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Abstract We consider fixed—size estimation for a linear function of means
from independent and normally distributed populations having unknown and
respective variances. We construct a fixed—width confidence interval with re-
quired accuracy about the magnitude of the length and the confidence coeffi-
cient. We propose a two—stage estimation methodology having the asymptotic
second—order consistency with the required accuracy. The key is the asymp-
totic second—order analysis about the risk function. We give a variety of asymp-
totic characteristics about the estimation methodology, such as asymptotic
sample size and asymptotic Fisher—information. With the help of the asymp-
totic second—order analysis, we also explore a number of generalizations and
extensions of the two—stage methodology to such as bounded risk point es-
timation, multiple comparisons among components between the populations,
and power analysis in equivalence tests to plan the appropriate sample size for
a study.
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1 Introduction

Suppose that there exist k independent and normally distributed populations
mi + N(wi,0?), i = 1,....k, where u;’s and o?’s are both unknown. Let
X1, X2, ... be a sequence of independent and identically distributed random
variables from each 7;. Having recorded Xji, ..., X;p, for each m;, let us write
Xin, = 27:1 Xi;j/n; and n = (nq,...,ng). We are interested in estimating the
linear function p = Zle b; i, where b;’s are known and nonzero scalars. Let
Th = Zle bzym We want to construct a fixed—width confidence interval
such that

Po(|Th —pl <d) > 1 -« (1)

for all @ = (p1, ..., g, 0%, ...,0%), where d (> 0) and a € (0,1) are both pre-
specified. Since

k

o2\
Po(lTa— i < d) = G | & (Z“) ®

n
i=1 v

with G(-) the cumulative distribution function (c.d.f.) of a chi-square random
variable having one degree of freedom (d.f.), requirement (1) is satisfied if

3 —1
252
& (Z n") > a, (3)

i=1

where a is the constant such that G(a) = 1 — a. It is easy to see that the
sample sizes n which minimize the sum Zle n; subject to (3) are given as
the smallest integer such that

k
a
n; = ﬁ|bi|(7iz bjlo; (= Ci, say) (4)
=1

for each ;. However, since o;’s are unknown, the optimal fixed—sample—sizes
C;’s should be estimated by using pilot samples from every ;. It should be
noted from Dantzig (1940) that any fixed—sample-size design cannot claim
requirement (1).

Takada and Aoshima (1997) gave a two—stage estimation methodology in
the spirit of Stein (1945) to satisfy requirement (1) for all the parameters. For
the two—sample problem, see Banerjee (1967), Schwabe (1995) and Takada and
Aoshima (1996). However, it tends to be oversampling especially when the pilot
sample is fixed small compared to the size of C;. Later, Takada (2004) gave a
modification of the Takada—Aoshima procedure so as to make it asymptotically
second—order efficient, i.e., limsup,_,, Eo(N; — C;) < co. Such a modification
had been created and explored for the one-sample problem and the other
problems by Mukhopadhyay and Duggan (1997, 1999), Aoshima and Takada
(2000), and Aoshima and Mukhopadhyay (2002) among others. One may refer
to Aoshima (2005) for a review of two-stage estimation methodologies.
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Here, we summarize a modified two—stage procedure due to Takada (2004):
Along the lines of Mukhopadhyay and Duggan (1997, 1999), we assume that
there exists a known and positive lower bound o;, for o; such that

0; > 0k, 1=1,...,k. (5)
(T1) Having mg (> 4) fixed, define

k
a .
m = max { Mo, ﬁfgnilgk'bi‘m*;‘bﬂaj* +15, (6)
J:
where [z] denotes the largest integer less than z. Take a pilot sample X1, ...,
Xim of size m and calculate S? = Z;nzl(Xij — Xim)?/v for each m;, where
Xim = Z;nzl X;;j/m and v = m — 1. Define the total sample size of each m; by

k
u
N; = max {m, ﬁ|bl|SZZ\bJ|SJ +15, (7)

j=1

where the design constant u is chosen as

a+2k—1
ua<1+zy>. (8)

Let N = (Ny,..., Ng).

(T2) Take an additional sample X, 41, ..., X;n, of size N;—m from each ;.
By combining the initial sample and the additional sample, calculate X;y, =
Nfl Zj\;l Xi; for each m;. Finally, construct the fixed-width confidence in-
terval with Ty = Zle bi XN,

Then, it holds as d — 0 that

Po(|Tw — | < d) > 1 —a+o(d*) forall .

However, the modification in those literatures has as yet been unable to prevent
oversampling in two—stage estimation methodologies.

In this paper, we make an improvement on the two—stage procedure so as
to make it asymptotically second—order consistent with the required accuracy
asd— 0, ie.,

Po(|[Tnw —p| <d) =1 —a+o(d*) forall 6. (9)

With such an improvement, the required sample size is drastically reduced es-
pecially when k is large. The key is the asymptotic second—order analysis about
the risk function. In Section 2, we show the asymptotic second—order consis-
tency for such the modified two—stage procedure along with its asymptotic
second—order characteristics. Also, we discuss asymptotic Fisher—information
in the modified two—stage estimation methodology. In Section 3, with the
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help of the asymptotic second—order analysis, we explore a number of gen-
eralizations and extensions of the modified two—stage methodology to such
as bounded risk point estimation, and multiple comparisons among compo-
nents between the populations. In Section 4, we apply the modified two—stage
methodology to power analysis in equivalence tests to plan the appropriate
sample size for a study. In Section 5, we report the findings of simulation
studies and compare performance of our methodology with those of earlier
literatures.

2 Asymptotic second—order consistency

Throughout this section, we write that

-1

k
Ty = mln \b |0HZ 1bjlojwe,  fi=|biloi Z |bjlo; (i=1,..,k).
=1

Jj=1
Theorem 1 Choose u in (7) as u = a(1 + v~13) instead of (8), where
(a— 1) 5L 1282 — kr.
2(21’:1 [b:].5:)*

with S2’s calculated in (T1). Then, the two-stage procedure (6)—(7) is asymp-
totically second—order consistent as d — 0 as stated in (9).

s§=1+

(10)

Proof We have from (2) that

k bjo; o
Po (T — p| < d) = (Z M)

i=1
oo -1
a (Z fN> . (11)
i=1 ¢

Now, let us define a new function as follows. We write

g(ur, .y up) = Glav™), v = flufl 4t fkulzl foru; >0, i=1,... k.

