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Abstract

In recent years, Boolean Grobner bases have attracted the attention of many researchers, mainly
in connection with cryptography. Several sophisticated methods have been developed for the
computation of Boolean Grobner bases. However, most of them only deal with Boolean polyno-
mial rings over the simplest coefficient Boolean ring GF. Boolean Grobner bases for arbitrary
coefficient Boolean rings were first introduced by two of the authors almost two decades ago.
While the work is not well known among computer algebra researchers, recent active work on
Boolean Grébner bases inspired us to return to their development. In this paper, we introduce
our work on Boolean Grobner bases with arbitrary coefficient Boolean rings.
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1. Introduction

Boolean Grobner bases have been studied by many researchers in recent years, mainly
in connection with cryptography (3; 5; 6; 8). Several sophisticated methods have been
developed for the computation of Boolean Grébner bases in computer algebra systems
such as Singular (27), Magma (14) and PolyBoRi (19), etc. However, the Boolean Grobner
basis in these works is the Grobner basis of an ideal in a polynomial ring over the Galois
field GF3, the simplest Boolean ring. Since GFs is actually a field, such a Boolean Grébner
basis is easily computed, with no novel theoretical advances.

An algorithm to compute a Boolean Grébner basis in a Boolean polynomial ring over
an arbitrary coefficient Boolean ring was first introduced in (23). The key idea is a special
monomial reduction which is more complicated than the usual monomial reduction in
a polynomial ring over a field. While the algorithm has been implemented and is freely
available (24; 26), the work is not well known to computer algebra researchers.

Recent work on Boolean Grobner bases inspired us to return to them. Recent theo-
retical development can be found in (9; 11; 21), and has led to one of us developing an
implementation of Boolean Grobner bases (10) in the computer algebra system Risa/Asir
(18).

In this paper, we survey our approach to Boolean Grobner bases. In section 2, we
review classical results of Boolean algebra in terms of Boolean rings. Section 3 is devoted
to Boolean Grobner bases, and section 4 considers comprehensive Boolean Grobner bases.
In section 5, we discuss an application to types of combinatorial problems like the popular
puzzle Sudoku.

2. Boolean polynomial ring

In this section, we give several definitions and notations concerning Boolean polyno-
mial rings, and then we show the Boolean extension theorem and Boolean Nullstellensatz,
which are important classical results of Boolean algebra. We describe them in terms of
Boolean polynomial rings. More details can be found in many text books of Boolean
algebra, such as (20) for example.

Definition 1. A commutative ring B with an identity 1 is called a Boolean ring if every
2

element a of B is idempotent, i.e. a* = a.

(B,V, A, =) becomes a Boolean algebra with the Boolean operations V, A, — defined by
aVb=a+b+a-b,aNb=a-b—a=1+a. Conversely, for a Boolean algebra (B,V, A, —),
if we define + and - by a+b=(-aAb)V (aA-b) and a-b=aAb, (B,+,-) becomes a
Boolean ring.

Since —a = a in a Boolean ring, we do not need to use the symbol '—’, however, we will
use — when we want to stress its meaning.

We use the symbol > to denote a partial order of a Boolean ring, that is a > b if and
only if ab = b for elements a, b of a Boolean ring B.
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Example 1. Let S be an arbitrary set and P(S) be its power set, i.e. the family of
all subsets of S. Then, (P(S),V,A, ) becomes a Boolean algebra with the operations
V, A, = as union, intersection and the complement of S respectively. As a Boolean ring, it
is isomorphic to GIF”; that is a commutative ring of all functions from S to GF5. Stone’s
representation theorem tells us any Boolean ring is isomorphic to a sub-algebra of GIFg
for some set S. Especially, when B is a finite Boolean ring, it is isomorphic to a direct
product GIE"; for some natural number k. Note that a computable Boolean ring need not
be finite. For any infinite set S, any family of computable subsets S which is closed under
the computable operations V, A, — is a computable Boolean ring. For example a family
of algebraically constructible subsets of K! for some algebraically closed field K with a
fixed natural number [ forms a computable Boolean ring.

Definition 2. A non-zero element e of a Boolean ring B is said to be atomic if there
does not exist a non-zero element ¢ such that ce = ¢ except for ¢ = e. (An atomic element
is nothing but a non-zero minimal element w.r.t. >=. )

Lemma 3. If B is a finite Boolean ring, it has at least one atomic element. Leteq, ..., ey
be all the atomic elements of B, then e;e; =0 for any i # j and ey + -+ +ep = 1.

proof We show the last equation, the rest is obvious. If e;+- - -+ep # 1, e1+- - -+ex+
1 # 0. Let ¢ be a minimal element (an atomic element) of B such that e;+---4e;+1 > ¢,
ie cler +---+ep+1) = c It follows that c(e; + -+ + e;) = 0. Since ¢ is a minimal
element, ¢ = ¢; for some e;, which leads us to a contradiction e; = e;(e; + -+ + ¢ex) = 0.
O

Definition 4. Let B be a Boolean ring. A quotient ring B[ X1, ..., X,,]/(X? — X1, ...,
X2 — X,,) with an ideal (X? — X3,..., X2 — X,,) becomes a Boolean ring. It is called a
Boolean polynomial ring and denoted by B(X7, ..., X,,), its element is called a Boolean
polynomial.

