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Abstract. A dynamical system consists of a phase space of possible states, together
with an evolution rule that determines all future states and all past states given a state
at any particular moment. In this paper, we show that for any countable random infinite
bi-sequences of states of some phase space, there exists an evolution rule in C0-topology
which realizes precisely the given sequences of states on their orbits and satisfies some
regular conditions on the times to realize the states.

1AMS Subject Classification: Primary 54F11; 54H20; 58FE60, Secondary 58F11; 28A32; 57Q40.
2Key words and phrases: Dynamical system, orbits, transitive homeomorphism, chaotic, good mea-

sure, measure-preserving homeomorphism, flow.

1



1 Introduction

A dynamical system consists of a phase space of possible states, together with an
evolution rule that determines all future states and all past states given a state at any
particular moment. In this paper, we consider some kinds of chaotic properties of dynami-
cal systems. We show that in the world admitting C0-topology, for any countable random
infinite bi-sequences of states of some phase space there exists an evolution rule which
realizes precisely the given bi-sequences of states on their orbits and satisfies some regular
conditions on the times to realize the states. In other words, for any countable random
infinite itineraries, by making a slight modification on our dynamical system, we have a
new dynamical system in C0-topology which realizes the given infinite itineraries and sat-
isfies some regular conditions on the times of itineraries. The ideas of this paper depend
on works of Oxtoby-Ulam [7] and Bennett [2]. We need the following terminology and
concepts. Let N = {1, 2, ..., } be the set of all positive integers and Z = {0,±1,±2, ..., }
the set of all integers. Also let R be the set of all real numbers and I = [0, 1] the unit
interval.

In this paper, we suppose that f : X → X is a homeomorphism of a compact metric
space (X, d), where d is a metric on X. We put Supp(f) = {x ∈ X| f(x) 6= x}. A point
x ∈ X is a periodic point of f if there exists a positive integer n ∈ N such that fn(x) = x.
A point x ∈ X is recurrent under f if for any neighborhood U of x there exists a positive
integer n ∈ N such that fn(x) ∈ U . The orbit of a point x ∈ X under f , denoted by
Orb(f ;x), is the set {fn(x)| n ∈ Z}. If x is not a periodic point of f , we consider the infi-
nite bi-sequence (=ordered orbit) (fn(x)| n ∈ Z) = (...., f−2(x), f−1(x), x, f(x), f 2(x), ...)
of x under f . If x is a periodic point of f with period n, we also consider the finite
sequence (=ordered orbit) (f i(x)| 0 ≤ i ≤ n − 1) of x under f . For any x ∈ X and
i, j ∈ Z with i ≤ j, we put Orb(f ; x)[i,j] = {fn(x)| i ≤ n ≤ j}. Suppose that Orb(f ;x) is
not a periodic orbit and y ∈ Orb(f ; x). In this case, we put Timef (x → y) = n, where n
is the (unique) integer satisfying fn(x) = y (n ∈ Z).

Let ϕ : X × R → X be a flow, i.e., ϕ is a map (=continuous function) such that

1. ϕ(x, 0) = x and

2. ϕ(x, s+ t) = ϕ(ϕ(x, s), t) for any x ∈ X and any s, t ∈ R.

A point x ∈ X is a periodic point of ϕ if there exists a positive number t ∈ R such
that ϕ(x, t) = x. The orbit of a point x ∈ X under ϕ, denoted by Orb(ϕ;x), is the
set {ϕ(x, t)| t ∈ R}. If x is not a periodic point of ϕ, we consider the ordered orbit
(ϕ(x, t))| t ∈ R) of x under ϕ. If x is a periodic point of ϕ with period t0 > 0, we consider
the ordered orbit (ϕ(x, t))| 0 ≤ t < t0) of x under ϕ. If x is not a periodic point and
y ∈ Orb(ϕ, x), we put Timeϕ(x → y) = t if ϕ(x, t) = y.

Let Λ = Z or Λ = {0, 1, 2, ..., s} (s < ∞). A sequence S = (an|n ∈ Λ) of points
of X is said to be realized by a homeomorphism f if S is a subsequence of the ordered
orbit of a0 under f . Similarly S = (an|n ∈ Λ) is said to be realized by a flow ϕ if S is a
subsequence of the ordered orbit of a0 under ϕ. A sequence (xn|n ∈ Λ) of points of X is
a pseudo η-orbit (η > 0) of f if d(f(xn), xn+1) < η for any n, n+ 1 ∈ Λ. Let a, b ∈ X. A
finite sequence (xn|0 ≤ n ≤ s) is a pseudo η-orbit of f from a to b if x0 = a, xs = b and
d(f(xn), xn+1) < η for any 0 ≤ n ≤ s− 1.
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Let (kn| n ∈ Z) be an arbitrary increasing bi-sequence of integers with k0 = 0 i.e.,
kn < kn+1 for n ∈ Z and let Si = (ain|n ∈ Z) (i ∈ N) be infinite bi-sequences of distinct
points of X. Then the (countable) family {Si|i ∈ N} is said to be chaotic for (kn| n ∈ Z)
if the following conditions are satisfied;

1. Si and Sj (i 6= j) are mutually disjoint,

2. the set {ai0|i ∈ N} is dense in X,

3. the sets {aikn |n ∈ N} and {aik−n
|n ∈ N} are dense in X for each i,

4. if i, j ∈ N and i 6= j, then Si and Sj are Li-Yorke pair with respect to (kn| n ∈ Z)
and the diameter δ(X) of X, that is,

lim inf
n→±∞

d(aikn , a
j
kn
) = 0,

lim sup
n→±∞

d(aikn , a
j
kn
) = δ(X).

