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1 Introduction

A dynamical system consists of a phase space of possible states, together with an
evolution rule that determines all future states and all past states given a state at any
particular moment. In this paper, we consider some kinds of chaotic properties of dynami-
cal systems. We show that in the world admitting C°-topology, for any countable random
infinite bi-sequences of states of some phase space there exists an evolution rule which
realizes precisely the given bi-sequences of states on their orbits and satisfies some regular
conditions on the times to realize the states. In other words, for any countable random
infinite itineraries, by making a slight modification on our dynamical system, we have a
new dynamical system in C°-topology which realizes the given infinite itineraries and sat-
isfies some regular conditions on the times of itineraries. The ideas of this paper depend
on works of Oxtoby-Ulam [7] and Bennett [2]. We need the following terminology and
concepts. Let N = {1,2,...;} be the set of all positive integers and Z = {0,+1,£2, ..., }
the set of all integers. Also let R be the set of all real numbers and I = [0, 1] the unit
interval.

In this paper, we suppose that f : X — X is a homeomorphism of a compact metric
space (X, d), where d is a metric on X. We put Supp(f) = {z € X| f(x) # z}. A point
x € X is a periodic point of f if there exists a positive integer n € N such that f™(z) = x.
A point x € X is recurrent under f if for any neighborhood U of x there exists a positive
integer n € N such that f"(z) € U. The orbit of a point € X under f, denoted by
Orb(f;x), is the set {f™(x)| n € Z}. If x is not a periodic point of f, we consider the infi-
nite bi-sequence (=ordered orbit) (f*(z)| n € Z) = (..., f%(x), f*(2), z, f(z), f*(x), ...)
of x under f. If z is a periodic point of f with period n, we also consider the finite
sequence (=ordered orbit) (f(z)] 0 < i < n — 1) of x under f. For any z € X and
i,j € Z with i < j, we put Orb(f;2)u; = {f"(x)] i <n < j}. Suppose that Orb(f;z) is
not a periodic orbit and y € Orb(f;z). In this case, we put Times(z — y) = n, where n
is the (unique) integer satisfying f™(z) =y (n € Z).

Let ¢ : X X R — X be a flow, i.e., ¢ is a map (=continuous function) such that

1. ¢(z,0) =z and
2. p(x,s+1t) = p(p(x,s),t) for any z € X and any s,t € R.

A point x € X is a periodic point of ¢ if there exists a positive number ¢ € R such
that ¢(x,t) = x. The orbit of a point x € X under ¢, denoted by Orb(p;x), is the
set {o(z,t)| t € R}. If = is not a periodic point of ¢, we consider the ordered orbit
(p(z,t))] t € R) of z under ¢. If x is a periodic point of ¢ with period ¢y > 0, we consider
the ordered orbit (p(z,t))| 0 < t < ty) of x under ¢. If x is not a periodic point and
y € Orb(p, x), we put Time,(x — y) =t if p(x,t) = y.

Let A =Z or A = {0,1,2,....,s} (s < o0). A sequence § = (a,|n € A) of points
of X is said to be realized by a homeomorphism f if S is a subsequence of the ordered
orbit of ag under f. Similarly S = (a,|n € A) is said to be realized by a flow ¢ if S is a
subsequence of the ordered orbit of ag under . A sequence (x,|n € A) of points of X is
a pseudo n-orbit (n > 0) of fif d(f(xy),xps1) < for any n,n+1 € A. Let a,b € X. A
finite sequence (x,|0 < n < s) is a pseudo n-orbit of f from a to b if zyg = a,z; = b and
d(f(xn), xpe1) <nmforany 0 <n <s—1.



Let (k,| n € Z) be an arbitrary increasing bi-sequence of integers with ky = 0 i.e.,
kn < kyi1 for n € Z and let S; = (a'|n € Z) (i € N) be infinite bi-sequences of distinct
points of X. Then the (countable) family {S;|i € N} is said to be chaotic for (k,| n € Z)
if the following conditions are satisfied;

1. S; and S; (i # j) are mutually disjoint,
2. the set {a{|i € N} is dense in X,
3. the sets {a}, |n € N} and {aj,_ |n € N} are dense in X for each i,

4. if 4,5 € N and i # j, then §; and S; are Li-Yorke pair with respect to (k,| n € Z)
and the diameter §(X) of X, that is,

liminf d(a: ,a’ ) =0
n—+oo <k”’ k”) ’

limsup d(aj, , ain) = §(X).

n—4oo

It is easy to see that if X has no isolated point (i.e., X is perfect), then we have many
kinds of chaotic families {S;|i € N}.

