

[ u

d2
Yi

]
− 1

)
= O(d).
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Proof Let I{Ni=m} be the indicator function. Then, we have that

Eθ

(
Ni −

[ u

d2
Yi

]
− 1

)
= Eθ

{
I{Ni=m}

(
m −

[ u

d2
Yi

]
− 1

)}
≤

√
Pθ(Ni = m)Eθ

{(
m −

[ u

d2
Yi

]
− 1

)2
}

. (56)

Then, it follows that

Pθ(Ni = m) = Pθ

(
uYi

d2
≤ m

)
= Pθ

(
uYi

d2Ci
− Ci + 1

Ci
≤ m − (Ci + 1)

Ci

)
≤ Pθ

(
uYi

aτi
− 1 − 1

Ci
≤ τ? − τi

τi

)
≤ Pθ

(∣∣∣∣uYi

aτi
− 1

∣∣∣∣ + C−1
i ≥ τi − τ?

τi

)
≤

(
τi − τ?

τi

)−6

Eθ

{(∣∣∣∣uYi

aτi
− 1

∣∣∣∣ + C−1
i

)6
}

. (57)

Now, one can yield that

Eθ

{∣∣∣∣uYi

aτi
− 1

∣∣∣∣t
}

≤ Eθ

{(
1
τi

(
|Yi − τi| +

∣∣∣∣ ŝYi

ν

∣∣∣∣))t
}

= O(ν−t/2) (t ≥ 2).

(58)

Here, (58) follows from the result that for any x (≥ 0) and y (≥ 0) such that
x + y = t (≥ 2), we have from Lemma 1 that

Eθ(|Yi − τi|x|ν−1ŝYi|y) ≤
√

Eθ(|Yi − τi|2x)Eθ(|ν−1ŝYi|2y)

=O
(
ν−(x/2+y)

)
= O

(
ν−(t/2+y/2)

)
.

By combining (58) with (57), we have that

Pθ(Ni = m) = O(d6). (59)

The result can be obtained in view of (56) and (59). 2

Lemma 3 Let q (> 0) and h (≥ 0) be constants. For a fixed b (≥ 1), let Xbν

denote a chi–square random variable with bν d.f. Then, we have as ν → ∞
that

E(qXbν − h − [qXbν − h]) =
1
2

+ O(ν−1/2).
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Proof Let U = qXbν − h − [qXbν − h]. Then, we have for x ∈ (0, 1) and
xi ∈ (0, x) that

P (U ≤ x) =
∞∑

i=0

P (U ≤ x, i ≤ qXbν − h < i + 1)

=
∞∑

i=0

P (i ≤ qXbν − h < i + x)

=
∞∑

i=0

(
Fbν

(
i + h + x

q

)
− Fbν

(
i + h

q

))

=
x

q

∞∑
i=0

F ′
bν

(
i + h + xi

q

)
, (60)

where Fbν(·) is the c.d.f. of a chi–square random variable with bν d.f., and
F ′

bν(·) denotes the first derivative of Fbν(·). Since m ≥ 4 and b ≥ 1, we have
that bν ≥ 3. Here, there is at most one constant c (= bν − 2) satisfying
supz F ′

bν(z) = F ′
bν(c), z > 0. If (h+xi)/q ≤ bν−2, there exists integer i? such

that (i? + h + xi)/q ≤ bν − 2 < (i? + 1 + h + xi)/q. Then, we have that

∫ i+1

i

F ′
bν

(
z + h + xi

q

)
dz ≥


F ′

bν

(
i+h+xi

q

)
(i < i?),

F ′
bν

(
i+1+h+xi

q

)
(i ≥ i? + 1).

Hence, it follows that
∞∑

i=0

F ′
bν

(
i + h + xi

q

)
≤

∫ ∞

h+xi

F ′
bν

(
z

q

)
dz + F ′

bν

(
i? + h + xi

q

)
≤

∫ ∞

0

F ′
bν

(
z

q

)
dz + sup

z
F ′

bν(z). (61)

Similarly, we have that

∫ i+1

i

F ′
bν

(
z + h + xi

q

)
dz ≤


F ′

bν

(
i+1+h+xi

q

)
(i < i?),

F ′
bν

(
i+h+xi

q

)
(i ≥ i? + 1).

Hence, it follows that∫ ∞

h+xi

F ′
bν

(
z

q

)
dz − sup

z
F ′

bν(z) ≤
∞∑

i=0

F ′
bν

(
i + h + xi

q

)
. (62)

If (h + xi)/q > bν − 2, we can claim both (61) and (62). Combining (61) and
(62) with (60), we have that

x − xFbν

(
h + xi

q

)
− x

q
sup

z
F ′

bν(z) ≤ P (U ≤ x) ≤ x +
x

q
sup

z
F ′

bν(z). (63)
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Here, we note that

Fbν

(
h + xi

q

)
=

h + xi

q
F ′

bν

(
h′

i

q

)
≤ h + xi

q
sup

z
F ′

bν(z) (64)

with h′
i ∈ (0, h + xi), and by Stirling’s formula that

sup
z

F ′
bν(z) = F ′

bν(bν − 2) = O(ν−1/2) as ν → ∞. (65)

By combining (64) and (65) with (63), we conclude that

P (U ≤ x) = x + O(ν−1/2) as ν → ∞.