It is easy to see that if X has no isolated point (i.e., X is perfect), then we have many
kinds of chaotic families {Si|i ∈ N}.

An m-dimensional compact connected polyhedron X is said to be regularly connected
if the set

Int(X) = {x ∈ X| x has an open neighborhood which is homeomorphic to Rm}

is a connected dense open subset of X. Put ∂(X) = X − Int(X).
The theory of Menger manifolds was founded by Anderson and Bestvina (see [1] and

[3]) and has been studied by many authors. We also study Menger manifolds from the
viewpoint of dynamical systems. Anderson and Bestvina gave characterizations of Menger
manifolds as follows: For a compactum M , M is a k-dimensional Menger manifold if and
only if (1) dimM = k, (2) M is locally (k − 1)-connected, (3) M has the disjoint k-cell
property, i.e., for any ε > 0 and any maps f, g : Ik → M , there are maps f ′, g′ : Ik → M
such that d(f, f ′) < ε, d(g, g′) < ε and f ′(Ik)∩ g′(Ik) = φ. Note that every 0-dimensional
Menger manifold is a Cantor set, and every 1-dimensional Menger connected manifold is
a Menger curve. If X is a Menger manifold, we put Int(X) = X and ∂(X) = φ.

Let µ be a probability measure on a compact metric space (X, d) which is nonatomic,
locally positive; such a measure is called a good measure. Put

M(X; good) = {µ| µ is a good measure on X}.

If X is a regularly connected polyhedron, we consider the following subset of measures:

M∂(X; good) = {µ ∈ M(X; good)| µ(∂X) = 0}.

Let H(X,µ) be the set of all µ-measure preserving homeomorphisms of X with metric

ρ(f, g) = d(f, g) + d(f−1, g−1),
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where d(f, g) = sup{d(f(x), g(x))|x ∈ X}. Also, put

H∂(X,µ) = {f ∈ H(X,µ)| f |∂X = Id}.

Note that H(X,µ) and H∂(X,µ) are complete metric spaces (see [7]). Note that if X
is a regularly connected polyhedron and µ, µ′ ∈ M∂(X; good), then there is a homeo-
morphism h : X → X such that h∗µ = µ′ (see [7, Corollary 1]). Also, note that if X
is a k-dimensional Menger manifold (k ≥ 1) and µ, µ′ ∈ M(X; good), then there is a
homeomorphism h : X → X such that h∗µ = µ′ (see [5, Theorem 3.1]).

2 Homeomorphisms which realize precisely the given

sequences of points on their orbits

In this section, we consider the case of discrete dynamical systems. A metric d on
a space X is a convex metric if for any x, y ∈ X there is a point z of X such that
d(x, z) = d(z, y) = (1/2)d(x, y). It is well-known that a continuum (compact metric
connected space) X is locally connected (=Peano continuum) if and only if X admits a
convex metric d on X. First, we need the following lemmas (cf. [7, Lemma 14]).

Lemma 2.1. Suppose that X is a regularly connected polyhedron of dimension m ≥ 1 or
a Menger k-dimensional manifold with k ≥ 1 and d is a convex metric on X. Let µ be a
good measure on X and h ∈ H(X,µ). For any δ > 0, there is a natural number N such
that for any a, b ∈ X and any n ≥ N , there is a pseudo δ-orbit x0, x1, ..., xn of h from a
to b.

Proof. For a subset A of X, let U(A, δ) be the δ-neighborhood of A in X. Put
U1 = U(h(a), δ). By induction on i, we define Ui+1 = U(h(Ui), δ). Since h ∈ H(X,µ), by
[7, Lemma 14] and [5] there is a natural number N such that UN = X. Let a, b ∈ X and
n any natural number with n ≥ N . We choose the point y ∈ X such that b = hn−N(y).
Since UN = X, there is a pseudo δ-orbit x0, x1, ..., xN of h from a to y. Then the sequence
x0, x1, ..., xN(= y), xN+1(= h(y)), xN+2(= h2(y)), ..., xn(= hn−N(y) = b) is a pseudo δ-
orbit x0, x1, ..., xn of h from a to b.

The following lemma follows from [7, Lemma 12] and [5, Proposition 4.16]. We omit
the proof.

Lemma 2.2. Suppose that X is a regularly connected polyhedron of dimension m ≥ 2 or
a Menger k-dimensional manifold (k ≥ 1). Let µ be a good measure on X. Suppose that
U is a connected open set of Int(X) with a, b ∈ U . Then there exists h ∈ H(X,µ) such
that h(a) = b and Supp(h) ⊂ U .