An m-dimensional compact connected polyhedron X is said to be regularly connected
if the set

Int(X) = {z € X| z has an open neighborhood which is homeomorphic to R™}

is a connected dense open subset of X. Put 9(X) = X — Int(X).

The theory of Menger manifolds was founded by Anderson and Bestvina (see [1] and
[3]) and has been studied by many authors. We also study Menger manifolds from the
viewpoint of dynamical systems. Anderson and Bestvina gave characterizations of Menger
manifolds as follows: For a compactum M, M is a k-dimensional Menger manifold if and
only if (1) dim M = k, (2) M is locally (k — 1)-connected, (3) M has the disjoint k-cell
property, i.e., for any € > 0 and any maps f, g : I* — M, there are maps f', ¢’ : I* — M
such that d(f, f') <€, d(g,g') < € and f'(I*) N g (I*¥) = ¢. Note that every 0-dimensional
Menger manifold is a Cantor set, and every 1-dimensional Menger connected manifold is
a Menger curve. If X is a Menger manifold, we put Int(X) = X and 0(X) = ¢.

Let p be a probability measure on a compact metric space (X, d) which is nonatomic,
locally positive; such a measure is called a good measure. Put

M(X; good) = {u| pu is a good measure on X }.

If X is a regularly connected polyhedron, we consider the following subset of measures:
My(X; good) = {p € M(X; good)| 11(0X) = 0}.

Let H(X, i) be the set of all u-measure preserving homeomorphisms of X with metric

p(f.g)=d(f.g)+d(f,g7"),



where d(f, g) = sup{d(f(z),g(z))|z € X}. Also, put

Note that H (X, p) and Hy(X, ) are complete metric spaces (see [7]). Note that if X
is a regularly connected polyhedron and p,pn € My(X;good), then there is a homeo-
morphism h : X — X such that h,u = p (see [7, Corollary 1]). Also, note that if X
is a k-dimensional Menger manifold (k > 1) and p, /' € M(X;good), then there is a
homeomorphism h : X — X such that h.u =y (see [5, Theorem 3.1}).

2 Homeomorphisms which realize precisely the given
sequences of points on their orbits

In this section, we consider the case of discrete dynamical systems. A metric d on
a space X is a convex metric if for any x,y € X there is a point z of X such that
d(z,z) = d(z,y) = (1/2)d(z,y). It is well-known that a continuum (compact metric
connected space) X is locally connected (=Peano continuum) if and only if X admits a
convex metric d on X. First, we need the following lemmas (cf. [7, Lemma 14]).

Lemma 2.1. Suppose that X is a reqularly connected polyhedron of dimension m > 1 or
a Menger k-dimensional manifold with k > 1 and d is a convexr metric on X. Let i be a
good measure on X and h € H(X, ). For any 6 > 0, there is a natural number N such
that for any a,b € X and any n > N, there is a pseudo 6-orbit xq, x1,...,x, of h from a
to b.

Proof. For a subset A of X, let U(A,J) be the d-neighborhood of A in X. Put
U, = U(h(a),d). By induction on i, we define U; ;1 = U(h(U;),d). Since h € H(X, i), by
[7, Lemma 14] and [5] there is a natural number N such that Uy = X. Let a,b € X and
n any natural number with n > N. We choose the point y € X such that b = A"V (y).
Since Uy = X, there is a pseudo d-orbit zg, 1, ..., zy of h from a to y. Then the sequence
20,1, ., IN(= ¥), 2n1(= h(Y)), Tng2(= W2(Y)), ..., xn(= "N (y) = b) is a pseudo -
orbit xg, x1, ..., x, of h from a to b.

The following lemma follows from [7, Lemma 12] and [5, Proposition 4.16]. We omit
the proof.

Lemma 2.2. Suppose that X is a reqularly connected polyhedron of dimension m > 2 or
a Menger k-dimensional manifold (k > 1). Let u be a good measure on X. Suppose that
U is a connected open set of Int(X) with a,b € U. Then there exists h € H(X, u) such
that h(a) = b and Supp(h) C U.

