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1. INTRODUCTION

Suppose that we are to estimate a location parameter θ of a sequence of
random observations X1, X2, . . . , Xn, . . . with unknown scale ξ. We would like
to obtain sequentially a confidence interval of fixed width 2d with confidence
coefficient 1−α. Obviously we can not obtain a fixed sample size procedure
if ξ is unknown. There are many works on the fixed-width interval estimation
of normal mean (see, e.g. Ghosh et al. (1997)).
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Suppose that X1, X2, . . . , Xn, . . . is a sequence of independent and iden-
tically distributed (i.i.d.) random variables according to the uniform distri-
bution on the interval (θ − (ξ/2), θ + (ξ/2)), where θ(∈ R1) and ξ (> 0) are
unknown. Let X(1) := min1≤i≤n Xi, X(n) := max1≤i≤n Xi. Then the midrange
and the range are Mn :=

(
X(1) + X(n)

)
/2, Rn := X(n) − X(1), respectively.

Akahira and Koike (2005) considered a stopping rule:

τ1 := inf

{
n ≥ n0

∣∣∣∣ Rn

n − 1
≤ − 2d

log α

}
,

where n0(≥ 2) is an initial size of sample. They showed the asymptotic
consistency and efficiency of the estimation procedure (τ1, [Mτ1 −d,Mτ1 +d]).

In this paper, we consider the case of a location-scale parameter family of
distributions with a finite support on the interval (θ−ξa, θ+ξa), where θ and
ξ are unknown, and obtain a sequential confidence interval of θ with fixed
width 2d and confidence coefficient 1−α, and show its asymptotic consistency
and efficiency. Some comparisons with the Chow-Robbins procedure are also
done.

2. ASYMPTOTIC DISTRIBUTIONS OF THE EXTREME VAL-
UES

In this section we consider the asymptotic distributions of the extreme values
for distributions with a finite support, in a similar way to Akahira (1991) and
Akahira and Takeuchi (1995).

Let Z1, Z2, . . . , be a sequence of independent and identically distributed
(i.i.d.) random variables according to the density function f0(x−θ) (θ ∈ R1)
with respect to the Lebesgue measure. We assume the following conditions:
(A1) f0(x) has a finite support (−a, a)1(a > 0), i.e., f0(x) > 0 for −a < x < a,
and f0(x) = 0 otherwise.
(A2) f0(x) is continuously differentiable in the open interval (−a, a) and

lim
x→−a+0

f0(x) = c, lim
x→a−0

f0(x) = c′,

1If the support of f0 is (−a, b) (a 6= b), then the normalized midrange does not converge
to θ in probability as n → ∞.
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where c and c′ are some positive constants.
(A3) f0(x) satisfies

f0(x) ≈ g(x + a)γ (x → −a + 0),

f0(x) ≈ g′|x − a|γ (x → a − 0),

where γ, g and g′ are some positive constants2.
Putting Z(1) := min1≤i≤n Zi, Z(n) := max1≤i≤n Zi, U := n(Z(1) + a − θ)

and V := n(Z(n) − a − θ), we have the following lemma (cf. Akahira (1991),
Akahira and Takeuchi (1995)).
Lemma 1. Under the conditions (A1)and (A2), the joint(j.) p.d.f.

f
(n)
U,V (u, v) of (U, V ) satisfies

f
(n)
U,V (u, v) →

{
cc′ exp{c′v − cu} (v < 0 < u),

0 (otherwise).
(2.1)

as n → ∞.

Proof. The j.p.d.f. f
(n)
U,V (u, v) of (U, V ) is

f
(n)
U,V (u, v)

=


n − 1

n

{
F

(
a +

v

n

)
− F

(
−a +

u

n

)}n−2

f0

(
−a +

u

n

)
f0

(
a +

v

n

)
(v < 0 < u),

0 (otherwise),

where F (x) =
∫ x

−∞ f0(u)du. Hence, by its expansion, we have the desired
result. ¤

Next, we consider the location-scale parameter family of distributions
with a finite support (θ − ξa, θ + ξa). Suppose that X1, X2, . . . , Xn, . . . is a
sequence of i.i.d. random variables with the p.d.f. (1/ξ)f0((x − θ)/ξ), where
θ ∈ R and ξ > 0. Put Yi := (Xi − θ)/ξ for each i = 1, 2, . . ., and Y(1) :=
min1≤i≤n Yi, Y(n) := max1≤i≤n Yi. Letting S := n(Y(1) + Y(n))/2 and T =
n(Y(1) − Y(n) + 2a)/2, we have the asymptotic (as.) j.p.d.f. of (S, T )

fS,T (s, t) =

{
2cc′ exp{−(c − c′)s − (c + c′)t} (t > |s|),
0 (otherwise).