Denoting G'(w), G”(w) for the first and second derivatives of G(w) respec-
tively, one can verify the following expressions of the partial derivatives of
g(uy,...,ug). For all 1 < # j <k, we have that

99 oG (afo) fiv ;.
u;
2
09— afaG(afo) f2o~"u 4 26/ (afo) f2o it 2G (afo) fio i,
0%g

du0u = a{aG//(G/U)fiij_4 U, 24 QG’(G/U)foJ u UJ 2}
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From (11), we use the Taylor expansion to claim that

N N,
Po(Tx — | < d) = Eo {g (C Ck)}

k
=1-a+aG'(a) Zf,;Eg (Nic‘ Ci)
i=1 '

- 2
+5 2 (06" (@)} + 26/ (@)f? = 26 (a) i) g { (&%) }

i=1

+% > (aG"(a)fif; +2G'(a)f:f;) Ee { <Nc_~ Ci) (Njc_jcj > }

i#£j
where
1 Py Ni=Ci\ (N =G5\ (Ne=Ch
Ee(%)—6§E9{MW|u=§< C; ) < C; > ( Cy >}
(13)

with suitable random variables &;’s between 1 and N;/C;, i = 1,....k, u =
(g, ...,ur) and &€ = (&1, ..., & ). With the help of Lemmas 5 and 6 in Appendix,
we obtain the following expansion from (12):

Py(IIn—pl<d)=1-«

aG/< < —1+= ZfZBJerQJraGNS))fo)JrO ), (14)

=1

where B; = C; v and s is a constant such that Fg(§) = s + o(1). Combining
the results that Ele fiB; = k‘T*(Zle |b;|os) =24+ O(d?) and aG" (a)/G'(a) =
(—a —1)/2 with (14), we claim assertion (9) as d — 0. O
Remark 1 Liu and Wang (2007) gave a three-stage estimation methodology
satisfying requirement (9) when k = 2. In fact, their results are verified under

the assumption (3.1), in the literature, that requires known lower bounds such
as (5) tacitly.

Remark 2 From Lemma 2 in Takada (2004), the constant w given by (8) is
coincident with the one originally given by Takada and Aoshima (1997) upto
the order O(r~—1). For the two-stage procedure (6)—(7) with (8), by putting
s=(a+2k—1)/2in (14), one has as d — 0 that
Py([Tw —pl <d)=1—«
aG'(a) b+ (1—a)yi, blo?
2v (i [bilos)?

Note that § < (a+ 2k —1)/2 w.p.1. The use of (10) saves more samples when
k is large.

+ <a+2k—3+ ) +o(d*) for all @.
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Theorem 2 The two-stage procedure (6)—(7) with (10) has as d — 0:

(i) Eo(N; — Ci) = (2r) " { bilos X5, bjloy + (a— 1) fi b b202 + b2o?
+3(1—kfi) +o(1) fori=1,..,k,
(ii) Eo(Xf_ Ni— S5 Ci) = (2r) M (X0, bilow)? + a X5, b20? } + o(1).

Proof The results are obtained by Lemma 5 in Appendix straightforwardly.
O

Remark 3 Let us consider two cases that the lower bounds o;,’s are misiden-
tified: (i) oy« is much smaller than the true value of o;; (ii) several ;s are
larger than the true values of ¢;’s so that it causes m > min;<;<; C;. For case
(i), as observed in Theorem 2, it causes oversampling although requirement
(9) is satisfied. For case (ii), the two—stage procedure (6)—(7) with (10) has as
d — 0 that

Po(|[Tnw — | < d) > 1 —a+0(d?) for all 6.

Now, we evaluate the Fisher information in the statistic Ty that is calcu-
lated in (T2) with the constant u given by (10). We write the Fisher informa-
tion in Ty about p as Fry (1)

Theorem 3 The two-stage procedure (6)—(7) with (10) has the Fisher infor-
mation in T as d — 0:

F 2 1S 242
]:TN(N) _ 4 Plat )kEzzl L o(d?), (15)
Tc (M) 26”'*(21:1 |bi|Ji)2

where C = (C1, ..., Cy) is defined by (4).

Proof In a way similar to Theorem 2.1 in Mukhopadhyay (2005), we have that

Then, one has that Frg (1) = (33F_, b202/C;)~F = ad~2. So, we may write

=17t
that
-1

Frpe (1) Ao
Froln) ~ 20 (Zfzv> | 16)
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From (16), we use the Taylor expansion to claim that
Frpg (1) i <Nici) i 2 <N1'Ci)2
=1+ fE +5N (- HE B
Fro () ; fiEe o ;(f fi)Ee c
N; - C;

+Zfz‘ij9{<NiCiCi>( G, >}+Ee(%)’ (17)

i#j

1 &3v~t N; — C; N; = C; Ne—Cy
E"(%)GMX;E"{MWh_ﬁ( C; )( C; )( Ce >}

with v = Zle fiui_l for u; > 0, ¢« = 1,..., k, suitable random variables &;’s
between 1 and N;/C;, i = 1,..,k, u = (u1,...,ux) and & = (&1, ..., &). With
the help of Lemmas 5 and 6 in Appendix, we obtain the following expansion
from (17):

FrelW) _ 11 1 Sl Ly B —1 18
Froln) +v7 [ s— +;fi+§;fii +o(r™), (18)

where B; = C; 'v and s is a constant such that Eg(5) = s + o(1). Combining
the result that Zle fiB; = kT*(Zle |bi]o;) 72 + O(d?) with (18), we claim
assertion (15) as d — 0. O

Remark 4 For simplicity, we let k =1 (b= 1). Then, C' = ac?/d?. Under the
assumption that F= (1) exceeds T (u) for every fixed (u, 0?), Mukhopad-
hyay (2005) proposed to determine the pilot sample size m for Stein’s (1945)
two—stage estimation methodology as

m = smallest positive integer such that Fx (u)/Fx (1) <1+e¢

for a prespecified quantity e (> 0) which is free from (u, 0?). Mukhopadhyay
showed that Fx (u) = 0 ?E,2(N) and suggested that one may determine
the pilot sample size m as

m = smallest positive integer such that E,2(N)/C < 1+¢e+o(m™1).

Let us write that E,2(N)/C = 1+ x/m + o(m~!) with the design constant
u = a(1+s/m)+0O(m~2) where x is a constant free from m and s = (a+1)/2
for Stein’s methodology. If m is completely free from o2, we should choose m in
order O(d®) with ¢ € (—1,0) in order to specify quantity ¢ free from 2. Then,
we have that = s, so that m = s/e¢ which is exactly the one given by (3.7)
in Mukhopadhyay (2005). Now, let us say ¢ = —0.5 and choose m in order
O(d~'/?). Let us simply write m = sd~'/2. Then, we have that ¢ = s/m =
d'/2. When ¢ is specified as ¢ = 0.1 (0.01), we have that d = 1072 (10~%),
so that C should be very large. It would cause oversampling in the two—stage
estimation methodology.
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Remark 5 From (15), we have as d — 0 that
fTN(M)/ch(M) <l4+e+ O(m_1)7

with € = (2a7.)~(a + 1)d2. On the other hand, from (18) with s = (a + 2k —
1)/2, which is coincide with the one for Stein’s (1945) methodology for k = 1,
the two-stage procedure (6)—(7) with (8) has the Fisher information in T as
d—0:

F 2 25 1242 ,
™~ (M) -1 + d a+ 2k — 3 + Zz:kl bz 0; + k. + 0(d2). (19)
]:Tc (M) 26”—* (Zi:l |bz|az>2

From (19), we have ¢ = (2a7,)~!(a + 3k — 1)d?. It should be noted that the ¢
part (redundancy) becomes small when we utilize (10) instead of (8).