The following lemma is a slight modification of [7, Lemma 13]. For completeness, we
give the proof.

Lemma 2.3. Suppose that X is a regularly connected polyhedron of dimension m ≥ 2 or
a Menger k-dimensional manifold (k ≥ 1) and d is a convex metric on X. Let F be a
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finite subset of X and µ a good measure on X. Suppose that pi, qi (i = 1, 2, ..., l) are points
of Int(X)−F such that {pi, qi}∩{pj, qj} = φ (i 6= j) with d(pi, qi) < δ. Then there exists
h ∈ H(X,µ) such that h(pi) = qi for each i, d(h, Id) < δ and Supp(h) ∩ (F ∪ ∂X) = φ.

Proof. We shall prove the case thatX is a regularly connected polyhedron of dimension
2. Since F is a finite set and Int(X) is 2-dimensional manifold, we can choose arcs Li

from pi to qi such that the length l(Li) of Li is less than δ, Li∩Lj is an at most one point
set for i 6= j and

F ∩ Li = φ, Li ∩ {pj, qj| j = 1, 2, ..., l} = {pi, qi}.

Note that if X is the other cases, we can find arcs Li from pi to qi such that the length
l(Li) of Li is less than δ, F ∩Li = φ and Li ∩Lj = φ (i 6= j). Let k be a sufficiently large
natural number. For each i, we can take k + 1 points pi = pi,0 < pi,1 < .... < pi,k = qi on
Li such that the length l(Li,j) of Li,j is less than δ/k and for each 1 ≤ j ≤ k, the family
{Li,j| i = 1, 2, ..., l} are disjoint, where Li,j is the sub arc from pi,j−1 to pi,j in Li (see the
proof of [7, Lemma 13]). Take a sufficiently small neighborhood Ui,j of Li,j for each i, j
such that δ(Ui,j) < δ/k, Ui,j ∩ F = φ and for each j = 1, 2, .., k, {Ui,j| i = 1, 2, ..., l} are
disjoint. For each j = 1, 2, ..., k, we can choose hj ∈ H(X,µ) such that hj(pi,j−1) = pi,j
for each i and hj|X − ∪l

i=1Ui,j = Id. Put h = hk ◦ .... ◦ h1. Since d(hj, Id) < δ/k, we see
d(h, Id) < δ. Hence h is a desired homeomorphism.

The main result of this section is the following theorem. This theorem means that in
the world admitting C0-topology, random infinite sequences of any prophecies will come
true by making a slight change. From now on, we may assume that X admits a convex
metric d if X is a Peano continuum.

Theorem 2.4. Suppose that X is a regularly connected polyhedron of dimension m ≥ 2
or a Menger k-dimensional manifold (k ≥ 1), and µ is a good measure on X. Let
h ∈ H(X,µ), ε > 0 and let (kn| n ∈ Z) be an arbitrary increasing bi-sequence of integers
with k0 = 0. Suppose that Si = (ain|n ∈ Λi) (i ∈ N) are arbitrary infinite bi-sequences
or finite sequences of distinct points of Int(X) and Si, Sj (i 6= j) are mutually disjoint.
Then there is f ∈ H(X,µ) satisfying the following conditions:

1. d(f, h) < ε and f |∂(X) = h|∂(X).

2. Si is realized by f for each i ∈ N. Moreover if Si = (ain| 0 ≤ n ≤ si) is a finite
sequence, then ai0 is a periodic point of f and Si is realized by f on the periodic
ordered orbit of ai0.

3. If Si and Sj are infinite bi-sequences, then there is n(i, j) ∈ N such that if n ∈ Z
and |n| ≥ n(i, j), then Timef (a

i
0 → ain) = Timef (a

j
0 → ajn).

4. If Si is an infinite bi-sequence, then (Timef (a
i
0 → ain)| n ∈ Z) is a bi-subsequence

of (kn| n ∈ Z).
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Proof. We may assume that S2i−1 = (ain| n ∈ Z) is an infinite bi-sequence and
S2i = (bin| 0 ≤ n ≤ si) is a finite sequence for each i ∈ N. We consider the set S = ∪∞

i=1Si,
where S2i−1 = {ain| n ∈ Z} and S2i = {bin| 0 ≤ n ≤ si}. Also, put S2i−1,n = {aij| −n ≤ j ≤
n} (n ∈ N). By induction on n, we will construct a sequence (hn)n∈N of homeomorphisms
of X and a bi-subsequence of (ln| n ∈ Z) of (kn| n ∈ Z) with l0 = 0 such that for each
n ∈ N, the following conditions are satisfied:

1. hn ∈ H∂(X,µ).

2. d(hn ◦ hn−1 ◦ ...h1 ◦ h, hn−1 ◦ hn−2 ◦ ...h1 ◦ h) < ε/3n and
d((hn ◦ hn−1 ◦ ... ◦ h1 ◦ h)−1, (hn−1 ◦ hn−2 ◦ ...h1 ◦ h)−1) < ε/3n.