Note that a Boolean polynomial of B(X7,...,X,,) is uniquely represented by a polyno-
mial of B[X7,...,X,] that has at most degree 1 for each variable X;. In what follows,
we identify a Boolean polynomial with such a representation.

Multiple variables such as X1, ..., X, or Y1,...,Y,, are abbreviated to X or Y respec-
tively. Lower small roman letters such as a, b, ¢ are usually used for elements of a Boolean
ring B. The symbol @ denotes an n-tuple of element of B for some n. For a = (ay,...,ay)
and b = (by,...,bn), (@,b) denotes an (n+m)-tuple (ai,...,an,b1,...,by). For a Boolean
polynomial f(X,Y) with variables X and Y, f(a,Y) denote a Boolean polynomial in
B(Y) obtained by specializing X with a.

Definition 5. Let I be an ideal of B(X7,...,X,,). For a subset S of B, Vg(I) denotes
a subset {a € S"|Vf e If(a)=0}. When S = B, Vg(I) is simply denoted by V(I) and
called a variety of I. We say I is satisfiable in S if Vg(I) is not empty. When S = B, we
simply say I is satisfiable.

Theorem 6 (Boolean extension theorem). Let I be a finitely generated
ideal in a Boolean polynomial ring B(Y1,..., Yy, X1,..., Xp).
For any b € V(INB(Y)), there exist ¢ € B™ such that (b,¢) € V(I).



proof It suffices to show the theorem for n = 1. Note first that any finitely generated
ideal is principal in a Boolean ring, that is an ideal {f1,..., fs> is equal to the principal
ideal (f1V---V fs). Let I = (fX; + g) for some f,g € B(Y). We claim that I N B(Y)
= (fg+g). Since (f + 1)(f X1 +9) = fg+9g, fg+g € INB(Y). Conversely, suppose
that h € INB(Y), i.e. there exist p, ¢ € B(Y) such that h = (pX1 + ¢q)(f X1 + g). Then,
= (pf +pg+qf)X1+qg. Since h € B(Y'), we must have pf +pg + ¢f = 0, from which
we have h = qg = fqg+ (f +1)q9 = g(pf +pg) + (f + 1)gg = gp(f + 1) + (f + 1)qg =
(p+a)(f+1)g€(fg+9g). 4

Suppose now that b € V((fg+g)), that is f(b)g(b) +g(b) = 0. Let ¢

where d can be any element of B. Then f(b)c+ g(b) = f(b)g(b) + g(b ;
e V().

(b) +1)d+g(b)
0. That is (b, )

Corollary 7 (Boolean weak Nullstellensatz). For any finitely generated
ideal I of a Boolean polynomial ring B(X1,...,X,), the variety V(I)(C B™) of I is an
empty set if and only if there exists a non-zero constant element of B in I.

proof If INB = {0}, the above proof also works to show that V() # 0. The converse
is trivial. O

Theorem 8 (Boolean strong Nullstellensatz). Let I be a finitely generated ideal of a
Boolean polynomial ring B(X1, ..., Xy) such that V(I) # 0.
Then, for any Boolean polynomial h(X) € B(X),

h(X) eI ifandonlyif Y(b)€ V(I) h(b)=0.

proof Let I = (f(X)) and B’ be a Boolean subring of B generated by all the
coefficients of f(X) and h(X), i.e. B is the smallest Boolean subring of B which includes
all the coefficients of f(X) and h(X). First note that I is also satisfiable in B’ by the
Boolean weak Nullstellensatz. Secondly note that B’ is finite, because each element of B’
is a sum of finite elements which have a form af'ay? ---q;" where a1, as,...,a; are the
coefficients of f(X) and each n; is either 0 or 1. By Lemma 3, B’ has atomic elements
ei1,...,er such that e;e; = 0 for any ¢ # j and e; + --- + e, = 1. Suppose now that

Vb € V(I) h(b) = 0. We certainly have the property:
Vb e B™( f(b)=0=h(b)=0) (1)

In order to show h(X) € I, we prove the following claims.
Claim 1: f(b1,...,b,) =0 < e;f(e;b1,...,eib,) =0foreach i =1,...,k.

proof of Claim1 We clearly have f(by,...,b,) = 0 < ¢e;f(b1,...,b,) = 0 for each
i =1,...,k.We also have the equation e;f(b1,...,b,) = e;f(eib1,...,eiby).
The assertion follows from them. X
Claim 2: VY(by,...,b,) € B™(e;f(e;b1,...,eb,) = 0= e;h(e;b,...,eb,) =0) for each
i=1,..., k.