Remark 6 If we choose u in (7) as u = a(1 + v~18) with

. 25°F 252 + kT,

=1 "1~

2(58, bi]Si)?

instead of (10), the two—stage procedure (6)—(7) has the Fisher information in
Tn asd — O:

(20)

§:

Fra (1)) Fro () =1+ o(m™).
Then, it holds as d — O:
(i) Eo(N; = Ci) = (2r) " { bilos S2j [bslos — (2 5250 05073 + k) fi + bio?
+1+0(1) fori=1,...k,
(i) Bo(Xy Ni— Y0, Ci) = (2r) " H(Xh, biloi)? = 0, 6202} + o(1).

3 Applications
3.1 Bounded risk estimation

Suppose that there exist k independent and normally distributed popula-
tions m; : Np(p;, X;), ¢ = 1,...,k, where p;’s € RP and X;’s are both un-
known, but X;’s are p x p p.d. matrices. Let X;1, X;2,... be a sequence of
independent and identically distributed random vectors from each ;. Having
recorded X1, ..., X;p, for each m;, let us write X, = Z;L:1 X;j/n;and n =
(n1, ..., ng). We are interested in estimating the linear function g = Zle bip,;,

where b;’s are known and nonzero scalars. Let T, = Zle bzflm For a pre-
specified constant W (> 0), we want to construct T, such that

Eg(||Tw—pl*) <W (21)
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for all @ = (pq, ..., by, X1, ..., Xi), where || - || is the Euclidean norm. Since
Eo(||Tn — pl*) Zb2tr i)/mi, (22)

it is easy to see that the sample sizes n which minimize the sum Zle g
subject to (21) are given as the smallest integer such that

Ib [Vtr Zlb ly/tr( = Ci, say) (23)

for each ;.

When p = 1, Ghosh et al. (1997, Chap. 6) considered a two—stage esti-
mation methodology to satisfy requirement (21). Later, Aoshima and Takada
(2002) considered the present problem and gave a different two—stage estima-
tion methodology. Aoshima and Takada showed that their procedure satisfies
requirement (21) with fewer samples than those in Ghosh et al. When applying
the asymptotic second—order analysis to the present problem, we make an im-
provement on the two—stage estimation methodology to hold the asymptotic
second—order consistency as W — 0 as stated in (28): We assume that there
exists a known and positive lower bound o, for (tr(X;))"/? such that

tI‘(Zi) >0, 1=1,..,k. (24)
(T1) Having mg (> 4) fixed, define
k

min, |b loix > [bjlogu| +1 ¢ (25)
j=1

m = max { mo,

Wl

Take a pilot sample X1, ..., X;,, of size m and calculate S; = Z;-n:l(Xij -
Yim)(Xij — X im)' /v for each 7;, where X, = Z;nzl Xj/mand v =m—1.
Define the total sample size of each m; by

N; = max < m, |b [/ tr |b [1/tr (26)

where u is chosen as u = 1+ v 715 with § given by (27). Let N = (N1, ..., Ni).
(T2) Take an additional sample X;n11,..., XN, of size N; — m from

each m;. By comblmng the initial sample and the additional sample calculate
XN, =N, E] | X ; for each 7;. Finally, estimate pu by Ty = b, bi Xin, -
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Theorem 4 Let 7, = miny<i< |bi|oix Z?Zl |bjlojx, where oy is given by
(24). Choose u in (26) as u =1+ v~13, where

S (tr(S)/(#r(80))%) (B21r(S0) + Ibul /(S 5, by 1/#r(S,))
(L, I V/r(SD)
kT

- (27)

2 (Zf:1 |bi|vtr(5i))2

with 8;’s calculated in (T1). Then, the two—stage procedure (25)-(26) is asymp-
totically second—order consistent as W — 0, i.e.,

§:

Eo(||Tx — pl)?) = W +0o(W?)  for all 6. (28)

Proof We have from (22) that

Bo (|| T~ — pl})? (Z bitr(X )
ok
=W Eg (Z )
where f; = |b;j|\/tr(X;)/ Zle |bj/tr(X;). Use the Taylor expansion to claim

that

E9<gﬂ%>—1—ZﬂE9(N c) Zk:flEe{(N 0)}

2\@

where Fg(R) = — Zle fiEe {5;401-_3(Ni — C;)?} with suitable random vari-
ables &;’s between 1 and N;/C;, i = 1,...,k. One may apply Lemma 6 in
Appendix to claim that Eg(R) = o(r~1) as W — 0. With the help of Remark
18 in Appendix, we obtain the following expansion from (29):

Eoo
Eg (; fiM—)

b k
:1+%Zﬂ —9s— By + A; (fH-g) +;fjAj <fj+;) o),

=1

(30)

where A; = tr(X?)/(tr(X,))?, B; = vC; ', and s is a constant such that
Eg(8) = s+ o(1). From (30), we obtain (28) straightforwardly. a

Remark 7 The two-stage procedure (25)—(26) with (27) has as W — 0:
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(1) Eg(Nl — Cz) 27'* _1{ §|b4|\/tr(2i) Z?:l |b]|A] tI‘(E]') + b%Aztr(El)
H2 T DR A(3)) fi — AIbil A /e (Z0) 5 b/ (Z5) )
%(1fkfl)+o(1) forzfl Sk,
(ii) Bo(Yfy N;— i, Ci) = (27.) l{z” |b \\/tr 1b;14; \/

+3 Zj:l [bj1A;1/tr(25) } + o

Remark 8 Aoshima and Takada (2002) gave a two—stage estimation methodol-
ogy to satisfy requirement (21) without assumption (24). In their methodology,
the constant u in (26) is given by u = v/(v —2) = 1+2/v+ O(v~2). Then, for
the two-stage procedure (25)—(26) with w = 1 + 2/v, one has from (30) with
s = 2 that

Eo(||Tx - pl)?
k —2
=W+5%5 ( qu fit DA —4— kn(me/tr(Ti)) )
i=1
+0(W2) for all 0.

Note that § < 2 w.p.1. The use of (27) saves more samples when k is large.