It completes the proof. 2

Lemma 4 For the two–stage procedure (6)–(7) with (10), we have as d → 0
that

Eθ

 u

d2
|bi|Si

k∑
j=1

|bj |Sj −

 u

d2
|bi|Si

k∑
j=1

|bj |Sj

 =
1
2

+ O(d).

Proof Let Xkν = ν
∑k

i=1 Wi and Vi = νWi/Xkν , i = 1, ..., k. Then, Xkν

is distributed as the chi–square distribution with kν d.f., Vi is distributed
as the beta distribution with parameters ν/2 and (k − 1)ν/2, and Xkν and
Ṽ = (V1, ..., Vk) are independent. We write ŝ as

ŝ = 1 +
(a − 1)b2

i σ
2
i Vi

∑k
j=1 b2

jσ
2
j Vj

2Z2
i

− ν
b2
i σ

2
i Vikτ?

2XkνZ2
i

,

where Zi = |bi|σi

√
Vi

∑k
j=1 |bj |σj

√
Vj . Then, we have that

u

d2
|bi|Si

k∑
j=1

|bj |Sj =
u

d2ν
XkνZi = QXkν − H,

where

Q =
aZi

d2ν

{
1 +

1
ν

(
1 +

(a − 1)b2
i σ

2
i Vi

∑k
j=1 b2

jσ
2
j Vj

2Z2
i

)}
, H =

ab2
i σ

2
i Vikτ?

2d2Ziν
.

Let us define that U = QXkν − H − [QXkν − H]. From Lemma 3, the condi-
tional distribution of U , given Ṽ = ṽ (H = h, Q = q), is given for x ∈ (0, 1)
that

x − x(1 + h + xi)
q

sup
z

F ′
kν(z) ≤ Pθ(U ≤ x|Ṽ = ṽ) ≤ x +

x

q
sup

z
F ′

kν(z),

where xi ∈ (0, x). We evaluate that 1/Q ≤ τ?/Zi ≤ τ?/(b2
i σ

2
i Vi), and H/Q ≤

kτ?/(2
∑k

j=1 b2
jσ

2
j Vj) ≤ kτ?/(2min1≤i≤k b2

i σ
2
i ) (= γ). Then, we have that
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Eθ(1/Q) ≤ (τ?/b2
i σ

2
i )(kν − 2)/(ν − 2). Here, H/Q is uniformly integrable

since |H/Q| ≤ γ, and 1/Q is uniformly integrable since |1/Q| ≤ τ?/(b2
i σ

2
i Vi)

with τ?/(b2
i σ

2
i Vi) being uniformly integrable. From (65), one can yield that

Eθ

{
x

Q

}
sup

z
F ′

kν (z) ≤ Eθ

{
x(1 + H + xi)

Q

}
sup

z
F ′

kν (z) = O(d).

From the fact that Eθ{Pθ(U ≤ x|Ṽ = ṽ)} = Pθ(U ≤ x), we obtain that

Pθ(U ≤ x) = x + O(d) as d → 0. (66)

Hence, U is asymptotically uniform on (0, 1) as d → 0. The proof is completed.
2

Remark 16 For ŝ given by (20), (27), (39), (47) and (53), one can write Q and
H similar to Lemma 4. Note that, for nominal values of α and β, it holds that
(ε1η3 − η1ε3)/(ε1η2 − η1ε2) ≥ −1 in (47) and G′′

p(a)/G′
p(a) < 0 in (39). Then,

we can evaluate that Eθ(1/Q) = O(1) and Eθ(H/Q) = O(1) for Q and H
given by each ŝ. Hence, the result similar to Lemma 4 is obtained for those
cases as well.

Remark 17 When the design constant is defined as a constant, the asymptotic
uniformity of P (U ≤ x) was studied by several authors. See Hall (1981) for
k = 1 and Takada (2004) for k ≥ 2.

Lemma 5 The two–stage procedure (6)–(7) with (10) has as d → 0:
(i) Eθ{C−1

i (Ni − Ci)} = (2ν)−1(2s − 1 + fi + Bi) + O(d3),
(ii) Eθ{C−2

i (Ni − Ci)2} = (2ν)−1(1 + 2fi +
∑k

i′=1 f2
i′) + O(d3),

(iii) Eθ{C−1
i (Ni − Ci)C−1

j (Nj − Cj)} = (2ν)−1(fi + fj +
∑k

i′=1 f2
i′)

+O(d3) (i 6= j);
where Bi = ν/Ci and s is a constant such that Eθ(ŝ) = s + o(1).