2If the converging order γ is different, then the normalized midrange does not converge
to θ in probability as n → ∞.
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Then the as. marginal(m.) p.d.f.’s of S and T are given by

fS(s) =

{
Ke−2cs (s ≥ 0),

Ke2c′s (s < 0),
(2.2)

fT (t) =


2cc′

c′−c

(
e−2ct − e−2c′t

)
(t > 0 and c 6= c′),

4c2te−2ct (t > 0 and c = c′),

0 (otherwise),

respectively, where K = 2cc′/(c + c′).

In the case when limx→−a+0 f0(x) = limx→a−0 f0(x) = 0, we need another
lemma. Putting U ′ := n1/(γ+1)(Z(1) + a− θ) and V ′ := n1/(γ+1)(Z(n) − a− θ),
we have the following lemma in a similar way to Lemma 1.

Lemma 2. Under the conditions (A1) and (A3), the j.p.d.f.

f
(n)
U ′,V ′(u, v) of (U ′, V ′) satisfies

f
(n)
U ′,V ′(u, v) →

{
gg′(−uv)γ exp{− g′

γ+1
(−v)γ+1 − g

γ+1
uγ+1} (v < 0 < u),

0 (otherwise).

as n → ∞.

The proof is omitted since it is similar to the one of Lemma 1.
From Lemma 2, U ′ and (−V ′) are asymptotically, independently dis-

tributed according to Weibull distributions.

3. CONSTRUCTING CONFIDENCE INTERVAL

In this section we construct a sequential confidence interval for θ. In the
first place, we consider the case under the conditions (A1) and (A2). For
0 < α < 1, let l0 be the solution3 of l for the equation

c + c′

cc′
α =

e−2cl

c
+

e−2c′l

c′
.

3It can be shown easily that such l0 exists uniquely.
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If ξ is known, we have from (2.2) that

P{|Mn − θ| ≤ d} =P{n|Mn − θ|/ξ ≤ dn/ξ}

≈
∫ dn/ξ

−dn/ξ

fS(s)ds

=1 − cc′

c + c′

(
e−2cnd/ξ

c
+

e−2c′nd/ξ

c′

)
,

where “≈” means that the distribution of n|Mn − θ|/ξ is approximated by
the asymptotic distribution. Letting n∗ = l0ξ/d, we have for n ≥ n∗

1 − cc′

c + c′

(
e−2cnd/ξ

c
+

e−2c′nd/ξ

c′

)
≥ 1 − α.

n∗ is referred as the asymptotically optimal size of samples if ξ is known.
Note that n(Mn − θ)/ξ = S and Rn/ξ = −(T/n) + 2a. Now we take as the
stopping rule

τ2 := inf

{
n ≥ n0

∣∣∣∣ Rn

n − 1
≤ 2ad

l0

}
, (3.1)

where n0(≥ 2) is an initial size of sample. Then we obtain the asymptotic
properties of the estimation procedure (τ2, [Mτ2 − d,Mτ2 + d]) as follows.

Theorem 1. For the sequential estimation procedure (τ2, [Mτ2 −d,Mτ2 +d]),
the following hold.
(i) lim

d→0+
P{|Mτ2 − θ| ≤ d) = 1 − α (asymptotic consistency).

(ii) τ2/n
∗ a.s.→ 1 (d → 0+).

(iii) E(τ2)/n
∗ → 1 (d → 0+) (asymptotic efficiency).