3.2 Multiple comparisons among components

Suppose that there exist k independent and normally distributed populations
m ¢ Np(py, 25), i = 1,...,k, where p > 2, and p;’s € RP and X;’s are both
unknown, but X; = (0(;),s) (> 0) has a spherical structure such that

T(@)rr + O(i)ss — 2U(i)rs = 2612 (1 Sr<s< p) (31)

with §; (> 0) unknown parameter for each ;. A special case of such the model
is the intraclass correlation model, that is, X; = o2{(1— p;)I,+p;J } for some
pi, where J denotes a p X p matrix of all 1’s. We consider multiple comparisons
experiments for correlated components of pu = Zle bip;. Let us write p =
(&1, ..., &p). Similarly to Section 3.1, we use T, = Zle blfm as an estimate
of p. Let us write Ty, = (Tin, --., Tpn). For a prespecified constant d (> 0), we
define three types of simultaneous confidence intervals for ({1, ...,&p):

( ) n:{/J/|§T s [rn_Tsn_da Trn_Tsn+d]71§T<3§p};

/—\

R, = {u| & — maxfs [—(Tyn — mijsn —d)7, +(Trn — mijsn +d)*],

r=1,..,p},
where +217 = max{0, 2} and —2~ = min{0, z};
(MCC) Rn ={p| & — & € [Ton —Tpn —dy, Trn — Tpn +d], 7=1,...,p—1}.
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For the details of these multiple comparisons methods, see Aoshima and Kushi-
da (2005) and its references. For each of them, for d (> 0) and « € (0, 1) both
specified, we want to construct R, such that

Py(p € Ry)>1—a forall @ = (pq,..., pp, X1, ..., ) (32)

with X;’s defined by (31).
It is shown for MCA and MCC that

5 (&= b262 -
Po(n € Ry) =G, | d ;T ,
where G, (y) for y > 0 is defined by
Gply) = p/ {®(z) — Pz — \/y)}'~dd(x) (for MCA), (33)

Gp(y) = /_Oo {P(z + ) = (x — )}~ dd(x)  (for MCC)  (34)

with @(-) the c.d.f. of a N(0,1) random variable. It is shown for MCB that

k

0202\
Po(p € Rn) > G, | d* (D =+ :

n
i=1

where

Golw) = [ {@la+ Vi) dn(e). (35)

So, the sample sizes n that minimize the sum Zle n; while satisfying require-
ment (32) are given as the smallest integer such that

k
a
n; > ﬁ|bi‘5iz bj6; (= Ci, say)
j=1

for each m;, where a (> 0) is a constant such that Gp(a) = 1 — a with Gp(-)
defined for each method by (33), (34) or (35), respectively.

When applying the asymptotic second—order analysis to this problem, we
make an improvement on the two-stage estimation methodology to hold the
asymptotic second-order consistency as d — 0 as stated in (40)—(41): We
assume that there exists a known and positive lower bound o, for ¢; such
that

0; > 04, =1,k (36)

(T1) Having mg (> 4) fixed, define
k

a .
m = max { mo, ﬁ1%12k|bi‘oi*z‘bj|oj* +15. (37)
<i< =
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Take a pilot sample X;; = (Xij1,..., Xijp), 7 = 1,...,m, and calculate Sizp =
vyt Y (K =Xy, = Xy + Xi)? with v, = (p — 1)(m — 1) for
each m;. Here, X;;. = p ' Y0 Xijp, Xip = m™? >y Xijr and X =

(pm) =t 3°7_) 3770, Xijr. Note that v,S7,/67 is distributed as a chi-square
distribution with v, d.f. Define the total sample size of each m; by

k
u
N; = max { m, ﬁ\bﬂsipz:\bﬂsjp +1y, (38)

j=1

where u is chosen as u = a(1+v,'5) with a given for each method and § given
by (39). Let N = (Ny, ..., Ng).

(T2) Take an additional sample Xn11,..., XN, of size N; — m from
each m;. By combining the initial sample and the additional sample, calcu-
late X;n, = N[l Zjv:l X ; for each ;. Finally, for each method, construct

Rn with the components (T, ..., Tpn) of T'n = Zle b XN,

The following theorem can be obtained similarly to Theorem 1.

Theorem 5 Let 7, = minj<;< |bi|0ix Zle |bjlojx, where o4 is given by
(86). Choose u in (38) as u = a(1l 4+ v, '3) with a given for each method,
where

G"(a
2(a% +1)F 8282 4 k(p— )7,

=1 "1 ~ip
k
2(Zi:1 |bi|Sip)2

with S,’s calculated in (T1). Then, the two-stage procedure (37)-(38) is
asymptotically second—order consistent as d — 0, i.e.,

§=1- (39)

Po(p € RN) =1—a+o(d*) forall @ (MCA, MCC); (40)
Po(p € Rn) > 1—a+o(d*)  forall @ (MCB). (41)

Remark 9 The two—stage procedure (37)—(38) with (39) has as d — 0:
(i) Eo(N; —Cs)
= (2(p — D7)~ { bslds 5, [bj10; — 2 (GL” + 1) R 5262 40282 )
* ¥ g=11771%7 G;)(a) t j=1%3"] )
+i(1—kf;))+o(1) fori=1,..k,
(i) Bo(iy Vi = X1y Ci) .
_ G (a
= 2(p = V7)) (S 101002 — 2 (a s + 3) T 0262} + (1),

where f; = |bi|5i(2§:1 [bj[0;) "

Remark 10 The two-stage estimation methodology (37)-(38) was given by
Ao-shima and Kushida (2005), but they chose the constant « in (38) as u =
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a(l+v,'s) with s = k — 1 — aGY)(a)/G),(a). For their two-stage procedure,
we have as d — 0 that

Po(pe RN) > 1—«

aG! (a) 1 k(p a)
+Vp<k—2+ Zf2+aG,a Zf2—1>

» 2(211\b|5 i=1

+o(d?) for all @,

where the equality holds for MCA and MCC. For a nominal value of a, note
that aG},(a)/Gp(a) < —1. Then, from (39), we have that 3 < s w.p.1. The use
of (39) saves more samples when k is large.

4 Testing for equivalence

We consider the problem to test the equivalence of two independent normal
populations m; : N(u;,0?), i = 1,2, with p;’s and ¢?’s both unknown. We
want to design a test of

Hy: |p| = |p1 — po| >d against H, : |u| <d (42)

which has size o and power no less than 1 — 8 at |u| < ~d for all 8 =
(11, p2,0%,03), where a, 3 € (0,1), v € [0,1), and d > 0 (the limit of equiv-
alence) are four prescribed constants. Let us write X;,, = Z;lzl Xij/ni, i =

1,2, similarly to Section 1. If 02’s had been known, we would take a sample
from each m; of size

52
mn; Z ﬁJiZUj (: Ci, Say)
j=1

and test the hypothesis by

5 g\ 1/2 2 o\ 1/
rejecting Hy <= |X1n, — Xon,| < <Z Cf) R d(Z q)
-1
_dR (5)

Here, the function R(-) is determined uniquely by the equation
P(IN(0,1) + z| < R(x)) = «

with N(0,1) a standard normal random variable, and § = §(«, 3,7) is the
unique solution of the equation

P(IN(0,1) + 4] < R(d)) =1— 3.
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When o?’s are unknown but common (0% = ¢3), Liu (2003) proposed
k (> 3)-stage procedure having the size a+o(n~!) and the minimum power 1—
B-+o(n~t). When applying the asymptotic second—order analysis to the present
problem, we give a two—stage estimation methodology to hold the asymptotic
second—order consistency, which has the accuracy of the same degree as in
Liu, as stated in (49): We assume that there exists a known and positive lower
bound o, for o; such that

g; > 0%, 1=1,2. (43)

(T1) Having mg (> 4) fixed, define

m = max { my, ﬁ 121122 Oix Z Ojx| +15. (44)

Take a pilot sample X1, ..., X, of size m and calculate S? = Z;n:l(Xij —
Xim)?/v with v = m — 1 for each 7;. Define the total sample size of each T;

by
u 2
N; = max { m, ﬁSiZSj +1%, (45)
j=1

where u is chosen as u = §2(1 + v~13) with § given by (47).