3. For each 1 ≤ i ≤ n, the finite subsequence (ai−i, a
i
−i+1, ..., a

i
i−1, a

i
i) of S2i−1 is realized

by hi ◦ hi−1 ◦ ...h1 ◦ h. Moreover

Time(hi◦hi−1◦...h1)(a
i
0 → aii) = li,

T ime(hi◦hi−1◦...h1)(a
i
0 → ai−i) = l−i

and (Time(hi◦hi−1◦...h1◦h)(a
i
0 → aij)|− i ≤ j ≤ i) is a finite subsequence of (kn| i ∈ Z).

4. For each 1 ≤ i ≤ n, the point bi0 is a periodic point of hi ◦ hi−1 ◦ ...h1 ◦ h and the
sequence S2i = (bi0, b

i
1, b

i
2, ...., b

i
si
) is realized by hi ◦ hi−1 ◦ ...h1 ◦ h.

5. If 1 ≤ i ≤ j < n, then for j < s ≤ n

Supp(hs) ∩Orb((hj ◦ hj−1 ◦ ...h1 ◦ h); ai0)[l−j ,lj ] = φ.

6. If 1 ≤ i < n, then for i < s ≤ n

Supp(hs) ∩Orb((hi ◦ hi−1 ◦ ...h1 ◦ h); bi0) = φ.

7. If 1 ≤ i ≤ j ≤ n, then (hn◦hn−1◦...h1◦h)lj(ai0) = aij and (hn◦hn−1◦...h1◦h)l−j(ai0) =
ai−j.

8. For each 1 ≤ i ≤ n,

Orb(hn ◦ hn−1 ◦ ...h1 ◦ h; ai0)[l−n,ln] − S2i−1,n ⊂ X − S

and
Orb(hn ◦ hn−1 ◦ ...h1 ◦ h; bi0)− S2i ⊂ X − S.

Let n = 1. Suppose that δ > 0 is a sufficiently small positive number. By Lemma 2.1,
we can choose l−1, l1 ∈ Z and a pseudo δ-orbit

a1−1 = x(l−1), x(l−1 + 1), ..., x(−1), x(0), x(1), ..., x(l1 − 1), x(l1) = a11

of h from a1−1 to a11 in Int(X) such that a10 = x(0). We may assume that

{x(j)| l−1 ≤ j ≤ l1} ∩ S = S1,1
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and l−1, l1 are elements of the sequence (kn| n ∈ Z) such that l−1 < 0 < l1. Also, we may
assume that there is a pseudo δ-orbit

b10 = z(0), z(1), ..., z(l1 − 1), z(l1) = b10

of h from b10 to b10 in Int(X) such that (b10, b
1
1, ...., b

1
s1
) is a subsequence of the sequence

z(0), z(1), ..., z(l1 − 1)).

Also, we may assume that

{z(j)| 0 ≤ j ≤ l1 − 1} ∩ (S ∪ {x(j)| l−1 ≤ j ≤ l1}) = S2.

For the sake of simplicity, we may assume h satisfies that h(x(j)) 6= x(j) and h(z(j)) 6=
z(j) for each j (see Lemma 2.2); if necessary, we replace h with the composition h′ ◦ h of
h and h′, where h′ ∈ H∂(X,µ) and d(h′, Id) is sufficiently small. Then

{h(x(j)), x(j + 1)} ∩ {h(x(j′)), x(j′ + 1)} = φ,

{h(z(j)), z(j + 1)} ∩ {h(z(j′)), z(j′ + 1)} = φ (j 6= j′).

By Lemma 2.3, there is a homeomorphism h1 ∈ H∂(X,µ) such that d(h1, Id) < δ and
h1(h(x(j))) = x(j+1) and h1(h(z(j))) = z(j+1) for each j. If δ is sufficiently small, then
we may assume that d(h1◦h, h) < ε/3 and d((h1◦h)−1, h−1) < ε/3. Note that the sequences
(a1−1, a

1
0, a

1
1) and (b10, b

1
1, ...., b

1
s1
) are realized by h1 ◦ h and Time(h1◦h)(a

1
0 → a1±1) = l±1.

Assume that h1, h2, ..., hn and l±1, l±2, ..., l±n have been defined for certain n and they
satisfy the conditions 1-8. We define hn+1 and l±(n+1) as follows.

Let δ > 0 be a sufficiently small positive number. Choose integers ln+1, l−(n+1) ∈ Z
and a pseudo δ-orbit

an+1
−(n+1) = x(l−(n+1)), x(l−(n+1) + 1), ..., x(−1), x(0), x(1), ..., x(l(n+1) − 1), x(l(n+1)) = an+1

n+1

of hn ◦ hn−1 ◦ ...h1 ◦ h from an+1
−(n+1) to an+1

n+1 such that the points xj are distinct points of

Int(X), an+1
0 = x(0), and (an+1

i | − (n+ 1) ≤ i ≤ n+ 1) is a subsequence of the sequence

x(l−(n+1)), x(l−(n+1) + 1), ..., x(−1), x(0), x(1), ..., x(l(n+1) − 1), x(ln+1).