proof of Claim2 Let i be fixed and suppose e;f(e;b1,...,e;b,) = 0 for elements
bi,...,b, in B’. Since I is satisfiable in B’, we have elements cy,...,c, in B’ such that
flei,...,cn) =0.Let aj = e;bj+(1+4e;)cj foreach j = 1,...,n. Then, we have e;a; = e;b;
and e a; = e,c; for each ¢ # i. By Claim 1, we have f(aq,...,a,) = 0. By the property
(1), we have h(ai,...,a,) = 0. By Claim 1 again, we have e;h(e;aq,...,e;a,) = 0 which



is equivalent to e;h(e;by, ..., e;b,) = 0. X

Claim 3: The ideal {(e;f(X),e;(UR(X) + 1)) C B/(U, X) is unsatisfiable in B’ for each
i=1,...,k, where U is a new variable.

proof of Claim3 Assume that e; f(by,...,b,) = 0 for some (b1, ...,b,) € B™. By Claim
1, we have e; f(e;by, ..., e;b,) = 0. By Claim 2, we have e;h(e;by, ..., e;b,) = 0. By Claim
1 again, we have e;h(by,...,b,) = 0.
Therefore e;(Uh(by,...,b,) +1) =e; #0. X

By the last claim and the Boolean weak Nullstellensatz, we can see the ideal (e;f(X),
e;(Uh(X) + 1)) contains a non-zero element of B’. Since e; is an atomic element of
B’, it must contain e;. So, there exist Boolean polynomials p(U, X) and ¢(U, X) of
B/(U, X) such that e; = eif( Op(U, X) + e;(UR(X) + ) (U, X). Multiplying both sides
by h(X) and substituting 1 for U, we have e;h(X) = (X) (1, X)h(X), which shows

that e;h(X) € I. So, h(X) = eth(X) + -+ +erh(X) €1
The converse is trivial. O

3. Boolean Grobner bases

Boolean polynomial rings are essentially principal ideal rings, that is (fi,..., fi) =
(f1 V-V fi). Therefore it suffices to solve a single equation in order to solve a system
of equations. A unary equation aX = b for a variable X and elements a,b in a Boolean
ring B has a solution if and only if ab = b. When there exists a solution, it has a form
X =b+ (a+ 1)P with a variable P which can have any value of B. For a multivariate

single equation f(X1,...,X,) =0, we can apply this process recursively to get a general
form of a solution X; = hy(P1),Xs = ho(P1, P),..., X, = hy(P1, P, ..., P,) with
parameters Py, Ps, ..., P, which can have any value of B. Therefore, it is very simple

to solve a system of equations in a Boolean polynomial ring at least from a theoretical
point of view. When the number [ is not small, however, the size of a Boolean polynomial
(f1 V-V fi) exponentially increases with respect to [ in general, and the above naive
approach fails to apply for systems of equations of a Boolean polynomial ring.

The notion of Boolean Grébner bases is one of the tools to overcome the above diffi-
culty. A Boolean Grobner basis is defined as a natural modification of a Grébner basis in
a polynomial ring over a field. Though it was introduced in (23) together with a compu-
tation algorithm using a special monomial reduction, the same notion was independently
discovered by V.Weispfenning in a polynomial ring over a more general coefficient ring,
namely, a commutative von Neumann regular ring (30). In this section, we describe
Boolean Grobner bases. For the proofs and more detailed descriptions, refer to (25) or
(30).

In what follows, we assume that some admissible term order on a set of power products
of variables is given. For a polynomial f in a polynomial ring B[X] over a Boolean ring B,
we use the notations LT(f), LM (f) and LC(f) to denote the leading power product, the
leading monomial and leading coefficient of f respectively. f — LM (f) is also denoted by
Rd(f). We also use the notations LT (F) and LM (F) to denote the sets {LT(f)|f € F}
and {LM(f)|f € F} for a (possibly 1nﬁn1te) subset F' of B[X]. T(X) denotes the set of
power products consisting of variables X

Definition 9. For an ideal I of a polynomial ring B[X], a finite subset G of I is called
a Grébner basis of I it (LM (I)) = (LM(Q)).



Definition 10. For a polynomial f € B[X], let a = LC(f), t = LT(f) and h = Rd(f).

Let s is a term of T'(X), b is an element of B such that ab # 0 and p is any polynomial

of B[X]. A monomial reduction —; by f is defined as follows:
bts+p —5 (1 — a)bts + absh + p.

(Note that (bts + p) — ((1 — a)bts + absh + p) = bs(af).)
For a set F' C B[X], we write g — ¢ if and only if g —f ¢’ for some f € F. A recursive

closure of —p is denoted by —p, ie. ¢ —p ¢ if and only if ¢ = ¢ or there exist a
sequence of monomial reductions ¢ —p g1 —F -+ —F gnp —r g’

Theorem 11. When F is finite, —p is noetherian, that is there is no infinite sequence
of polynomials g1, g2, ... such that g; —p giy1 for each i =1,2,....

Theorem 12. Let I be an ideal of a polynomial ring B[X].
A finite subset G of I is a Grobner basis of I if and only if YVh € I h ¢ 0.

Using our monomial reductions, a reduced Grébner basis is defined exactly as in a poly-
nomial ring over a field. A Grébner basis G is reduced if each polynomial of G is not
reducible by a monomial reduction of any other polynomial of G. In a polynomial ring
over a field, a reduced Grobner basis is uniquely determined. In our case, however, this
property does not hold.