(T2) Take an additional sample X, 41, ..., Xin, of size N;—m from each 7;.
By combining the initial sample and the additional sample, calculate Xy, =
Ni_1 Z;\;l X; for each m;. Then, test the hypothesis by

— - dR(6
rejecting Hy < | X1y, — Xan,| < ﬁ#, (46)
where ) is chosen as A\ = 1+ v~# with ¢ given by (48).
Theorem 6 Let 7, = minj<;<2 0 25:1 Ojx;, Wwhere o, is given by (43).

Choose w and X in (45)-(46) as v = 6*(1 + v=15) and X = 1 + v, re-
spectively, with

2
_ 52 -
§:1+(51773’7153_1> Zgzl T e (47)
€1M2 — MiE2 2(21‘:1 Si)? (Zi:l Si)?

2
P €3M2 — €273 Zi:l Sz‘Q (48)

2R(5) (e1i2 — e2mm) (32, Si)?
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where S2’s are calculated in (T1), ¢(-) is the p.d.f. of N(0,1), and

= ¢(R(8) — ) + ¢(R() + ),

= (R(8) = 0)$(R(9) — 8) + (R(5) + 0)p(R(d) + 9),

= (R(0) = 0)°¢(R(0) — 0) + (R(6) + 6)’(R(6) + 6),

= O(R(8) = 70) + ¢(R(5) +9),

= (R(6) = 70)d(R(6) = 76) + (R(8) + 7¥6)p(R() + ~9),
(R(0) = 70)°6(R(8) — 78) + (R(8) +70)*¢(R(8) +0).

Then, the test (46) of (42), with (44)-(45), is asymptotically second—order
consistent as d — 0, i.e.,

size =+ o(d?) and minimum power =1 — B+ o(d?)  for all 6. (49)

Proof From (46), we have the size at |y — p2| = d that

5 ~1/2
Eo {@ ((ﬁRw) — ) (_Z fﬁ) ) }
- 9 -1/2
— Ey {qs (—(\FAR(é) +6) <Z f]i) ) }

—& (R(5) — 8) — & (—R(6) — ) + %

+— < s—2+Zle +Zf ) £ Zfi2+Ee(%a)+o(u‘l), (50)

where f; = ai(Z?:l o)t i=1,2, and

=
2,
=
&

Mw

8ga Nz_C aga 2
E{amu |u=€(A_1)< Ci )}+ E”{av |u£(A_1)}

Z &‘ Ni—Ci\ (N;j —Cj\ (Ne—Cy
wy 8ui8uj6uz u=§ C; C’j Cy ’

2

CD\»—! .U.

with

ga(A\ ur,ug) = @ ((A”zR(é) - 5)1;*1/2) 7 (—(/\1/2R(6) + 5)1}*1/2) :

v = flul_l + f2u2_1
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for u; > 0, i« = 1,2. With suitable random variables &, between 1 and A
and &;’s between 1 and N;/Cy, i = 1,2, u = (A, up,uz) and € = (&, &1, E2).
Similarly, we have the minimum power at |u; — po| = vd that

9 ~1/2
Eo @ | (VAR() - 79) (Z fﬁ)

—1/2
—Eg{ P | —(VAR(8) +~d) (Zfz >

R(8)tm
2v

2
+2 (23—2+Zf13 +Zf2> - E;f?JrEe(%) +o(v™h), (51)

where Eg(Rg) is defined by replacing gq (A, u1, ug) with

= (R(0) —~0) = (=R(6) —76) +

g5\ u, up) = & ((Al/zR((S) - 75)071/2) — 9 (—(/\1/21?,(6) n 75)071/2)

in Eg(Ry). Here, in both (50)—(51), s and ¢ are constants such that Eg(8) =
s+ o0(1) and E(t) = t + o(1). One may apply Lemma 6 and Remark 19 in
Appendix to claim that Eg(R,) = o(v~!) and Eg(Rs) = o(v™') as d — 0 in
(50)—(51). Note that ®(R(§) — 0) — P(—R(§) — d) = a and P(R(S) — vd) —
&(—R(§) —v6) = 1 — . The assertion (49) can be shown straightforwardly. O

Remark 11 When 0?’s are unknown but common (0% = ¢3), define the total
sample size as N7 = No = max{m, [(u/d?) 2321 52] +1}. Choose

§:1(51773_77153+1)_T* j_ €32 — o
4 \enz — ez 257 | 87 4R(0) (e1m2 — €2m1)

Then, the test (46) of (42) is asymptotically second—order consistent as d — 0
as stated in (49).

Remark 12 The two—stage procedure (44)—(45) with (47) has as d — 0:

(i) Bo(Ni = Ci) = (2m) Hoi X5y 05 + (50 = 1) fy 5, 07 + 07 }
+i(1=2fi)+0(1) fori=1,2,

(i) Bo(Ximy Ni— Yy Co) = (27) H(Z02, 00)® + 50 2y 07 } + o(1),

where s; = (e1m3 — mes)/(e1m2 — me2). It has the Fisher information in T
asd — 0:
F d? 1 2
TN('H) =14+ (5 + )221 1% 0(d2).
Fre (1) 2627, (37, 0)?




18 M. Aoshima, K. Yata

Remark 18 Let us consider the case that our goal is to design a one-sided
equivalence test of

Hy:p=p —ps < —d against Hy:p>—d (52)

which has size a and power no less than 1 — 3 at u > —~vd for all 6. So,
one wants to demonstrate that a treatment is no worse than a standard or
one treatment is no worse than another treatment in paired comparison by
amount d. If 02’s had been known, we would take a sample from each 7; of
size

and test the hypothesis by

rejecting Hy <— Ylm _Y2n2 > —d (W> .

Za T R1-p

One may utilize the two-stage procedure for this goal as well. Replace §2 with
(20 — 21-5)?/(1 —7)? in (44) and in the choice of u of (45). Choose

2

2 g2 .