The following lemma is a slight modification of [7, Lemma 13]. For completeness, we
give the proof.

Lemma 2.3. Suppose that X is a reqularly connected polyhedron of dimension m > 2 or
a Menger k-dimensional manifold (k > 1) and d is a conver metric on X. Let I be a
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finite subset of X and p1 a good measure on X . Suppose that p;,q; (i = 1,2, ...,1) are points
of Int(X)—F such that {p;,¢;} N{p;,q;} = ¢ (i # j) with d(p;,q;) < 0. Then there exists
h € H(X,pn) such that h(p;) = q; for each i, d(h,Id) < § and Supp(h) N (F U 0X) = ¢.

Proof. We shall prove the case that X is a regularly connected polyhedron of dimension
2. Since F is a finite set and Int(X) is 2-dimensional manifold, we can choose arcs L;
from p; to ¢; such that the length [(L;) of L; is less than ¢, L, N L; is an at most one point
set for i # j and

Fn LZ = QS; Ll N {pjaqj| ] = 1727 al} = {plan}

Note that if X is the other cases, we can find arcs L; from p; to ¢; such that the length
I(L;) of L; is less than 6, FNL; = ¢ and L, L; = ¢ (i # j). Let k be a sufficiently large
natural number. For each 7, we can take k 4 1 points p; = pio < pi1 < ... < Pik = ¢ on
L; such that the length I(L; ;) of L;; is less than ¢/k and for each 1 < j < k, the family
{L;;|i=1,2,...,1} are disjoint, where L, ; is the sub arc from p; ;_; to p;; in L; (see the
proof of [7, Lemma 13]). Take a sufficiently small neighborhood U; ; of L;; for each i, j
such that 6(U; ;) < 0/k, U;; N F = ¢ and for each j = 1,2,..k, {U;;| i = 1,2,...,1} are
disjoint. For each j = 1,2,...,k, we can choose h; € H (X, u) such that h;(p;j—1) = pi;
for each ¢ and hj|X —UL_,U;; = Id. Put h = hj, o .... o hy. Since d(h;, Id) < §/k, we see
d(h,Id) < 6. Hence h is a desired homeomorphism.

The main result of this section is the following theorem. This theorem means that in
the world admitting C°-topology, random infinite sequences of any prophecies will come
true by making a slight change. From now on, we may assume that X admits a convex
metric d if X is a Peano continuum.

Theorem 2.4. Suppose that X is a reqularly connected polyhedron of dimension m > 2
or a Menger k-dimensional manifold (k > 1), and pu is a good measure on X. Let
he HX,u), e>0 and let (k,| n € Z) be an arbitrary increasing bi-sequence of integers
with kg = 0. Suppose that S; = (a'|n € A;) (¢ € N) are arbitrary infinite bi-sequences
or finite sequences of distinct points of Int(X) and S;, S; (i # j) are mutually disjoint.
Then there is f € H(X, ) satisfying the following conditions:

1. d(f,h) < e and flO(X) = h|O(X).

2. S; is realized by f for each i € N. Moreover if S; = (a,] 0 < n < ;) is a finite
sequence, then af is a periodic point of f and S; is realized by f on the periodic
ordered orbit of aj.

3. If S; and S; are infinite bi-sequences, then there is n(i,j) € N such that if n € Z
and |n| > n(i,j), then Timeg(al — al) = Times(al) — al).

4. If Si is an infinite bi-sequence, then (Times(al — al)| n € Z) is a bi-subsequence
of (kn| n € Z).



Proof. We may assume that Sy 1 = (a)| n € Z) is an infinite bi-sequence and
Sai = (V] 0 < n < s;) is a finite sequence for each i € N. We consider the set S = U2, S;,
where Sy;_1 = {a,| n € Z} and Sy; = {b},| 0 < n < 5;}. Also, put Sy;_1,, = {a}] —n < j <
n} (n € N). By induction on n, we will construct a sequence (h,,),en of homeomorphisms
of X and a bi-subsequence of (I,| n € Z) of (k,| n € Z) with Iy = 0 such that for each
n € N, the following conditions are satisfied:

1. h, € H@(X, ,u)

2. d(hpohy_10..hyoh h, 10h, 50..hoh)<¢e/3"and
d((hnohy, 10..0hyoh)™ (h,_10h, g0..hyoh)™) <e/3"

3. For each 1 < i < n, the finite subsequence (a’;,a’ ., ...,al_,,a’) of Sy_1 is realized
by h; o h;_1 0 ...hy o h. Moreover

Time(h,oh; vo...h)(ag — a;) = 1,

Time(hiohi_lo,_hl)(aé — aii) =1,
and (Time(hiOhi—lomhIOh)(a(i] — CL;)‘ —1i < j <) is a finite subsequence of (k,| i € Z).