Example 2. Let B = GF3 x GF3. In a polynomial ring B[X], {(1,0)X,(0,1)X} and
{(1,1)X} are both reduced Grobner bases of the same ideal.

In order to have a unique Grobner basis, we need one more definition.

Definition 13. A reduced Grobner basis G is said to be stratified if G does not contain
two polynomials which have the same leading power product.

Theorem 14. If G and G’ are stratified Grobner bases of the same ideal w.r.t. some
term order, then G = G'.

In the above example, {(1,1)X} is the stratified Grobner basis, but the other is not.

Definition 15. For a polynomial f, LC(f)f is called a Boolean closure of f, and denoted
by be(f). If f = be(f), f is said to be Boolean closed.

Theorem 16. Let G be a Grobner basis of an ideal I, then be(G)\ {0} is also a Grébner
basis of an ideal I.

Theorem 17. Let G be a reduced Gribner basis, then every element is Boolean closed.
S-polynomials are also defined similarly as in a polynomial ring over a field.

Definition 18. Let f = atr+ f’ and g = bsr + ¢’ be polynomials where a« = LC(f), b =
LC(g), tr = LT(f) and sr = LT (g) for some power product ¢, s, such that GCD(t, s) =
1, i.e. t and s do not contain a common variable. The polynomial bsf + atg = bsf’ + atg’
is called an S-polynomial of f and g and denoted by S(f,g).



As in a polynomial ring over a field, the following property is crucial for the construction
of Grobner bases.

Theorem 19. Let G be a finite set of polynomials such that each element of G is Boolean
closed. Then, G is a Grébner basis if and only if S(f,g) 2.6 0 for any pair f,g of G.

For any given finite set F', using our monomial reductions, we can always construct a
Grobner basis of (F') by computing Boolean closures and S-polynomials with the following
algorithms. It is also easy to construct a stratified Grébner basis from a Grébner basis.

Algorithm BC
Input: F a finite subset of B[X]
Output: F’ a set of Boolean closed polynomials such that (F') = (F)
begin
F'=0
while there exists a polynomial f € F' which is not Boolean closed
F=FUbe(f) — AN F = F U {be(f)}

end.

Algorithm GBasis

Input: F a finite subset of B[X], > a term order of T'(X)

Output: G a Grobner basis of (F) w.r.t. >

begin

G = BC(F)

while there exists two polynomials p,q € G such that S(p,q) —¢ h
for some non-zero polynomial h which is irreducible by —¢g
G = GUBC({h})

end.

Since any element of a Boolean ring is idempotent, a Boolean polynomial ring is more
natural to work on. We can also define Grobner bases in Boolean polynomial rings.
A power product X{l -+- X! s called a Boolean power product if each I; is either 0
or 1. The set of all Boolean power products consisting of variables X is denoted by
BT(X). A Boolean polynomial f(X) in B(X) is uniquely represented by byt; +- - - + byty
with elements by, ...,b; of B and distinct Boolean power products t1,...,t,. We call
bity + - - + bty the canonical representation of f(X). Since BT(X) is a subset of T(X),
a term order > on T'(X) is also defined on BT'(X). Given such a term order >, we use the
same notations LT (f), LM(f),LC(f) and Rd(f) as before, which are defined by using
its canonical representation. We also use the same notations LT (F') and LM (F) for a
set F' of Boolean polynomials as before.

Definition 20. For an ideal I of a Boolean polynomial ring B(X), a finite subset G of

1 is called a Boolean Grobner basis of I if (LM (I)) = (LM(G)) in B(X).

Using canonical representations of Boolean polynomials, we can also define monomial
reductions for Boolean polynomials as Definition 10 and have the same property of The-
orem 11 and 12. We can also define a stratified Boolean Grobner basis as in Definition 13,
which is unique w.r.t. a term order. The Boolean closure of a Boolean polynomial is also



similarly defined as Definition 15 and the same properties of Theorem 14,16 and 17 hold.
Construction of a Boolean Groébner basis is very simple. Given a finite set of Boolean poly-
nomials F' C B(X). Compute a Grébner basis G of the ideal (FU{X?—X;,..., X2~ X, })
in B[X] w.r.t. the same term order. Then, G \ {X? — X1,..., X2 — X,,} is a Boolean
Grobner basis of (F) in B(X). If G is stratified, then G\ {X? — X1,..., X2 — X,,} is also
stratified.

Example 3. The following left constraints with unknown set variables X and Y and an
unknown element variable a is equivalent to the right system of equations of a Boolean
polynomial ring B(X,Y, A), where B is a Boolean ring of sets and the variable A stands
for the singleton {a}.