Also, by Lemma 2.1, for each 1 ≤ i ≤ n, we may choose a pseudo δ-orbit

ain = yi(ln), y
i(ln + 1), ..., yi(ln+1) = ain+1

of hn ◦ hn−1 ◦ ...h1 ◦ h from ain to ain+1 and a pseudo δ-orbit

ai−(n+1) = yi(l−(n+1)), y
i(l−(n+1) + 1), ..., yi(l−n) = ai−n

of hn ◦ hn−1 ◦ ...h1 ◦ h from ai−(n+1) to ai−n. Also, we may assume that there is a pseudo
δ-orbit

bn+1
0 = z(0), z(1), ..., z(l(n+1) − 1), z(l(n+1)) = bn+1

0
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of hn◦hn−1◦...h1◦h from bn+1
0 to bn+1

0 such that the pointa zj are distinct points of Int(X),
(bn+1

0 , bn+1
1 , bn+1

2 , ...., bn+1
sn+1

) is a subsequence of z(0), z(1), ..., z(l(n+1) − 1)). Moreover, we
may assume that A,Bi (i = 1, 2, ..., n), C and D are mutually disjoint, where

A = {x(j)| l−(n+1) ≤ j ≤ ln+1},

Bi = {yi(j)| l−(n+1) ≤ j ≤ l−n − 1} ∪ {yi(j)| ln + 1 ≤ j ≤ ln+1},
C = {z(j)| 0 ≤ j ≤ ln+1},

D =
n∪

i=1

({(hn◦hn−1◦...h1◦h)j(ai0)| l−n ≤ j ≤ ln}∪
n∪

i=1

({(hn◦hn−1◦...h1◦h)j(bi0)| 0 ≤ j ≤ li}).

Also we may assume that l−(n+1), ln+1 are elements of the sequence (kn| n ∈ Z) and the
finite sequence

(Time(hn+1◦hn◦...h1◦h)(a
n+1
0 → anj )| − (n+ 1) ≤ j ≤ n+ 1)

is a subsequence of (kn| i ∈ Z). By the same argument as above, we may assume that
x(j), yi(j), z(j) are not fixed points of hn ◦ hn−1 ◦ ...h1 ◦ h. By Lemma 2.3, there is a
homeomorphism hn+1 ∈ H∂(X,µ) such that hn+1|D = Id, d(hn+1, Id) < δ and

hn+1(hn ◦ hn−1 ◦ ...h1 ◦ h(x(j)) = x(j + 1),

hn+1(hn ◦ hn−1 ◦ ...h1 ◦ h(yi(j))) = yi(j + 1),

hn+1(hn ◦ hn−1 ◦ ...h1 ◦ h(z(j))) = z(j + 1)

for each i, j. If δ is sufficiently small, then we may assume that

d(hn+1 ◦ hn ◦ hn−1 ◦ ...h1 ◦ h, hn ◦ hn−1 ◦ ...h1 ◦ h) < ε/3n+1,

d((hn+1 ◦ hn ◦ hn−1 ◦ ...h1 ◦ h)−1, (hn ◦ hn−1 ◦ ...h1 ◦ h)−1) < ε/3n+1.

Also, we may assume that the condition 8 is satisfied for hn+1 ◦ hn ◦ hn−1 ◦ ...h1 ◦ h.
By using the sequence (hn)n∈N of homeomorphisms of X, we put

f = lim
n→∞

hn ◦ hn−1 ◦ ...h1 ◦ h.

Note that if i, j ≤ n, then

f(aij) = hn ◦ hn−1 ◦ ...h1 ◦ h(aij),

f(bij) = hn ◦ hn−1 ◦ ...h1 ◦ h(bij).
Then we can see that f is a desired homeomorphism.

Let f : X → X be a map of a compact metric space (X, d). Then f is chaotic in the
sense of Devaney if f satisfies the following conditions;

1. f has sensitive dependence on initial conditions, i.e., there is a positive number
τ > 0 such that for any x ∈ X and any neighborhood U of x in X, there is a point
y ∈ U such that d(fn(x), fn(y)) ≥ τ for some positive integer n ∈ N,
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2. f is topologically transitive, i.e., the (positive) orbit {fn(x)| n ∈ N} is dense in X
for some point x ∈ X,

3. the set of all periodic points is dense in X.

A subset S of X is a scrambled set of f if there is a positive number τ > 0 such that for
any x, y ∈ S with x 6= y,

lim inf
n→∞

d(fn(x), fn(y)) = 0,

lim sup
n→∞

d(fn(x), fn(y)) ≥ τ.

If there is an uncountable scrambled set S of f , we say that f is chaotic in the sense
of Li-Yorke. A map f : X → X is everywhere-chaotic (in the sense of Li-Yorke) if the
following conditions are satisfied;

1. there is τ > 0 such that if U and V are any nonempty open subsets ofX andN is any
natural number, then there is a natural number n ≥ N such that d(fn(x), fn(y)) ≥ τ
for some x ∈ U, y ∈ V , and

2. for any nonempty open subsets U, V of X and any ε > 0 there is a natural number
n ≥ 0 such that d(fn(x), fn(y)) < ε for some x ∈ U, y ∈ V .