Proof. (i) From Lemma 1 of Chow and Robbins (1965), the stopping rule τ2

given by (3.1) satisfies

lim
d→0+

dτ2

ξl0
= 1 a.s. (3.2)

Since S = n(Mn − θ)/ξ converges in distribution to a distribution with the
density given by (2.2) as n → ∞, it follows from Theorem 1 of Anscombe
(1952) that τ2(Mτ2 − θ) converges in distribution to the same distribution as
d → 0+. Hence, since dτ2/ξ

a.s.→ l0 as d → 0+ from (3.2), it follows that

lim
d→0+

P{|Mτ2 − θ| ≤ d} = lim
d→0+

P{τ2|Mτ2 − θ|/ξ ≤ dτ2/ξ}

=

∫ l0

−l0

fS(s)ds = 1 − α. (3.3)
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(ii) From (3.2) and the definition of l0, we have τ2/n
∗ = τ2d/(l0ξ)

a.s.→ 1 as
d → 0+.
(iii) From Lemma 2 of Chow and Robbins (1965), we have the desired result.
¤
Remark. In particular, if c = c′, then l0 = − log α/(2c) and τ2 given in (3.1)
is expressed as

τ2 = inf

{
n ≥ n0

∣∣∣∣ Rn

n − 1
≤ − 4acd

log α

}
,

which is equal to τ1 when the underlying distribution is uniform distribution
on the interval (θ − (ξ/2), θ + (ξ/2)).

In the second place, we compare this with the Chow-Robbins procedure.
Let X1, X2, . . . be a sequence of i.i.d. random variables with the mean θ and
the variance σ2. Let X̄n :=

∑n
i=1 Xi/n, s2

n =
∑n

i=1(Xi − X̄n)2/(n− 1). Chow
and Robbins (1965) considered a stopping rule defined by

τCR := inf
{
n ≥ n0 | n ≥ u2

α/2d
−2s2

n

}
,

where uα/2 is the upper α/2 point of N(0, 1) and n0(≥ 2) is an initial size
of samples. They showed the asymptotic consistency and efficiency of the
estimation procedure (τCR, [X̄τCR

− d, X̄τCR
+ d]).

Since, from Theorem 2.2 of Akahira and Koike (2005), Theorem 1 and
Theorem of Chow and Robbins (1965),

τ1 ≈
log α

log (1 − (2d/ξ))
≈ −ξ log α

2d
, τ2 ≈ l0ξ/d, τCR ≈ u2

α/2σ
2/d2,

as d → 0+, we have τ1/τCR, τ2/τCR → 0 (d → 0+). Therefore τ1, τ2 is
asymptotically better than τCR in the sense of the average size of sample.

Furthermore, we consider the case under the conditions (A1) and (A3).
By putting S ′ := n1/(γ+1)(Y(1) +Y(n))/2 and T ′ := n1/(γ+1)(Y(1)−Y(n) +2a)/2,
the as.j.p.d.f. of (S ′, T ′) and the as.m.p.d.f.’s of S ′ and T ′ are obtained from

Lemma 2. In a similar way to (3.3), we take l0 satisfying
∫ l0
−l0

fS′(s)ds = 1−α
for the as.m.p.d.f. fS′(s) of S ′.
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If ξ is known, we have

P{|Mn − θ| ≤ d} =P{n1/(γ+1)|Mn − θ|/ξ ≤ dn1/(γ+1)/ξ}

≈
∫ dn1/(γ+1)/ξ

−dn1/(γ+1)/ξ

fS′(s)ds,

where “≈” means that the distribution of n1/(γ+1)|Mn−θ|/ξ is approximated
by the asymptotic distribution. The optimal size of sample required for
attaining the preassigned coverage probability 1 − α is the smallest positive
integer ≥ (l0ξ/d)γ+1 =: n∗∗ (say). Define a stopping rule as

τ3 := inf

{
n ≥ n0

∣∣∣∣ Rn

n1/(γ+1)
≤ 2ad

l0

}
,

where n0(≥ 2) is an initial size of samples. Then the next theorem follows.

Theorem 2. For the sequential estimation procedure (τ3, [Mτ3 −d,Mτ3 +d]),
the following hold.
(i) lim

d→0+
P{|Mτ3 − θ| ≤ d) = 1 − α (asymptotic consistency).

(ii) τ3/n
∗∗ a.s.→ 1 (d → 0+).

(iii) E(τ3)/n
∗∗ → 1 (d → 0+) (asymptotic efficiency).

Proof. The proof for (i) is similar to the one of Theorem 1 (i). (ii) follows

from (τ3/n
∗∗)1/(γ+1) a.s.→ 1 as d → 0+.