XUY C{1,2} XY +X+Y)+{,2( XY +X+Y)=0
leX 1}X+{1} =0
L e
a€eyY AY + A=0
XNy =90 XY =0

The stratified Boolean Grobner basis G of the ideal

I=(XY+X+Y)+{1,2}(XY + X +Y), {1} X + {1}, AY + A, XY)

w.r.t. a lexicographic term order X > Y > A has the following form:

G ={{2} XY, {2}YA+ {2}A, (1 + {2} )Y, {2} XA, (1 + {2}) X + {1}, (1 + {2})A}. From
this we can get the elimination ideal INB(A) = ((1 + {2})A). By the Boolean extension
theorem, we can see that the given constraint is satisfiable if and only if the element
variable a satisfies the equation (1 + {2}){a} = 0 that is a = 2.

We conclude this section with the following theorem, which is essentially a special
instance of Theorem 2.3 of (30).

Definition 21. Let B be a Boolean ring and & be a natural number. B¥ denotes a direct
product, i.e. the set of all k-tuples of elements of B. For an element p of B*, p; € B
denotes the i-th element of p for each i = 1,...,k. If we define p+ ¢ and p - ¢q for p,q €
B* by (p+q); = pi +¢q and (p-q); = p; - ¢; for each i = 1,...,k, BF also becomes a
Boolean ring. For a polynomial f(X) in B*[X] f;(i = 1,...,k) denotes the polynomial

in B[X] obtained by replacing each coefficient p of f by p;. For a Boolean polynomial
f(X) in B¥(X), a Boolean polynomial f; in B(X) is defined similarly.

Theorem 22. In a polynomial ring B¥[X], let G be a finite set of Boolean closed poly-
nomials. Then, G is a (reduced) Grébner basis of an ideal I if and only if Gj = {gilg €

G} \ {0} is a (reduced) Grobner basis of the ideal I; = {f;|f € I} in B[X] for each
i=1,.. ..k

Corollary 23. In a Boolean polynomial ring B¥(X), let G be a finite set of Boolean
closed Boolean polynomials. Then, G is a (reduced) Boolean Grébner basis of an ideal I if
and only if G; = {g:lg € G}\{0} is a (reduced) Grébner basis of the ideal I, = {f;|f € I}

in B(X) for eachi=1,...,k.



4. Comprehensive boolean Grobner bases

In a polynomial ring over a field, construction of a comprehensive Grébner basis is not
so simple in general. In order to get a uniform (with respect to parameters) representation
of reduced Grobner bases, we need to divide a parameter space into several partitions
according to the conditions that parameters satisfy. (See (13; 16; 17; 28; 29; 31).) The
most crucial reason is that a polynomial ring over a field is not a field itself.

In our case, however, a Boolean polynomial ring is also a Boolean ring. This obvious
fact enables us to easily construct a stratified comprehensive Boolean Grobner basis. We
do not even need to divide a parameter space.

In this section, we first present a naive method to construct comprehensive Boolean
Grobner bases, then we show an alternative method based on our recent result (9), which
is much faster than the first naive method in most cases.

4.1. Naive method

In what follows, we use variables A = A;,..., A, for parameters and variables X =
X1, ..., X, for main variables. We also assume that some admissible term order on T'(X)
is given.

Definition 24. Let F = {f1(A,X),..., fi(A, X)} be a finite subset of a Boolean poly-
nomial ring B(A, X). A finite subset G = {g1(A4, X), ..., gx(A, X)} of

B(A4, X) is called a comprehensive Boolean Grébner basis of F, if G(a) = {g1(a, X),. .
gr(@, X)} \ {0} is a Boolean Grébner basis of the ideal (F(a)) = (f1(a, X),..., fi(a, X)>
in B/(X) for any Boolean extension B’ of B, i.e. a Boolean ring which includes B as
a subring, and any a = (a1,...,a,,) € B™. G is also said to be stratified if G(a) is
stratified for any a = (ay,...,a,) € B™.

Theorem 25. Let F = {f1(A, X),..., fi(A,X)} be a finite subset of a Boolean poly-
nomial ring B(A, X). Considering B(A, X) as a Boolean polynomial ring (B(A))(X)
with the coefficient Boolean ring B(A), let G = {g1(A, X), ..., gr(A, X)} be a (strati-
fied) Boolean Grébner basis of the ideal (F') in this polynomial ring. Then G becomes a
(stratified) comprehensive Boolean Grébner basis of F'.

proof Let B’ be a Boolean extension of B. Note first that G is also a (strat-
ified) Boolean Grébner basis of (F) in (B/(A))(X). Therefore, it suffices to consider
only specialization from B. Let @ = aq,...,a,, be an arbitrary m-tuple of elements of
B. Note that the specialization of parameters A with @ induces a homomorphism from
B(A4, X) to B(X). We clearly have (F(a)) = (G(a)) in B(X X). If f(A, X) — (A %) h(A, X)
in (B(A))(X), then f(4,X) = p(A)ts + f'(A, X), g(4,X) = q(A)t + ¢'(4, X) and
h(A,X) = (1 —q(A)p(A)ts + q(A)p(A)sg’ (A, X) +f'(A, X) for some t,5 € T(X) and
(A),q(A) € B(A) and f'(A, X), ¢'(A, X) B(4, X), where q(A)t is the Boolean lead-
ing monomial of g(A4, X). In case q(a)p(a) # 0, certainly g(a) # 0 and p(a) # 0, so
( )t is the Boolean leading monomial of g(a, X) and p(a)ts is a monomial of f(A, X)
(a, X) —4(a,X) h(a, X). Otherwise, h(a, X) = f(a,X). In either case, we have
) 5 a,x) h(@, X). Therefore, if f(A, X) —q h(A, X) in (B(A))(X), then we have
)5 h(a,X) in B(X). Any Boolean polynomial in the ideal (F(a)) is equal to
X) fo ome Boolean polynomial f(A, X) in the ideal (F) of (B(A))(X). Since G is
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a Boolean Grébner basis of (F), we have f(A, X) S¢ 0. By the above observation, we
have f(a, X) Lg(a) 0. This shows that G is a comprehensive Boolean Groébner basis of
F.