§=1+(22+27 5+ 2a21-5— 1) 212:1 — — 5 (83)
2(21‘:1 Si) (Zi=1 Si)

V20 =210 AT, S

t=zaz1-p(2a + 21-p)
Then, the test of (52), given by

rejecting Hy < Yuvl _YQNQ > —V\d (Wzl’@)
2o T R1-p

with A = 1 4+ v~14, is asymptotically second-order consistent as d — 0 as
stated in (49). Then, it holds as d — 0:

(i) Eo(Ni —Ci) = (21) Yo Yr 0 + (o — ) fi Y3y 02 + 02}
+i(1—-2f;) +o(l) fori=1,2,
(i) Bo(Xr, Ni— Y2 C) = (21) (X7, 00)? + 50 Yoy 07 } +o(1),

where so = 22 + zf_ﬁ + 2o21—p. It has the Fisher information in T as d — 0:
Frn (1) (1—7)%d%(s, +1) 37, o

N = 0] 2 .
fTC (:u) b 27'*(25(1 - 217,3)2(2?21 Ji)2 " (d )
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Remark 14 Let us consider the case that our goal is to design a two—sided test
of

Hy:p=py—ps=0 against H,:pu#0 (54)

which has size a and power 1 — 3 at |u| = d for all 8, where a, 8 € (0,1) and
d > 0 are three prescribed constants. If 02’s had been known, we would take
a sample from each m; of size
a.f) <
n; Z TUZ‘ Z gj

j=1
and test the hypothesis by

dza/2
c(a, )’

where z, is the upper z point of N(0,1), and ¢(a,8) (> 0) is the unique
solution of the equation

P(IN(0,1) + c(a, B)| > zas2) =1 - 5.

rejecting Hy <— |Y1m _Y2n2| >

One may utilize the two—stage procedure described above for this goal as well
after replacing (4, R(0), ) with (c(a, 3), 24 /2,0), respectively, in (44)—(45) and
(47)—(48). Then, the test of (54), given by

dza/2
cla, B)’

is asymptotically second—order consistent as d — 0 as stated in (49).
For a one—sided equivalence test of

rejecting Hy <= |X1n, — Xon,| > 2

Hy:p=p —pue=0 against H,:pu<0 (55)

which has size a and power 1 — 8 at u = —d for all 8, we would take a sample
from each m; of size

2 2
oy — R1—
n; > (adﬂ) UiE 05,
j=1

and test the hypothesis by
rejecting Hy <— Ylnl _X2n2 < —d (Za> .
Za T 21—
So, replace §% with (2, —21-5)? in (44) and in the choice of u of (45). Choose
§ as in (53) and choose
Yi1 5
230 S0

t=—2z1-p(2a +21-p)
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Then, the test of (55), given by

rejecting Hy <— YlNl —YQNz < —V\d (ZZO;ﬂ)
a T ~l—

with A = 1 4+ v~'%, is asymptotically second-order consistent as d — 0 as
stated in (49).

5 Computer simulations

In order to study the performance of our methodology, we take resort to com-
puter simulations. We shall compare our procedure given in Section 2 with the
earlier two—stage procedure or the three—stage procedure. We fix £ = 2 and
(b1,b2) = (—1,1). Our goal is to construct 95% fixed—width confidence inter-
vals for g = p1 — po. In other words, we have o = 0.05 (that is, a = 3.841) and
we set d = 0.5. Let C' = Z?:l C;. We set (C1,C3) = (40,60), whereas with
C' = 100 one easily obtains from (4) that (o1,02) = (1.02,1.53). We consider
three cases that m = 10,20, 30 (mo = 4 which is kept fixed throughout) and
for each case (014,092«) are chosen as o1,/01 = 09,/02 = y/m/Cy. Table 1
examines the performance of the two—stage procedure (6)—(7) with (10) in the
first block, the earlier two-stage procedure (6)—(7) with (8) due to Takada
(2004) in the second block, and the three-stage procedure due to Liu and
Wang (2007, Section 3) with ¢ = 0.5,0.7,0.9 according to each set of fixed
(014, 02+) in the third block.

The findings obtained by averaging the outcomes from 10,000 (= R, say)
replications are summarized in each situation. Under a fixed scenario, suppose
that the rth replication ends with N; = n;,. (i = 1,2) observations and the
corresponding fixed-width confidence interval Ry, = {u € R : [Ty, — u| < d}
based on n, = (ni,,ne.) for r = 1,...,R. Now, n; = R™* Zfil n; which
estimates C; with its estimated standard error s(m;), where s%(m;) = (R? —
R)~! 27}11(”% —m;)?, i =1,2. Then, i (= 7y + Mi2) estimates the total fixed
sample size C' with its estimated standard error s(7), computed analogously.
In the end of the rth replication, we also check whether p belongs to the
constructed confidence interval Ry, and define p, =1 (or 0) accordingly as p
does (or does not) belong to Ry, 7 = 1,...,R. Let p = R~} Ef’:l P, which
estimates the target coverage probability, having its estimated standard error
s(p) where s%(p) = R™'p(1 — p). For the two-stage procedure (6)—(7) with
(10), the value of u is given as the average number of the outcomes from
10,000 replications. At the last column, we gave the approximate value of
Eg(N; —C}), which was obtained from Theorem 2 in Section 2, from Theorem
3 in Takada (2004), and from Theorem with (3.2) in Liu and Wang (2007),
respectively for each procedure.

Let us explain, for example, the entries from the first block for the case
when m = 20 in Table 1, and hence (014, 024) = (0.72,1.08). From 10,000 inde-
pendent simulations, we observed u = 4.152, 7y = 43.11, s(7;) = 0.106, 7ip =
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Table 1 Simulated results

s p____s®) BE(N-0C)
m = 10, (014, 024) = (0.51,0.77)
Two-stage procedure (6)—(7) with (10)
C 100  4.541 116.02 0.403 0.9482  0.00222 14.98
Ch 40 46.20  0.167 5.86
Co 60 69.82 0.279 9.13
Two-stage procedure of Takada (2004)
C 100  5.302 135.16 0.464 0.9584  0.00200 31.81
Ch 40 53.83 0.193 12.58
Co 60 81.33 0.321 19.22

Three—stage procedure of Liu and Wang (2007) with ¢ = 0.5

C 100 106.66  0.228 0.9508  0.00216 5.84
C1 40 43.43 0.101 3.32
Co 60 63.23 0.148 2.52
m = 20, (014,02:) = (0.72,1.08)
Two-stage procedure (6)—(7) with (10)
C 100 4.152 108.14 0.253 0.9515 0.00215 7.49
Ch 40 43.11 0.106 2.98
Co 60 65.03 0.175 4.52
Two-stage procedure of Takada (2004)
C 100 4.533 117.08 0.274 0.9556  0.00206 15.90
Ch 40 46.79 0.115 6.34
Ch 60 70.29 0.189 9.56
Three-stage procedure of Liu and wang (2007) with ¢ = 0.7
(& 100 104.36  0.179 0.9461  0.00226 4.17
C 40 42.66 0.080 2.37
Co 60 61.70 0.116 1.80
m = 30, (014,02+) = (0.88,1.33)
Two—stage procedure (6)—(7) with (10)
C 100 4.031 105.43 0.196 0.9485 0.00221 5.00
Ch 40 42.32 0.081 2.02
Co 60 63.11 0.137 2.98
Two-stage procedure of Takada (2004)
C 100  4.295 111.87 0.210 0.9573  0.00202 10.60
Ch 40 44.83 0.088 4.26
Ch 60 67.04 0.145 6.34
Three-stage procedure of Liu and wang (2007) with ¢ = 0.9
C 100 105.02 0.161 0.9463  0.00225 3.25
C1 40 42.46 0.068 1.84
Co 60 62.56 0.107 1.40

65.03, s(n2) = 0.175, and m = 108.14, s(m) = 0.253. Also, we had p =
0.9515, s(p) = 0.00215, and 71 —Cy = 3.11, 2 —Cy = 5.03, n— C = 8.14. At
the last column, we had E(N; —Cy) = 2.98, E(No—Cs) =4.52, E(N—-C) =
7.49 where N = 25:1 N;. Theorem 2 indicates that one may expect 1; — C; to
fall in the vicinity of the value of E(N; — C;), i = 1,2. One will observe that
the values of Fg(N; — C;) are approximated fairly well by these asymptotic

values for small d.