(iii) From (ii), by Fatou’s lemma,

lim inf
d→0+

E(τ3)

n∗∗ ≥ E

(
lim inf
d→0+

τ3

n∗∗

)
= 1. (3.4)

On the other hand, since 0 ≤ Rn ≤ 2aξ with probability 1 for any n ∈ N, we
have 0 ≤ (Rnl0/(2ad))γ+1 ≤ (2aξl0/(2ad))γ+1 = (l0ξ/d)γ+1 with probability
1 for any n ∈ N. So, 0 ≤ (Rnl0/(2ad))γ+1 ≤ n with probability 1 for n
satisfying n ≥ (l0ξ/d)γ+1 + 1. Therefore, since τ3 =

inf
{
n ≥ n0 | (Rnl0/(2ad))γ+1 ≤ n

}
, we have τ3 ≤

(
l0ξ
d

)γ+1
+ 1. Then, using

the definition of n∗∗, we have

E(τ3)

n∗∗ ≤

{(
l0ξ

d

)γ+1

+ 1

}(
l0ξ

d

)−(γ+1)

= 1 +

(
d

l0ξ

)γ+1

,
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hence

lim sup
d→0+

E(τ3)

n∗∗ ≤ 1. (3.5)

Combining (3.4) and (3.5), we obtain (iii). ¤
From Theorem 2 and Theorem of Chow and Robbins (1965), τ3 ≈

(l0ξ/d)γ+1 and τCR ≈ u2
α/2σ

2/d2 as d → 0+. Therefore,

τ3/τCR


= o(1) (0 < γ < 1),

= O(1) (γ = 1),

→ ∞ (γ > 1)

as d → 0+. Therefore, τ3 is asymptotically better than τCR in the sense of
the average size of sample if 0 < γ < 1.

In this paper, we considered the cases when the values at the endpoints
of the support of the p.d.f. are positive simultaneously, or tend to 0 at the
same speed. In the meantime, if the either value at the endpoints of the
support of the p.d.f. is positive, or tend to 0 at a different speed, then the
coefficients of nγ(X(1) − a− θ) and nδ(X(n) − b− θ) converging to nontrivial
random variables are different and estimation by using the midrange Mn is
inappropriate.

4. NUMERICAL EXAMPLE

In this section we examine the coverage probability of the procedure [Mτ2 −
d, Mτ2 + d] by simulation based on 100000 repetitions. Suppose that
X1, X2, . . . , Xn, . . . is a sequence of i.i.d. random variables with the p.d.f.
(1/ξ)f0((x − θ)/ξ), where θ ∈ R, ξ > 0 and f0(·) is a trapezoid-shape p.d.f.
given by

f0(x) =

{
(1

2
− c)x + 1

2
(x ∈ (−1, 1)),

0 (otherwise)

with 0 < c < 1. Note that, f0 is the p.d.f. of the uniform distribution over
(−1, 1) and an asymmetric p.d.f. over (−1, 1) for c = 0.5 and a sufficiently
small c > 0, respectively. Since Mτ2 is location equivariant, we may assume
θ = 0 without loss of generality.

When α = 0.10, d = 0.01(0.01)0.05, ξ = 1(1)5 and n0 = 5, Tables 1
and 2 show the values of coverage probabilities of the sequential estimation
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procedure (τ2, [Mτ2 − d,Mτ2 + d]) for c = 0.1 and c = 0.5, respectively. The
result suggests that the estimation procedure is consistent for this case.

Table 1. Coverage probabilities of [Mτ2 − d,Mτ2 + d]
for c = 0.1
ξ \ d 0.01 0.02 0.03 0.04 0.05

1 0.90637 0.91545 0.92348 0.93092 0.93758
2 0.89830 0.90544 0.90960 0.91424 0.92017
3 0.90123 0.90313 0.90713 0.90832 0.91030
4 0.89926 0.90117 0.90333 0.90615 0.90804
5 0.89817 0.89952 0.90318 0.90421 0.90561

Table 2. Coverage probabilities of [Mτ2 − d,Mτ2 + d]
for c = 0.5
ξ \ d 0.01 0.02 0.03 0.04 0.05

1 0.90210 0.90727 0.91183 0.91328 0.91988
2 0.89929 0.90131 0.90330 0.90628 0.91176
3 0.89849 0.89947 0.90221 0.90235 0.90525
4 0.89729 0.89729 0.89982 0.90169 0.90322
5 0.89785 0.8998 0.89906 0.89862 0.90054
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