Suppose G is stratified, then any element g of G is Boolean closed. B

So, if LC(g)(a) = 0, then g(a, X) must be equal to 0. Therefore, unless g(a, X) = 0, we
have LT(g(a, X)) = LT (g(A, X)). Now it is clear that G(a) is stratified. O

Example 4. For the same ideal of Example 3, the stratified Boolean Grobner basis of
I in the Boolean polynomial ring (B(A))(X,Y) has the following form:

{{2}A+ 2 XY, Q1+ A+ {2h) X +{1}A+ {1}, 1+ A+ {2})Y + {2} A4, (1 + {2}) A}

From this, we can get the elimination ideal INB(A) = {((1 + {2})A). Moreover, if we
specialize the variable A with {2}, it becomes the stratified Boolean Grébner basis {X +

{1}, Y +{2}}.
4.2.  Alternative method

Let F be a finite set of B(A, X). As is described in the previous subsection, a (strat-
ified) Boolean Grobner basis G computed in the Boolean polynomial ring (B(A4))(X)

becomes a (stratified) comprehensive Boolean Grébner basis of F. When the X -eliminate
portion (F)NB(A) is not a trivial ideal {0}, however, the size of G tends to be extremely
big. In such a case, the computation often does not terminate within a practical time.
In order to overcome this difficulty, a block term order is useful. We will show that a
Boolean Grobner basis computed with a block term order such that X > A becomes
a comprehensive Boolean Grébner basis of F. In order to prove this fact, we need the

following well-known fact which is easy in itself.

Lemma 26. Let R[A, X] be a polynomial ring with variables A and X over a commu-
tative ring R with an identity. Let I be an ideal of this polynomial ring. Let > be a block
term order of T(A, X) such that X > A and G be a Grébner basis of I w.r.t. >. Then
G is also a Grébner basis of I w.r.t. > regarding R[A, X] as a polynomial ring over the

coefficient ring R[A], that is ({LM(g)|lg € G}) = ({LM(f)|f € I}). Where >x denotes
a restriction of > to T(X).

In the lemma, obviously we can replace R by a Boolean ring B, furthermore the lemma
also holds if we replace R[A, X| and R[A] by B(4, X) and B(A) respectively. By this
observation together with Theorem 25, the following theorem directly follows.

Theorem 27. Let G = {g1(A, X), ..., 9x(A, X)} be a Boolean Grébner basis of F =
{fi(A, X),..., fil(A, X)} in a Boolean polynomial ring B(A, X) w.r.t. a block term order
> such that X > A. Then G is a comprehensive Boolean Grébner basis of F w.r.t. > .

In the above theorem, G = {g1(a@, X), ..., gx(a, X)} may not be stratified or reduced
even if G = {g1(4, X),...,g9x(A, X)} is stratified, because G’ may not be reduced as a
Boolean Grébner basis in (B(A))(X).

Example 5. In Example 3, the stratified Boolean Groébner basis G of the ideal

I=(XY+X+Y)+{L,2}(XY + X +Y), {1} X + {1}, AY + 4, XY)
w.r.t. a lexicographic term order X > Y > A has the following form:
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G = {({20XY, {20V A+ {244, (1 + 2DV, {2} XA, (1 + (2D X + {1}, (1 + {2})A}.

By the above theorem, G is a comprehensive Boolean Grébner basis of {(XY + X +
Y)+{1,2}( XY + X +Y),{1}X + {1}, AY + A, XY} with main variables X,Y and a
parameter A w.r.t. a lexicographic term order X > Y. If we specialize A with {2}, G
becomes {{2} XY, {2}Y + {2}, (1 +{2})Y, {2} X, (1 +{2}) X + {1}, 0}. Obviously it is not
even reduced.

Let us conclude this section with the following obvious but important fact, which
actually plays an important role in the application of Boolean Grobner bases described
in the next section.

Corollary 28. Let G = {g1(X),...,9x(X)} be a Boolean Grébner basis of F = {f1(X),

., fi(X)} in a Boolean polynomial ring B(X)} w.r.t. a purely lexicographic term order
such that X, > X,,_1 > -+ > Xy. Then G is a comprehensive Boolean Grébner basis of
F regarding X5, ..., X1 as parameters, for eachi=1,...,n—1.