Throughout, the two—stage procedure (6)—(7) with (10) reduces the sample
size required in the two-stage procedure due to Takada (2004). When o, is
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specified well, the performance of the two-stage procedure (6)—(7) with (10)
can even compare with the performance of the three—stage procedure due to
Liu and Wang (2007). If the experimenter considers the cost of each sampling
seriously, the two—stage procedure (6)—(7) with (10) might be the most likely
candidate in such a real world.

Appendix
Throughout, we write that

k k
i = |biloi Doy [bjlog,  Ye = 10:]Si 325 [b51S;

for i = 1,...,k. From (4), we write that C; = ar;/d*. Let d (> 0) go to zero
thorough a sequence such that ar,/d? always remains an integer. Then, from
(6), we may write that m = ar,/d?. We note that vS?/o?, i = 1,...,k, are
independently distributed as a chi-square distribution with v d.f. Let W;, ¢ =
1,..., k, denote random variables such that vW;, ¢ = 1, ..., k, are independently
distributed as the chi—square distribution with v d.f. Let w; = W;—1. Then, we
have that S? = 0?(14+w;), and E(w;) = 0, B(w?) = 2v~!, E(w?™) = O0(v™?)
and E(w?') = 0™, t=1,2,...

Lemma 1 For each i, we have as v — oo that
Eo([Yi —m|") = 0(w™"?) (t>2).
Proof We write that
SiSj —oi0j
= iy (VT = )(/TFw; — 1)+ (VT 0 — 1)+ (T — D},
By noting that Eg(|(1 + w;)/? — 1|*) = O(v~*/?) (t > 2), we have that
E¢(]SiS; — 0i0j[t) = O(v=t/2) (t > 2). Hence, it holds that

t

k
Eo(|Y; —7il') = Bo | |3 billb;1(S:S; — 0i05)| | = 0w ) (t>2).
j=1

The proof is completed. O

Remark 15 As for (26), let 7, = |b;|\/tr(X)) Z?Zl |bj|\/tr(X¥;) and Y; =
|bi|\/tr(S}) Z§:1|bj|«/tr(sj). Let Wi;, ¢ = 1,..,k; j = 1,...,p, denote

random variables such that vW;;, i = 1,..,k; 7 = 1,...,p, are indepen-
dently distributed as a chi-square distribution with v d.f. One may write that
tr(S;) = tr(Xy) +Z§7:1 Aij(Wi; — 1), where A;;’s are latent roots of X;. Then,
we can obtain the same result as in Lemma 1 for (26) as well.

Lemma 2 For the two-stage procedure (6)—(7) with (10), we have as d — 0
that

Eo (Ni - [%Y;} - 1) = 0(d).
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Proof Let I;n,—n) be the indicator function. Then, we have that

u

£ (31 [3] 1) = 5ot (- [39] 1)}

< \/Pg(Nl- — m)Eq {(m [%YZ} - 1)2}. (56)

Then, it follows that

Y;
Po(N; =m) = Py (ip < m>

_p uY; Ci+1 _ m—(C;+1)
e d2C; c; — C;
SP0<UY1‘_1_1§7—* Ti)

aT; i Ti

Y; i — Tx
s&(“’—4+alzﬁ T)

aT; Ti

Now, one can yield that

2 e

Here, (58) follows from the result that for any « (> 0) and y (> 0) such that
x4y =t (>2), we have from Lemma 1 that

uY;

aT;

5Y;
v

-1

))t} =0(w™"?) (t>2).

(58)

Eo(|Y; — mil*|v™18Yi|") <\/Eo(|Yi — 7:[>*) Be (v =15Yi[)
—0 <y—<m/2+y>) -0 (V—<t/2+y/2>> .
By combining (58) with (57), we have that
Py(N; = m) = O(d"). (59)
The result can be obtained in view of (56) and (59). O
Lemma 3 Let ¢ (> 0) and h (> 0) be constants. For a fized b (> 1), let Xy,

denote a chi-square random wvariable with bv d.f. Then, we have as v — oo
that

1
E(qXp, —h — [qXy, — b)) = 3+ o(w=1?).
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Proof Let U = ¢Xp — h — [¢Xp — h]. Then, we have for z € (0,1) and
x; € (0,z) that

T i+ h+z;
= — F'l,<l>, 60
A (60)

where Fp,(+) is the c.d.f. of a chi-square random variable with bv d.f., and
F{,(-) denotes the first derivative of Fy, (). Since m > 4 and b > 1, we have
that bv > 3. Here, there is at most one constant ¢ (= bv — 2) satisfying
sup, F},(z) = F{,(c), z>0.If (h+x;)/q < bv — 2, there exists integer 4, such
that (ix +h+2;)/qg < bv —2 < (ix + 1+ h + 2;)/q. Then, we have that

F! (th”i ) (i < i),

i+1 ) bv
/ I (H’W'f) &z >
i q

F, (B (20,4 1),

Hence, it follows that

ZFéV<z+h+a:i></ Féu(>dZ+Féy<Z*+h+xi>
q h

i=0 +x; q q

N

< / F, <Z> dz + sup F}, (2). (61)
0 q z
Similarly, we have that

F (i+1+h+xi) (i <iy),

i+1 ) bv q
/ I3 <Z+h+w> ds <
i q

Fl, (Hh%) (i > i, +1).

Hence, it follows that
/ F, (Z> dz —sup F},(2) < ZFéV <Z thitw > . (62)

If (h+ x;)/q > bv — 2, we can claim both (61) and (62). Combining (61) and
(62) with (60), we have that

h+x;
x —xFy, ( R ) - fsupFé,,(z) SPU<z)<x+ gsupFéV(z). (63)
q q =z z
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Here, we note that

h i h i h/' h 7
Fyy ( te ) = T F, (Z) < e sup F,(2) (64)
q q q q z

with b} € (0,h + x;), and by Stirling’s formula that

sup Fy,,(z) = Fl,(bv —2) = O(v™?) as v — oco. (65)

By combining (64) and (65) with (63), we conclude that
PU<z)=2+0w ?) as v — oo.
It completes the proof. O

Lemma 4 For the two—stage procedure (6)—(7) with (10), we have as d — 0
that

k k
U U 1
Eq d7|bi|5iz 15155 = | 2 1bilSi D oIbilS;| ¢ = 5 +0(d).
j=1 j=1

Proof Let Xy, = v¥¢ W, and V; = vW;/Xp,, @ = 1,...,k. Then, Xj,
is distributed as the chi-square distribution with kv d.f., V; is distributed
as the beta distribution with parameters v/2 and (k — 1)v/2, and X}, and