Suppose that X is a regularly connected polyhedron of dimension m ≥ 1. A space
homeomorphic to Im is an m-cell. A 0-dimensional compactum D in Int(X) is flat if for
any neighborhood V of D in X, there is a closed neighborhood U of D in X such that
U ⊂ V and U = B1 ∪ · · · ∪ Bp, where Bi (i = 1, 2, ..., p) are mutually disjoint k-cells. By
Generalized Schoenflies theorem, we see that if C and C ′ are flat Cantor sets in Int(X),
then any homeomorphism f : C ∪ ∂X → C ′ ∪ ∂X can be extended to a homeomorphism
f : X → X (e.g., see the proof of [6, p. 93, Theorem 7]). Also, note that any closed
subset of a flat 0-dimensional compactum is also flat.

Theorem 2.5. Suppose that X is a regularly connected polyhedron of dimension m ≥ 2
and E is a dense Fσ-set of X such that E is a countable union of flat Cantor sets in
Int(X). Let µ be a good measure on X with µ(E) = 1. Suppose that h ∈ H(X,µ), ε > 0
and (kn| n ∈ Z) is an arbitrary increasing bi-sequence of integers with k0 = 0. Then there
is a homeomorphism f : X → X satisfying the following conditions:

1. d(f, h) < ε and f |∂(X) = h|∂(X).

2. f and f−1 are chaotic in the sense of Devaney and chaotic in the sense of Li-Yorke
such that the set E is a scrambled set of f . Moreover, if a, b ∈ E and a 6= b, then

(a) the sets {fkn(a)|n ∈ N} and {fk−n(a)|n ∈ N} are dense in X,

(b) lim infn→±∞ d(fkn(a), fkn(b)) = 0 and lim supn→±∞ d(fkn(a), fkn(b)) = δ(X).

To prove the above theorem, we need the following notions: Let X be a space and R
be any subset of Xm (m ≥ 2). A subset F ⊂ X is said to be independent in R if for any
different m points x1, · · · , xm of F (i.e., xi 6= xj for i 6= j), we have (x1, x2, · · · , xm) ∈
Xm −R. A countable union of nowhere dense sets is called a set of the first category.
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Proposition 2.6. [4, Proposition 2.3] Suppose that X is a regularly connected polyhedron
of dimension ≥ 1 and R ⊂ Xm (m ≥ 2). If X has no isolated point and R is of the first
category, then there is a subset S of X such that S =

∪∞
n=1Cn, where Cn are flat Cantor

sets in X, S is independent in R, and Cl(S) = X.

By modifying the proof of [4, Theorem 2.6], we can prove the following.

Proposition 2.7. Suppose that X is a regularly connected polyhedron of dimension m ≥
1. Let E and S be sets which are countable unions of flat Cantor sets of Int(X). Then for
any δ > 0 there is a homeomorphism u : X → X such that u(E) = S and d(u, Id) < δ.

Proof of Theorem 2.5. Let {Si|i ∈ N} be a countable family which is chaotic for
(kn| n ∈ Z). By Theorem 2.4, there is g ∈ H(X,µ) such that d(g, h) < ε/2 and g satisfies
the conditions as in Theorem 2.4. Then g and g−1 are everywhere-chaotic. Also we may
assume that g and g−1 are chaotic in the sense of Devaney. We shall show that the set

T (g) = {x ∈ X| Cl({fkn(x)| n ∈ N}) = X = Cl({fk−n(x)| n ∈ N})}

is a dense Gδ-set of X. Let {Ui}i∈N be an open countable base of X. For each i, j ∈ N,
consider the sets

T+
i,j = {x ∈ X| gkn(x) ∈ (X − Ui) for n ≥ j},

T−
i,j = {x ∈ X| gk−n(x) ∈ (X − Ui) for n ≥ j}.

Then
T (g) = X −

∪
i,j∈N

(T+
i,j ∪ T−

i,j).

Note that each T±
i,j is a closed and nowhere dense set of X and hence we see that T (g) is

a dense Gδ-set of X. Put

R0 = ((X − T (g))×X) ∪ (X × (X − T (g)).

Then R0 is of the first category in X2.
Next, we consider the following sets:

R+
1 = {(x, y) ∈ X2| lim sup

n→∞
d(gkn(x), gkn(y) < δ(X)},

R+
2 = {(x, y) ∈ X2| lim inf

i→∞
d(gki(x), gki(y) > 0}.

Let {εi} be a decreasing sequence of positive numbers with limi→∞ εi = 0. Then R+
1 =∪∞

i=1 Ti, where

Ti = {(x, y) ∈ X2| d(gkn(x), gkn(y)) ≤ δ(X)− εi for every n ≥ i}.