5. Applications

We discuss applications of Boolean Grobner bases in this section. We first observe the
following fact.

Theorem 29. Let F = {f1(X),..., fi(X)} be a finite set of Boolean polynomials in
B(X) such that (F) is satisfiable, and G = {g1(X),...,9:(X)} be the stratified Boolean
Grébner basis of (F) w.r.t. a purely lexicographic term order such that X, > Xp_1 >
> Xy. For each i = 1,....,n — 1, let G* denote GNB(X1, ..., X;). For any i-tuple
(c1,...,¢;) of elements in B such that (c1,...,c;) € V(G?)), let a1 X;11+b1,. .., axXit1
+by, be all the unary polynomials of the variable X;11 which apper in {g1(c1, ..., i, Xit1,

ey X))y ey ge(ery ooy ey Xigay oo, X))} Then, {a1 X1 + b1, a1 X1 + b} is a
Boolean Grobner basis of (fi(c1y.. ¢y Xig1y-ooys Xn)y oo oy filer, ooy Xig1,y oo, Xn))N
B(Xi+1). Furthermore {(a1V---Var) X1+ (b1 V---Vbg)} is a stratified Boolean Grobner
basis of the same ideal.

proof The first assertion is a direct consequence of Corollary 28 and a basic property
of Grobner bases. We show the second assertion. Note first that each polynomial in
{a1Xiy1 +b1,...,a,X;41 + br} is Boolean closed. Suppose otherwise, we have a non-
zero constant in the ideal <fl((217 e ,Ci7X1'+1, . ,)(n)7 ey fl(Cl, ey CiaXi+17 e 7Xn)>
of B(X;11, ...,X,). Hence, the ideal is unstisfiable by the Boolean weak Nullstellensatz,
which contradicts the Boolean extension theorem. Similarly an S-polynomial of any pair
of {a1 X;41+b1,...,a,X;+1+bx} is equal to 0. Summarizing the above, we have a;b; = b,
and a;bj = a;b; for each distict j and j'. With these equations, we can easily check
that (a1 X;41 + b1,..., a5 X101 + b)) = (a1 V -+ V ag)Xiy1 + (b1 V -+ V b)). Since
(a1 V- Vagp)Xip1 + (b V-V bi) is a Boolean closed polynomial, it is a Boolean
Grébner basis. O
For a given system of equations of a Boolean polynomial ring, once we have a staratified
Boolean Grobner basis w.r.t. a purely lexicographic term order, we can easily construct
a specific solution by the above theorem. This method is also applicable when we are not
interested in all solutions but only in some restricted solutions. We conlude the section
with such an example.
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A Sudoku puzzle can be considered as a system of equations of a certain Boolean polyno-
mial ring. Though the most popular Sudoku puzzles are 9x9, we consider the following
4x4 Sudoku puzzle in order to make it easy to understand.

We associate a variable X;; for each grid at the -th row and the j-th column. This
puzzle can be considered as a set constraint where each variable should be assigned a
singleton set from 4 candidates {1}, {2}, {3}, {4} so that any distinct two variables which
lie on a same row, column or block must be assigned different singleton sets. 3 variables
are assigned singleton sets X113 = {1}, Xa3 = {3}, X32 = {2} as the initial conditions.
This constraint is translated into a system of equations of a Boolean polynomial ring
B(Xll, Xlg, . ,X44) with B = 73({1, 2, 3, 4}) as follows:

(1) X11 = {1}, Xo3 = {3}, X32 = {2}.

(2) X;jXij» = 0(=0) for each pair of distinct variables X;;, X;/;» which lie

on a same row, column or block.
(3) 2o jyea Xij = 1(={1,2,3,4}) where A is a set of indices lying on
a same row, column or block. (There are 12 such A’s.)