4. For each 1 <4 < n, the point bf) is a periodic point of h; o h;_1 o ...hy o h and the
sequence Sy; = (b, b}, b, ..., bl ) is realized by h; o hy_y o ...hy o h.

5. If 1 <i<j<n,then for j <s<n

Supp(hs) N Orb((h; o hj_y1 0 ...hy o h); af))[lﬂ.,m = o.

6. If 1 <i<n,thenfori<s<n

Supp(hy) N Orb((hi o hi_y o ...hy o h): b)) = ¢.

7. If1 <i < j <n,then (h,oh,_j0..hjoh)l(a}) = a; and (h,oh,_y0...hyoh)!=i(a}) =
at ..
J
8. For each 1 <17 <n,
O?“b(hn o) hn,1 e} hl 9] h, aé)[l_mln} - SQZ',Ln c X — S

and .
Orb(hy, 0 hy—1 0...hy o h;by) — Sgy C X — S.

Let n = 1. Suppose that ¢ > 0 is a sufficiently small positive number. By Lemma 2.1,
we can choose [_1,[l; € Z and a pseudo §-orbit

a'y =x(l_y), 2(l_1 +1),...,2(=1),2(0),z(1),...,2(l, = 1), 2(l) = a;
of h from a' | to af in Int(X) such that a} = 2(0). We may assume that

{z()| -1 <7< LENS =51
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and [_q,[; are elements of the sequence (k,| n € Z) such that [_; < 0 < l;. Also, we may
assume that there is a pseudo d-orbit

by = 2(0),2(1), ..., 2(l; — 1), 2(l,) = by

of h from bj to by in Int(X) such that (b), b1, ....,b. ) is a subsequence of the sequence

Z(O),Z(l),...,z(ll - 1))
Also, we may assume that
{zI0<j<h—-1n(SU{z()| 1 <j<h}) = 5.

For the sake of simplicity, we may assume h satisfies that h(z(j)) # x(j) and h(z(j)) #
z(j) for each j (see Lemma 2.2); if necessary, we replace h with the composition b’ o h of
h and K/, where h' € Hy(X, ) and d(h', Id) is sufficiently small. Then

{h(z(5)), (G + D} N {h(z(7), 2(5" + 1)} = ¢,

{h(z(5)), 2+ 1)} 0 {R(2()), 2"+ D} =6 (G # J)-
By Lemma 2.3, there is a homeomorphism h; € Hy(X, ) such that d(hy,Id) < § and
hy(h(z(j))) = z(j+1) and hy(h(2(j))) = 2(j+1) for each j. If § is sufficiently small, then

we may assume that d(hioh, h) < ¢/3 and d((hyoh)™!, h™') < ¢/3. Note that the sequences

(aly,ag,a1) and (b), by, ....,b;,) are realized by hy o h and Timep, on)(ay — aty) = liq.

Assume that hq, ho, ..., h, and l41, l49, ..., 1, have been defined for certain n and they
satisfy the conditions 1-8. We define h,,1 and li(,41) as follows.

Let 6 > 0 be a sufficiently small positive number. Choose integers l,1,l_(n+1) € Z
and a pseudo J-orbit

af(riﬂ) =2(l_ns1))s (i) + 1), oy 2(=1),2(0), 2(1), ..o, @(lpnsry — 1), 2(lnr1y) = @it

of hy, o h,_10..hyoh from af(riﬂ) to T} such that the points z; are distinct points of