Proof Let us write that

Ni = rCiTi + (1 + [rCiTi] − rCiTi) + (Ni − [rCiTi] − 1),

where r = u/a = 1 + ν−1ŝ and Ti = τ−1
i Yi. Here, from Lemma 4, Ui =

1 + [rCiTi] − rCiTi is asymptotically distributed as U(0, 1). Let Di = Ni −
[rCiTi]− 1. From Lemma 2, it follows that E{(Di/ν)c} = O(ν−3/2) as d → 0,
where c (≥ 1) is fixed. Then, we have that

C−1
i (Ni − Ci) = (rTi − 1) + ν−1BiUi + C−1

i Di. (67)

By noting that Eθ(ŝ) = s + o(1), we obtain the following results:

Eθ(rTi − 1) = (2ν)−1(2s − 1 + fi) + O(d3),

Eθ{(rTi − 1)2} = (2ν)−1(1 + 2fi +
k∑

i′=1

f2
i′) + O(d3), (68)

Eθ{(rTi − 1)(rTj − 1)} = (2ν)−1(fi + fj +
k∑

i′=1

f2
i′) + O(d3) (i 6= j).

Let us combine these results with the expectations of (67). The results are
obtained straightforwardly. 2
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Remark 18 For the two–stage procedure (25)–(26) with (27), we have as W →
0 that
(i) Eθ{C−1

i (Ni − Ci)} = (2ν)−1{2s + Bi + Ai(fi − 0.5) − 0.5
∑k

j=1 fjAj} +
O(W 3/2),

(ii) Eθ{C−2
i (Ni − Ci)2} = (2ν)−1{Ai(1 + 2fi) +

∑k
j=1 f2

j Aj} + O(W 3/2),

where Ai = tr(Σ2
i )/(tr(Σi))2, Bi = ν/Ci, Ci is defined by (23), and s is a

constant such that Eθ(ŝ) = s + o(1).

Lemma 6 For the two–stage procedure (6)–(7) with (10), one has as d → 0
that Eθ(<) = o(ν−1) in (13).

Proof In order to verify this lemma, we have to deal with the terms such as
Eθ(Ii), Eθ(Iij) and Eθ(Iij`), where

Ii =
∂3g

∂u3
i

∣∣
u=ξ

(
Ni − Ci

Ci

)3

, Iij =
∂3g

∂u2
i ∂uj

∣∣
u=ξ

(
Ni − Ci

Ci

)2 (
Nj − Cj

Cj

)
,

Iij` =
∂3g

∂ui∂uj∂u`

∣∣
u=ξ

(
Ni − Ci

Ci

)(
Nj − Cj

Cj

)(
N` − C`

C`

)
for all 1 ≤ i < j < ` ≤ k. Note that each third–order partial derivative’s
magnitude can be bounded from above by a finite sum of terms of the type

Aξ−p1
1 ξ−p2

2 · · · ξ−pk

k (69)

with A ≥ 0, pr ≥ 0, r = 1, ..., k, which are independent of d. Let A also denote
a generic positive constant, independent of d. Let us write N?

i = C−1
i (Ni−Ci)

for i = 1, ..., k. Then, we obtain that

|Eθ(Ii)| ≤ AEθ(ξ−p1
1 ξ−p2

2 · · · ξ−pk

k |N?
i |3). (70)

We observe that ξi > m/Ci = τ?/τi w.p.1 for all i = 1, ..., k. Also, we observe
that Eθ(|N?

i |3) = O(ν−3/2) since Eθ(|N?
i |4) = O(ν−2) from the facts that

Eθ{(rTi − 1)3} = O(ν−2), Eθ{(rTi − 1)4} = O(ν−2) and so on together with
(68). Hence, from (70), it follows that |Eθ(Ii)| = O(ν−3/2). Similarly, one
may use the facts that Eθ(|N?

i |2|N?
j |) = O(ν−3/2) and Eθ(|N?

i ||N?
j ||N?

` |) =
O(ν−3/2) to show that |Eθ(Iij)| = O(ν−3/2) and |Eθ(Iij`)| = O(ν−3/2) for
1 ≤ i < j < ` ≤ k. Therefore, we conclude that Eθ(<) = O(ν−3/2) = o(ν−1).
2

Remark 19 Second–order partial derivative’s magnitude can be bounded from
above by a finite sum of terms of the type similar to (69). We observe that
Eθ{(λ − 1)N?

i } < (Eθ(ν−2t̂2)Eθ(|N?
i |2))1/2 = O(ν−3/2), Eθ{(λ − 1)2} =

O(ν−2) and ξλ > min{1, 1 + ν−1t̂} in (50)–(51). Note that, for nominal values
of α and β, it holds that t̂ > −1 in (48). Hence, we have that

Eθ

{
∂2gα

∂λ∂ui

∣∣
u=ξ

(λ − 1)
(

Ni − Ci

Ci

)}
= o(ν−1),

Eθ

{
∂2gα

∂λ2

∣∣
u=ξ

(λ − 1)2
}

= o(ν−1).
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