This puzzle is nothing but solving the above equations with a strong restriction that
is each variable must be a singleton set. Unless we have this restriction, we can solve
the equations by computing a stratified boolean Grébner basis of the corresponding
ideal as described above. The stratified Boolean Grobner basis G w.r.t. a purely lex-
icographic term order such that Xy4 > Xy3 > --- > X35 > X1 has the following
form: G = {X44 + {2}X13,X43 + {4}X31 + {2}X13 + {2},X42 + {4}X21 + {1},X41 +
{4}X31 + {4}X21 + {3,4}, Xaq + {4}X13 + {3}, X33+ {4}X31 + {4}X13 + {1,4}, X390 +
{2}, {4} X351 X1, {4} X31 X153, 1+ {4}) X531, Xoa + {4} X120+ {1}, Xog+ {3}, Xaa+ {4} Xo1 +
{4} X 0+{4}, {4} Xo1 X190, (1+{4}) Xo1 +{2}, X14+{2,4} X13+{4} X12+{2,4}, {4} X 13X 12
s (14+4{2,4}) Xa3, (14 {4}) X132 + {3}, X01 + {1}}.
Though this Grobner basis is not yet a solution of the constraint, it can be considered as
a kind of compiled form of the Sudoku puzzle. That is, we do not need to know any rule of
Sudoku puzzles, we can simply solve a unary equations step by step from the lowest vari-
able to the highest variable in order to get a solution. In this example, Xi; already has
a specific value {1}, the only singleton solution of the equation (1+{4})X15+ {3} =0is
X12 = {3}. Specializing X;; with {1} and X5 with {3}, G becomes {X44+{2} X153, X435+
{4} X31 + {2} Xy + {2}, Xag + {4} X0y + {1}, Xu1 + {4} X1 + {4} Xo1 + {3,4}, X34 +
{4} X3 + {3}, Xas + {4} X1 + {4} X135 + {1,4}, Xao + {2}, {4} X531 X0y, {4} X531 X3, (1 +
{4}) X31, Xoa + {1}, Xoz + {3}, Xog + {4} Xo1 + {4}, (1 +{4}) Xo1 + {2}, X14 +{2,4} X153 +
{2,4}, (1 + {2,4})X13}. The equation (1 + {2,4})X13 = 0 has two singleton solutions
X153 = {2} and X;3 = {4}. If we specialize X153 with {4}, G becomes {X44, X43 +
{4}X31 + {2}, Xao+ {4}X21 + {1}, X1+ {4}X31 + {4}X21 + {3, 4}, X34+ {4} + {3}, X33+
{4} X1 + {1}, X5z + {2}, {4} X1 Xo1, {4} X1, (1 4+ {4}) X1, Xog + {1}, Xo3 + {3}, X22 +
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{4} Xo1 + {4}, (1 + {4})X21 + {2}, X14 + {2}}. Obviously it has no singleton solutions
since Xy44 = 0. On the other hand, specializing X;3 with {2}, G becomes {X44 +
{2}, Xus + {4} X531, Xao + {4} Xo1 + {1}, Xu1 + {4} X351 + {4} X1 +{3,4}, X34+ {3}, X33+
{4}X31 +{1, 4}, X3o +{2}, {4}X31X21, (1+{4})X31, )(244—{1}7 X23+{3}, Xoo +{4}X21 +
{4}, (1 + {4})X21 + {2}, X124 + {4}}. X14 has a specific value {4} and X5; has the
only singleton solution {2}. Specializing X4 with {4} and X1 with {2}, G becomes
Xaa + {2}, Xuz + {4} X1, Xao + {1}, X + {4} X31 + {3,4}, X34 + {3}, X33 + {4} X531 +
{1,4}, X32 + {2}, (1 + {4}) X531, Xog + {1}, Xo3 + {3}, Xo2 + {4}}. Now we have specific
solutions X9y = {4},X23 = {3} and Xo4 = {1}. The equation (1 + {4})X3; = 0 has
the only singleton solution X3; = {4}. Specializing those values we finally get a solution
Xag = {2}, Xy3 = {4}, Xyo = {1}, X1 = {3}, X3y = {3}, X33 = {1}, X350 = {2}, X4 =
{1}, Xa3 = {3}, Xoo = {4}, X14 = {4}, X11 = {1}.

The above method is not only for solving Sudoku puzzles, it can handle any set
constraint with additional restrictions such as singleton set solutions or non-empty set
solutions. The above naive method is also sufficiently practical for 9 x 9 Sudoku puzzles.
We can solve most Sudoku puzzles including variants such as diagonal Sudoku by the
same program we implemented.

The 4 x 4 Sudoku puzzles are called Shidoku puzzles. In (1), a naive method to solve
a Shidoku puzzle by computation of a Boolean Grébner basis of a Boolean polynomial
ring over the simplest coefficient Boolean ring GF; is discussed, where we have to use
43 = 64 variables. The method gives a canonical representation of the solutions of a given
Shidoku puzzle. When there exists a unique solution, the computed Boolean Grébner
basis corresponds to it. The method is complete at least from a theoretical point of view.
It does not need any pruned tree search as discussed above. However, for solving 9 x 9
Sudoku puzzles we have to use 93 = 729 variables, and the computations of Boolean
Grobner bases (or any other method to solve such Boolean equations) become extremely
heavy.

In (11), more sophisticated techniques are proposed. We can solve set constraints with
restrictions as described above by only computations of Boolean Grobner bases w.r.t. any
term order. We do not need any technique to optimize the tree search such as discussed
in (2). They are implemented in the computer algebra system Risa/Asir and released as
a free software in (10).

6. Conclusion and Remarks

The origins of studies of Boolean Grébner bases go back to the old works of (12)
and (22). They also deal with only Boolean polynomial rings over GF5. The first paper
of Boolean Grobner bases which discusses a general Boolean ring as a coefficient ring
is (23). The similar notion of monomial reductions of Boolean polynomials was inde-
pendently discovered by (30) in a different situation, namely in a polynomial ring over
a commutative von Neumann regular ring. These works led us to the discovery of the
closed relationship between Boolean Grobner bases and comprehensive Grobner bases.

Other methods to solve Sudoku puzzles using Grobner bases are also studied in several
papers such as (1; 4; 7), however our approach with general Boolean Grobner bases has
brought us the first ever practical Sudoku solver by computations of Grébner bases.
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