Int(X), af™ = 2(0), and (a]*'| — (n+ 1) <i < n+ 1) is a subsequence of the sequence
t(l-tny1))s 2(l-ugry + 1), s 2(=1), 2(0), 2(1), .., x(lpny1) — 1), 2(lng1).
Also, by Lemma 2.1, for each 1 < i < n, we may choose a pseudo §-orbit
= Y (1), Y (L + 1),y (Ing) = gy
of hy 0 hy_y ©..hy o h from a, to a,,, and a pseudo d-orbit
iy = Y (i), Y (L urny) + 1),y (1n) = aly,

of h, o h,_10...hy oh from ai_(nﬂ) to a’;n. Also, we may assume that there is a pseudo
d-orbit
bt = 2(0),2(1), ., 2(lmgn) — 1), 2(lmgr)) = b3



of hyoh,_10...hyoh from by ™ to by such that the pointa z; are distinet points of Int(X),

(g™, bE bt L b ) is & subsequence of z(0), 2(1), ..., 2(Igna1) — 1)). Moreover, we

may assume that A, B; (i = 1,2,...,n),C and D are mutually disjoint, where
A={z()] -1y < J < i},

Bi={y' () lonyyy <J < lon = 13Uy () ln+1 <7 <lupa},

n

D = J({(hnohn_10...hsoh) (ad)| I_n < j < L} J({(hnohn_10...hioh) (b)) 0 < j < I;}).

i=1 i=1
Also we may assume that [_(,11),l,41 are elements of the sequence (k,| n € Z) and the
finite sequence

(Time(hn+1ohno...hloh)(ag+1 — CL;L)| - (n + 1) S j S n + 1)

is a subsequence of (k,| ¢ € Z). By the same argument as above, we may assume that
z(7),4'(J), 2(j) are not fixed points of h, o h, 1 o..h; o h. By Lemma 2.3, there is a
homeomorphism h,, 11 € Hy(X, ) such that h,1|D = Id, d(h,.1,1d) < 6 and

hps1(hpohy 1o hyoh(x(y)) =z(j+1),

hn+1(hn o hn—l o hl o h(yz(j))) = yz(j + 1)7
hpi1(hpohy_10...hioh(z(j))) =2(j +1)
for each ¢, 7. If § is sufficiently small, then we may assume that

d(hpi1 © hy 0 hy_10...hy 0 hyhyohy_10..hyoh)<e/3"
d((hpir0hpohp10...hioh) ™ (hyoh,_1o0..hioh) ) <e/3m

Also, we may assume that the condition 8 is satisfied for A, o h, 0 h,_1 0 ...hy 0 h.
By using the sequence (h,,),en of homeomorphisms of X, we put

f=lim h,oh, 10..hyoh.

n—o0

Note that if 7, 7 < n, then
f(aé) =hpohy_10..hjo h(a;»),

J(b5) = hy o hy_yo..hyoh(b)).
Then we can see that f is a desired homeomorphism.

Let f: X — X be a map of a compact metric space (X, d). Then f is chaotic in the
sense of Devaney if f satisfies the following conditions;

1. f has sensitive dependence on initial conditions, i.e., there is a positive number
7 > 0 such that for any z € X and any neighborhood U of x in X, there is a point
y € U such that d(f"(x), f"(y)) > 7 for some positive integer n € N,
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2. f is topologically transitive, i.e., the (positive) orbit {f"(z)| n € N} is dense in X
for some point z € X,

3. the set of all periodic points is dense in X.

A subset S of X is a scrambled set of f if there is a positive number 7 > 0 such that for
any z,y € S with x # vy,

lim inf d(f"(x), f"(y)) =0,

n—oo

limsupd(f™(z), f"(y)) > 7.

n—oo
If there is an uncountable scrambled set S of f, we say that f is chaotic in the sense
of Li-Yorke. A map f : X — X is everywhere-chaotic (in the sense of Li-Yorke) if the
following conditions are satisfied;

1. thereis 7 > 0 such that if U and V' are any nonempty open subsets of X and N is any
natural number, then there is a natural number n > N such that d(f"(x), f*(y)) > T
for some x € U, y € V, and

2. for any nonempty open subsets U,V of X and any € > 0 there is a natural number
n > 0 such that d(f"(z), f"(y)) < € for some z € U, y € V.

Suppose that X is a regularly connected polyhedron of dimension m > 1. A space
homeomorphic to I"™ is an m-cell. A 0-dimensional compactum D in Int(X) is flat if for
any neighborhood V' of D in X, there is a closed neighborhood U of D in X such that
UcVandU =By U---UB,, where B; (i =1,2,...,p) are mutually disjoint k-cells. By
Generalized Schoenflies theorem, we see that if C' and C” are flat Cantor sets in Int(X),
then any homeomorphism f: C U0JX — C’"UJX can be extended to a homeomorphism
f: X — X (eg., see the proof of [6, p. 93, Theorem 7]). Also, note that any closed
subset of a flat 0-dimensional compactum is also flat.