Also, R+
2 =

∪∞
i=1Wi, where

Wi = {(x, y) ∈ X2| d(gkn(x), gkn(y)) ≥ εi for every n ≥ i}.
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Since Ti and Wi ⊂ X2 are closed, R+
1 and R+

2 are of the first category in X2. Put

R−
1 = {(x, y) ∈ X2| lim sup

n→−∞
d(gkn(x), gkn(y) < δ(X)},

R−
2 = {(x, y) ∈ X2| lim inf

n→−∞
d(gkn(x), gkn(y) > 0}.

Then R = R0 ∪R+
1 ∪R+

2 ∪R−
1 ∪R−

2 is of the first category. By Proposition 2.6, there
is a subset S of X such that S =

∪∞
n=1Cn, where Cn are flat Cantor sets in Int(X),

S is independent in R and Cl(S) = X. By Proposition 2.7, there is a homeomorphism
u : X → X such that u(E) = S and d(u, Id) is sufficiently small. Put f = u−1 ◦ g ◦ u.
Then f : X → X is topologically conjugate to g, d(f, g) < ε/2 and E is the scrambled set
E of f . We see that f is a desired homeomorphism.

3 Flows which realize precisely the given sequences

of points on their orbits

In this section, we consider the case of continuous dynamical systems. For any t ∈ R,
we define the integer < t >∈ Z by < t >= [t+1/2], where [x] is the greatest integer that
is less than or equal to x ∈ R. Note that if t ∈ R− (Z+ 1/2), then the integer < t >∈ Z
satisfies |t− < t > | < 1/2. The main result of this section is the following theorem.

Theorem 3.1. Suppose that X is a regularly connected polyhedron of dimension m ≥ 3.
Let (kn| n ∈ Z) be an arbitrary increasing bi-sequence of integers with k0 = 0. Suppose
that Si = (ain|n ∈ Λi) (i ∈ N) are any infinite bi-sequences or finite sequences of (distinct)
points which are contained in some polyhedral m-cell C of Int(X) and Si, Sj (i 6= j) are
mutually disjoint. Then there exist µ ∈ M∂(X; good) and a µ-measure preserving flow
ϕ : X × R → X satisfying the following conditions:

1. Each Si (i ∈ N) is realized by ϕ. Moreover if Si = (ain| 0 ≤ n ≤ si) is a finite
sequence, then ai0 is a periodic point of ϕ and Si is realized by ϕ on the periodic
ordered orbit of ai0.

2. If Si and Sj are infinite bi-sequences, then there is n(i, j) ∈ N such that if n ∈ Z
with |n| ≥ n(i, j), then

< Timeϕ(a
i
0 → ain) >=< Timeϕ(a

j
0 → ajn) > .

3. If Si is an infinite bi-sequence, then the bi-sequence (< Timeϕ(a
i
0 → ain) > | n ∈ Z)

is a subsequence of (kn| n ∈ Z).

Proof. We use the methods of [7]. By [7, Lemma 1], X is a continuous image of an
m-cell Z under a map which is a homeomorphism up to the boundary and which is a
simplicial map of a certain subdivision of Z onto X. Hence we may assume that X is the
m-dimensional unit cube and C is an m-dimensional cube in the interior Int(X) of X.
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Let B = Im−1 be the (m− 1)-dimensional unit cube and B1 an (m− 1)-dimensional cube
in the interior of B. Also, let Q be the m-dimensional tube, that is, the product space
of B with = [0, 1] where points (b, 0) and (b, 1) are identified and p : B × I → Q denotes
the quotient map. By the proof of [7, Theorem 3], there is an onto map q : Q → X such
that q|Int(Q) is an embedding and q(∂Q) is an (m− 1)-dimensional subpolyheron of X.
Hence we may assume that X = Q and C is a subset of Q such that C ⊂ p(B1× [0, 1/2]).
Choose a countable subset D of the interior Int(B1) of B1 with Cl(D) = B1. Let S be
the set which is the union of all Si. By modifying the proof of Bennett’s theorem [2], we
have a homeomorphism h : Q → Q such that h|∂Q = Id, h|S : S → D × [0, 1/2] is an
embedding satisfying that h(S) ∩ p({d} × I) is an empty set or a one point set for each
each d ∈ D. Consequently, we may assume that S is contained in p(D × [0, 1/2]) and
for each each d ∈ D, S ∩ p({d} × [0, 1/2]) is an empty set or a one point set. Let din be
the point of D such that ain ∈ p({din} × [0, 1/2]) for each i ∈ N, n ∈ Λi. We consider
the corresponding sequences Di = (din|n ∈ Λi) (i ∈ N) of the sequences Si. We define a
measure ν in B by ν(A) =