V = (W1,...,, Vi) are independent. We write § as

N Gl VL A0 L A i i
27?7 2X1, 722

where Z; = |bi|0¢\/ViZ§:1 |bjloj+/V;. Then, we have that

k
u (%
d—2|bi|Si E |bj|Sj = dQTXkyZi = QXku - H7
j=1

where

Qazi{ 1<H<a—1>b%o$v;z§_lb§o§vg>} by _ abioRVikr,

1+ =
FEA R 27?2 2d2Z;v

Let us define that U = QXr, — H — [@Xk, — H]. From Lemma 3, the condi-
tional distribution of U, given V =v (H = h, Q = q), is given for = € (0, 1)
that

14 h+ L
x — wson,;V(z) <P(U<z|lV=0)<zx+ EsupF,;,(z),
z q =z

where z; € (0,2). We evaluate that 1/Q < 7,/Z; < 7./(b?02V;), and H/Q <

k. /(2 Z?Zl bi02V;) < kr/(2mini<ick b707) (= 7). Then, we have that
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Eo(1/Q) < (7i/b302)(kv — 2)/(v — 2). Here, H/Q is uniformly integrable
since |[H/Q| < v, and 1/Q is uniformly integrable since |1/Q| < 7,./(b?02V;)
with 7, /(b202V;) being uniformly integrable. From (65), one can yield that

Eg {Z)} sup Fyy () < Eg {qurQM} sup Fy, (2) = 0(d).

From the fact that Eg{Ps(U < x|V =)} = Pa(U < ), we obtain that
Py(U<z)=2+4+0(d) as d— 0. (66)

Hence, U is asymptotically uniform on (0,1) as d — 0. The proof is completed.
a

Remark 16 For § given by (20), (27), (39), (47) and (53), one can write ) and
H similar to Lemma 4. Note that, for nominal values of o and £, it holds that
(e1m3 —mes)/(e1m2 —mez) > —1in (47) and G} (a)/G},(a) < 0in (39). Then,
we can evaluate that Eg(1/Q) = O(1) and Ee(H/Q) = O(1) for Q and H
given by each §. Hence, the result similar to Lemma 4 is obtained for those
cases as well.

Remark 17 When the design constant is defined as a constant, the asymptotic
uniformity of P(U < z) was studied by several authors. See Hall (1981) for
k =1 and Takada (2004) for k > 2.
Lemma 5 The two-stage procedure (6)—(7) with (10) has as d — 0:
(i) Eo{C;"(N; — C)} = (2v)~1(2s — 1 + fi + B;) + O(d®),
(i1) Eo{C*(N:i = Ci)*} = (20) ™' (1+2f; + iy f2) + O(d),
(iii) Eo{C; ' (N; = Ci)Cj (N; = Cj)} = ()M (fi+ £+ Eioey £7)
+O(d) (i #j);
where B; = v/C; and s is a constant such that Eg(8) = s + o(1).
Proof Let us write that
Ni = ’)"01TZ + (1 + [rClTl] — ’f‘CiTz) + (Nl — [TClTl] — 1),
where r = u/a = 1+ v~'% and T; = 7, 'Y;. Here, from Lemma 4, U; =
1 4 [rCiT;] — rC;T; is asymptotically distributed as U(0,1). Let D; = N; —
[rC;T;] — 1. From Lemma 2, it follows that E{(D;/v)¢} = O(v=3/2) as d — 0,
where ¢ (> 1) is fixed. Then, we have that
C7H(N;i —C) = (T, — 1)+ v 'BU, + C; ' D;. (67)
By noting that Fg(§) = s+ o(1), we obtain the following results:
Eo(rT; — 1) = (2v) ' (2s — 1 + f;) + O(d®),
k

Eol(T: — 1} = @) (14 20 + 3 2) + 0@, (68)
Eo{(rTs — 1)(rTy — 1)} = @0) (fi 1 f; + SO (49

Let us combine these results with the expectations of (67). The results are
obtained straightforwardly. O
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Remark 18 For the two-stage procedure (25)—(26) with (27), we have as W —
0 that

() Bo{C'(Ni = Co)} = (20) "M {25 + Bi + Ai(fi = 05) = 05505, A} +
O(W3/2),

(i) Bo{C;*(N: = Ci)*} = (20)~H{Ai(1 +2£) + X5, [ A} + OW?),

where A; = tr(X?)/(tr(X,))?, B; = v/C;, C; is defined by (23), and s is a

constant such that Eg(5) = s+ o(1).

Lemma 6 For the two-stage procedure (6)—(7) with (10), one has as d — 0

that Eg(R) = o(v=1) in (13).

Proof In order to verify this lemma, we have to deal with the terms such as
Eg([i), Eg([ij) and EQ(Iijg), where

I*@| leCl 3 I — 839 | NZ*CZ 2 Nj*Oj
v 6uf u=¢§ Ci ’ Ea 8uf8uj u=¢§ C'z Cj ’

I, — 639 | NZ—CZ Nj—Cj Ne—Cz
e = 8ui8uj6ug u=¢ C; Cj Cy

for all 1 < ¢ < j < £ < k. Note that each third—order partial derivative’s
magnitude can be bounded from above by a finite sum of terms of the type

Agl—iﬂl 52—P2 . gk—;ﬂk (69)

with A >0, p, >0, r =1, ..., k, which are independent of d. Let A also denote
a generic positive constant, independent of d. Let us write N} = C’i_l(Ni —-C)
for i =1,..., k. Then, we obtain that

|Bo(Li)] < ABg (& 76,7 - & INIT). (70)

We observe that & > m/C; = 1. /7; w.p.1 for all i = 1,..., k. Also, we observe
that Eg(|N7|?) = O(v=3/2?) since FEg(|Nf|*) = O(r~2) from the facts that
Eo{(rT; —1)3} = O(v=2), Eo{(rT; — 1)*} = O(r~2) and so on together with
(68). Hence, from (70), it follows that |Eg(I;)| = O(r~3/?). Similarly, one
may use the facts that Eg(|N}|?|N7|) = O(v=3/?) and Eq(IN}||NZ||N;|) =
O(v=3/2) to show that |Eg(I;;)| = O(v=3/2) and |Eg(I;j0)] = O(v3/?) for
1 <i < j < {< k. Therefore, we conclude that Fg(R) = O(v=3/2) = o(v™1).
O

Remark 19 Second—order partial derivative’s magnitude can be bounded from
above by a finite sum of terms of the type similar to (69). We observe that
Eo{(A ~ ON7} < (Eo(v22)Eo(INF )Y = O(w3/2), Eo{(A— 1)?} =
O(v=2) and &, > min{1,1+v~#} in (50)—(51). Note that, for nominal values
of @ and f3, it holds that ¢ > —1 in (48). Hence, we have that

Eo {;jg; e A= 1) (NC_C>} —o(v ),

Ee {%Qf; e A= 1)2} = o(vb).
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