Theorem 2.5. Suppose that X is a reqularly connected polyhedron of dimension m > 2
and E is a dense F,-set of X such that E is a countable union of flat Cantor sets in
Int(X). Let u be a good measure on X with u(E) = 1. Suppose that h € H(X, pu), € > 0
and (k| n € Z) is an arbitrary increasing bi-sequence of integers with ko = 0. Then there
1s a homeomorphism f : X — X satisfying the following conditions:

1. d(f,h) < € and f]O(X) = h|O(X).

2. f and f~1 are chaotic in the sense of Devaney and chaotic in the sense of Li- Yorke
such that the set E is a scrambled set of f. Moreover, if a,b € E and a # b, then

(a) the sets {f*(a)|n € N} and {f*(a)|n € N} are dense in X,
(b) liminf,+o0 d(f* (a), f5 (b)) = 0 and limsup,, .., d(f*(a), f* (b)) = 6(X).

To prove the above theorem, we need the following notions: Let X be a space and R
be any subset of X™ (m > 2). A subset F' C X is said to be independent in R if for any
different m points z1,--- ,x,, of F' (i.e., z; # z; for i # j), we have (1,29, -+ ,2,) €
X™ — R. A countable union of nowhere dense sets is called a set of the first category.
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Proposition 2.6. [4, Proposition 2.3] Suppose that X is a reqularly connected polyhedron
of dimension > 1 and R C X™ (m > 2). If X has no isolated point and R is of the first
category, then there is a subset S of X such that S =J,_, C,,, where C, are flat Cantor
sets in X, S is independent in R, and C1(S) = X.

By modifying the proof of [4, Theorem 2.6], we can prove the following.

Proposition 2.7. Suppose that X s a reqularly connected polyhedron of dimension m >
1. Let E and S be sets which are countable unions of flat Cantor sets of Int(X). Then for
any 0 > 0 there is a homeomorphism u : X — X such that u(E) = S and d(u, Id) < 0.

Proof of Theorem 2.5. Let {S;|i € N} be a countable family which is chaotic for
(kn| n € Z). By Theorem 2.4, there is g € H (X, p1) such that d(g,h) < €/2 and g satisfies
the conditions as in Theorem 2.4. Then g and g~! are everywhere-chaotic. Also we may
assume that g and ¢g~! are chaotic in the sense of Devaney. We shall show that the set

T(g) = {z € X| CI({f*(2)| n € N}) = X = CI({f*"(2)| n € N})}

is a dense Gg-set of X. Let {U;}ien be an open countable base of X. For each 7,5 € N,

consider the sets
+ _ kn )
T ={z € X| g"™(2) € (X = U) for n > j},

- — kon :
T, ={r e X| g"(z) € (X = U};) for n > j}.

Then
- X - U T, uT)

4,JEN

Note that each Tf; is a closed and nowhere dense set of X and hence we see that T'(g) is
a dense Gg-set of X. Put

Ry = (X =T(g)) x X) U (X x (X =T(9g)).

Then Ry is of the first category in X2
Next, we consider the following sets:

R ={(z,y) € X?| limsupd(¢*(z), ¢" (y) < 6(X)},

n—oo

Ry = {(z,y) € X?| liminfd(¢" (z), ¢" (y) > 0}.

11— 00

Let {¢;} be a decreasing sequence of positive numbers with lim; ,,, ¢; = 0. Then R} =
Ui2, T;, where

T, = {(x,9) € X|d(g" (2), 6" () < 5(X) — e for every n > i)
Also, Rf = U2, Wi, where

Wi = {(z,y) € X*|d(¢g" (2), 9" (y)) = €; for every n > i},

10



Since T; and W; C X? are closed, R{ and Ry are of the first category in X?. Put

Ry ={(z,y) € X?| limsupd(¢*(z), ¢" (y) < 6(X)},

n——oo

Ry = {(z,y) € X?| liminf d(¢*" (z), g" (y) > 0}.
n——00

Then R = Ry U R URJ UR[ UR; is of the first category. By Proposition 2.6, there
is a subset S of X such that S = (J 2, C,, where C,, are flat Cantor sets in Int(X),
S is independent in R and CI(S) = X. By Proposition 2.7, there is a homeomorphism
u: X — X such that u(E) = S and d(u, Id) is sufficiently small. Put f = u™'ogou.
Then f: X — X is topologically conjugate to g, d(f,g) < €/2 and E is the scrambled set
E of f. We see that f is a desired homeomorphism.