∫
A
1/f(p)dp, where f : Int(B) → R is a map (=continuous

function) such that
∫
B
1/f(p)dp = 1 and f(p) > 0 for p ∈ B − ∂B, f(B1) = 1 and f(p)

tends to infinity at the boundary ∂B (see the proof of [7, Theorem 3]). By Theorem 2.4,
we have g ∈ H∂(B, ν) satisfying the conditions of Theorem 2.4 with respect to h = Id,
the the sequences Di = (din|n ∈ Λi) (i ∈ N) and (kn| n ∈ Z). Then there is an isotopy ht

of B, 0 ≤ t ≤ 1, such that ht = Id (0 ≤ t ≤ 1/2), h1 = g, ht|∂(B) = Id. Define a map
φ : B×I → Q by φ(x, t) = ht(x) for 0 ≤ t ≤ 1. Consider the mapping torus Q1 of the map
g : B → B, i.e., Q1 is obtained from B × I by identifying points (x, 1) and (g(x), 0) for
x ∈ B. Then there is the natural homeomorphism h : Q1 → Q such that h([x, t]) = ht(x).
Hence we may assume that Q = Q1. By the proof of [7,Theorem 3], we can define a
flow ϕ upward along streamlines perpendicular to B, taking the velocity at any point to
be 1/f(x), where x is the last intersection of the streamline with B. Then the flow ϕ
preserves m-dimensional Lebesgue measure in Q1 (see the proof of [7, Theorem 3]). Note
that the velocity at any point x on streamlines perpendicular to B1 is 1/f(x) = 1.　By
the construction of ϕ,　 each Si (i ∈ N) is realized by the flow ϕ. Also, the m-dimensional
Lebesgue measure in Q1 induces a good measure µ on X by the map q : Q → X. Let Si

and Sj be infinite bi-sequences. Since |Timeg(d
i
0 → din)−Timeϕ(a

i
0 → ain)| < 1/2, we see

that
< Timeϕ(a

i
0 → ain) >= Timeg(d

i
0 → din) ∈ Z.

Note that Timeg(d
i
0 → din) = Timeg(d

j
0 → djn) for |n| ≥ n(i, j). Hence we see that if Si

and Sj are infinite bi-sequences, then for n ∈ Z with |n| ≥ n(i, j),

< Timeϕ(a
i
0 → ain) >=< Timeϕ(a

j
0 → ajn) > .

We can see that µ and ϕ satisfy the desired conditions of Theorem 3.1.

By a modification of the proof of Theorem 3.1, we can prove the following theorem.
We omit the proof.

Theorem 3.2. Suppose that X is a regularly connected polyhedron of dimension m ≥ 3.
If Si (i ∈ N) are any infinite bi-sequences or finite sequences of distinct points of Int(X)
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and Si, Sj (i 6= j) are mutually disjoint, then there exist µ ∈ M∂(X; good) and a µ-
measure preserving flow ϕ : X × R → X such that for each i ∈ N, Si is realized by the
flow ϕ, and moreover if Si is a finite sequence, then Si is realized by ϕ on the periodic
ordered orbit of ϕ.

Note that if a separable metric space S is a countable set and perfect, then S is
homeomorphic to the set Q of all rational numbers. If f : X → X is a transitive
homeomorphism of a perfect compact metric space X and Orb(x, f) is dense in X, then
Orb(x, f) is homeomorphic to the set Q.

Theorem 3.3. Suppose that X is a regularly connected polyhedron of dimension n ≥ 2 or
a Menger k-dimensional manifold with k ≥ 1. Let µ be a good measure on X, h ∈ H(X,µ)
and ε > 0. Suppose that Si (i ∈ N) is a dense countable subset or a finite set of Int(X)
such that the family {Si| i ∈ N} are mutually disjoint. Then there is f ∈ H(X,µ)
satisfying the following conditions:

1. d(f, h) < ε and f |∂(X) = h|∂(X).

2. If Si is an infinite set, then Si coincides with a dense orbit of f , i.e., Si = Orb(ai, f)
for ai ∈ Si, and if Si is a finite set, then Si is a subset of a periodic orbit of f .

Proof. Let Ti (i ∈ N) be infinite bi-sequences of points of Int(X) such that {Ti|i ∈ N} is
a chaotic family for Z. Also, we can choose {Pi|i ∈ N} which is a family of finite sequences
of points of Int(X) such that limi→∞ Pi = X and Pi (i ∈ N) are mutually disjoint, where
Pi is the set induced by the sequence Pi. By Theorem 2.4, there is g ∈ H(X,µ) such
that d(h, g) < ε/2, g|∂(X) = h|∂(X) and Ti and Pi are realized by g. Moreover, we may
assume that Pi is realized on a periodic orbit of g. Hence we can choose a countable family
{T ′

i | i ∈ N} of mutually disjoint dense orbits of g and a countable family {P ′
i | i ∈ N} of

mutually disjoint periodic orbits of g such that limi→∞ P ′
i = X. By modifying the proof of

Bennett [2], we can prove that there is u ∈ H∂(X,µ) satisfying the following conditions;
if Si is an infinite set, then u(Si) = T ′

i and if Si is a finite set, then u(Si) ⊂ P ′
ji
for some

ji. Put f = u−1 ◦ g ◦ u. Then f is a desired homeomorphism.

Finally, we have the following problem.

Problem 3.4. Are any versions of the results of this paper true in the smooth category?

Acknowledgement: The author thanks the referee for helpful comments on the problem
above.
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