3 Flows which realize precisely the given sequences
of points on their orbits

In this section, we consider the case of continuous dynamical systems. For any t € R,
we define the integer < t >€ Z by < t >= [t + 1/2|, where [z] is the greatest integer that
is less than or equal to x € R. Note that if t € R — (Z + 1/2), then the integer <t >€ Z
satisfies [t— <t > | < 1/2. The main result of this section is the following theorem.

Theorem 3.1. Suppose that X is a reqularly connected polyhedron of dimension m > 3.
Let (k.| n € Z) be an arbitrary increasing bi-sequence of integers with kg = 0. Suppose
that S; = (a',|n € A;) (i € N) are any infinite bi-sequences or finite sequences of (distinct)
points which are contained in some polyhedral m-cell C' of Int(X) and S;, S; (1 # j) are
mutually disjoint. Then there exist p € My(X; good) and a p-measure preserving flow
¢ : X xR —= X satisfying the following conditions:

1. Each S; (i € N) is realized by . Moreover if S; = (a']| 0 < n < s;) is a finite
sequence, then af is a periodic point of ¢ and S; is realized by p on the periodic
ordered orbit of aj.

2. If S; and S; are infinite bi-sequences, then there is n(i,j) € N such that if n € Z
with |n| > n(i,j), then

< Timey(al — a') >=< Time,(a}, — al) > .
3. If S; is an infinite bi-sequence, then the bi-sequence (< Timey(al — ab) > | n € Z)
is a subsequence of (k,| n € Z).

Proof. We use the methods of [7]. By [7, Lemma 1], X is a continuous image of an
m-cell Z under a map which is a homeomorphism up to the boundary and which is a
simplicial map of a certain subdivision of Z onto X. Hence we may assume that X is the
m-dimensional unit cube and C' is an m-dimensional cube in the interior Int(X) of X.
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Let B = I"™"! be the (m — 1)-dimensional unit cube and B; an (m — 1)-dimensional cube
in the interior of B. Also, let () be the m-dimensional tube, that is, the product space
of B with = [0, 1] where points (b,0) and (b, 1) are identified and p: B x I — @ denotes
the quotient map. By the proof of [7, Theorem 3], there is an onto map ¢ : @ — X such
that ¢|Int(Q) is an embedding and ¢(9Q) is an (m — 1)-dimensional subpolyheron of X.
Hence we may assume that X = @ and C'is a subset of ) such that C' C p(B; x [0,1/2]).
Choose a countable subset D of the interior Int(B;) of By with Cl(D) = B;. Let S be
the set which is the union of all S;. By modifying the proof of Bennett’s theorem [2], we
have a homeomorphism h : @ — @ such that h|0Q = Id, h|S : S — D x [0,1/2] is an
embedding satisfying that h(S) N p({d} x I) is an empty set or a one point set for each
each d € D. Consequently, we may assume that S is contained in p(D x [0,1/2]) and
for each each d € D, SN p({d} x [0,1/2]) is an empty set or a one point set. Let di be
the point of D such that o’ € p({d’} x [0,1/2]) for each : € N,n € A;. We consider
the corresponding sequences D; = (d,|n € A;) (i € N) of the sequences S;. We define a
measure v in B by v(A) = [, 1/f(p)dp, where f : Int(B) — R is a map (=continuous
function) such that [, 1/f(p)dp =1 and f(p) > 0 for p € B — 9B, f(By) = 1 and f(p)
tends to infinity at the boundary 0B (see the proof of [7, Theorem 3]). By Theorem 2.4,
we have g € Hy(B,v) satisfying the conditions of Theorem 2.4 with respect to h = Id,
the the sequences D; = (d'|n € A;) (i € N) and (k,| n € Z). Then there is an isotopy h;
of B, 0 <t <1, such that hy = Id (0 <t < 1/2), hy = g, h4|0(B) = Id. Define a map
¢ BxI — Qby ¢(x,t) = hy(x) for 0 <t < 1. Consider the mapping torus @; of the map
g: B — B, ie., @ is obtained from B x [ by identifying points (x,1) and (g(x),0) for
x € B. Then there is the natural homeomorphism h : Q; — @ such that h([z,t]) = hi(z).
Hence we may assume that Q = ;. By the proof of [7,Theorem 3|, we can define a
flow ¢ upward along streamlines perpendicular to B, taking the velocity at any point to
be 1/f(z), where z is the last intersection of the streamline with B. Then the flow ¢
preserves m-dimensional Lebesgue measure in @) (see the proof of [7, Theorem 3]). Note
that the velocity at any point x on streamlines perpendicular to By is 1/f(x) = 1.0 By
the construction of ¢, 0 each S; (i € N) is realized by the flow . Also, the m-dimensional
Lebesgue measure in () induces a good measure p on X by the map q: @ — X. Let §;
and S; be infinite bi-sequences. Since [Time,(dy — di) — Time,(al — ab)| < 1/2, we see
that
< Time,(ay — a',) >= Time,(d) — d.) € Z.

Note that Time,(dy — d) = Timey(d} — dJ) for |n| > n(i, 7). Hence we see that if S;
and S; are infinite bi-sequences, then for n € Z with |n| > n(i, j),

< Time,(ay) — a') >=< Time,(a}, — a’) > .
We can see that p and ¢ satisfy the desired conditions of Theorem 3.1.

By a modification of the proof of Theorem 3.1, we can prove the following theorem.
We omit the proof.

Theorem 3.2. Suppose that X is a reqularly connected polyhedron of dimension m > 3.
If §; (i € N) are any infinite bi-sequences or finite sequences of distinct points of Int(X)
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and S;, S; (i # j) are mutually disjoint, then there exist j € Mpy(X;good) and a p-
measure preserving flow ¢ : X X R — X such that for each © € N, S; is realized by the
flow p, and moreover if S; is a finile sequence, then S; is realized by ¢ on the periodic
ordered orbit of p.

Note that if a separable metric space S is a countable set and perfect, then S is
homeomorphic to the set Q of all rational numbers. If f : X — X is a transitive
homeomorphism of a perfect compact metric space X and Orb(zx, f) is dense in X, then
Orb(zx, f) is homeomorphic to the set Q.

Theorem 3.3. Suppose that X is a regularly connected polyhedron of dimension n > 2 or
a Menger k-dimensional manifold with k > 1. Let p be a good measure on X, h € H(X, )
and € > 0. Suppose that S; (i € N) is a dense countable subset or a finite set of Int(X)
such that the family {S;| 1 € N} are mutually disjoint. Then there is f € H(X, )
satisfying the following conditions:

1. d(f,h) < e and flO(X) = h|0(X).

2. If S; is an infinite set, then S; coincides with a dense orbit of f, i.e., S; = Orb(a;, f)
for a; € S;, and if S; is a finite set, then S; is a subset of a periodic orbit of f.

Proof. Let 7; (i € N) be infinite bi-sequences of points of Int(X) such that {7;]: € N} is
a chaotic family for Z. Also, we can choose {P;|i € N} which is a family of finite sequences
of points of Int(X) such that lim; ., P, = X and P; (i € N) are mutually disjoint, where
P; is the set induced by the sequence P;. By Theorem 2.4, there is ¢ € H(X, u) such
that d(h, g) < €/2, g|0(X) = h|0(X) and T; and P; are realized by g. Moreover, we may
assume that P; is realized on a periodic orbit of g. Hence we can choose a countable family
{T}| i € N} of mutually disjoint dense orbits of g and a countable family {P!| i € N} of
mutually disjoint periodic orbits of g such that lim; ,., P/ = X. By modifying the proof of
Bennett [2], we can prove that there is u € Hy(X, u) satisfying the following conditions;
if S; is an infinite set, then u(S;) = T} and if S; is a finite set, then u(S;) C P}, for some
ji. Put f =u"logou. Then f is a desired homeomorphism.

Finally, we have the following problem.

Problem 3.4. Are any versions of the results of this paper true in the smooth category?

Acknowledgement: The author thanks the referee for helpful comments on the problem
above.
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