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Abstract: Phase retardation imaging including local birefringence imag-
ing of biological tissues is described by generalized Jones-matrix optical
coherence tomography. The polarization properties of a local tissue can be
obtained from two Jones matrices that are measured by backscattered lights
from the front and back boundaries of the local tissue. The error in the phase
retardation measurement due to background noise is analyzed theoretically,
numerically, and experimentally. The minimum detectable phase retardation
is estimated from numerical simulations. The theoretical analysis suggests
that the measurements with two orthogonal input polarization states have
the lowest retardation error. Local birefringence imaging is applied to the
human anterior eye chamber and skin in vivo.
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1. Introduction

Optical coherence tomography (OCT) is a high-resolution cross-sectional imaging technique
of biological tissues [1]. It has been applied to several clinical applications such as ophthalmol-
ogy [2], cardiology [3], and dermatology [4]. Its ability to investigate three-dimensional sub-
surface structures has been widely accepted. On the other hand, the characterization of tissues
is essential for interpreting organs and discriminating abnormal tissues. However, the contrast
in OCT comprises only scattering intensity. Hence, the discrimination of tissues that have close
backscattering is extremely difficult. Additional contrasts for OCT will extend the field of OCT
applications.

Polarization-sensitive OCT (PS-OCT) [5] is a promising branch of OCT. PS-OCT can be
used to detect fibrous tissues by measuring the changes in the polarization state of light. It shows
the applicability for diagnosing glaucoma [6–8] and plaques [9,10]. However, conventional PS-
OCT is not suitable for discriminating fibrous tissues. This is because the phase retardation of
light, which is accumulated by passing light through birefringent tissues, is measured and the
presence of phase retardation in conventional PS-OCT image does not imply the existence of
birefringent tissues. The phase retardation inside birefringent tissues changes, while that in non-
birefringent tissues does not change. Hence, the discrimination of birefringent tissues requires
the examiner to have considerable experience and some technical knowledge.

Several studies have attempted to resolve the polarization properties of a local site [11–
14]. Local phase retardation, which corresponds to the local birefringence of a tissue, can be
obtained from accumulated polarization changes at two different axial positions [11]. Since
this method does not assume the existence of diattenuation, retardation errors exist when there
is diattenuation. In other methods [12, 14], the local polarization properties—retardation and
diattenuation—are obtained by peeling off upper layers one by one; however, this requires
complex calculus.

Further, it is difficult to determine the local birefringence of a weakly birefringent and weakly
scattering tissue. The phase retardation caused by a single layer has to be measured, but the
thinner single layer will cause smaller phase retardation. In addition, the low reflectivity of
biological samples restricts the signal-to-noise ratio (SNR), and it will affect the contrast of
local birefringence images. Hence, it is necessary to investigate the performance of PS-OCT in
order to improve local birefringence imaging.

In this paper, we generalize the phase retardation measurement by using Jones matrix OCT
and reveal that local birefringence imaging is one part of that. A high-contrast local birefrin-
gence imaging method is proposed. The influences of background noises on the phase retar-
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Fig. 1. Schematic diagram of a fiber-based PS-OCT. PDH,PDV, photodetection devices to
detect horizontal and vertical polarization components; Pol. mod., polarization modulator;
and Pol., polarizer. In the case of time-domain and spectral-domain OCTs, the light source
is a broadband light source. It is wavelength-swept light source for swept-source OCT.
Photodetection devices are photodetectors for time-domain and swept-source OCTs. They
are spectrometers for spectral-domain OCT. Typically the polarizer is introduced in the
reference arm to deliver the same optical power of reference beam to two photodetection
devices.

dation measurement with Jones matrix OCT is analyzed theoretically and numerically. In vivo
depth-resolved local birefringence imaging of biological tissues is performed. The optimum
pair of incident polarization states from the perspective of background noise is discussed.

2. Theory

2.1. Jones matrix measurement in polarization-sensitive OCT

The polarization properties of the sample that is measured using PS-OCT can be fully described
by a Jones matrix since the depolarization cannot be measured [15]. Here, we describe the
general expression of the Jones matrix measurement using PS-OCT. In Fig. 1, the schematic
diagram of a fiber-based PS-OCT is shown. To measure the Jones matrix of a sample, the states
of polarization of the backscattered light with at least two incident states should be measured.
The incident lights that have polarization states, Ein1,Ein2, pass through the system and are
backscattered by the sample. The corresponding polarization states of the lights at the detector,
Eout1,Eout2, can be expressed by using Jones calculus as follows:

Eout1(z) =
[
Hout1(z)
Vout1(z)

]
= J(z)Eout1 = J(z)

[
Hin1

Vin1

]
(1)

Eout2(z) =
[
Hout2(z)
Vout2(z)

]
= J(z)Eout2eiψ = J(z)

[
Hin2

Vin2

]
eiψ (2)

where ψ is the phase difference between two incident lights. J is the Jones matrix of the system
including the sample and optical fibers, and can be expressed as

J(z) = JoutJS,T(z)Jin, (3)

where JS,T is the round-trip Jones matrix of the sample, and Jin,Jout represent the Jones ma-
trix of the optical fibers of the input and output paths. In general, the lights are divided into
horizontal and vertical components by using polarizing optics, and interferometric signals at
two orthogonal polarization states are detected. The detected interferometric signals can be
expressed in the following matrix form:[

Ĩ1,H(z) Ĩ2,H(z)
Ĩ1,V (z) Ĩ2,V (z)

]
=

[
ηHH∗

ref 0
0 ηVV ∗

ref

]
J(z)

[
Hin1 eiψHin2

Vin1 eiψVin2

]
, (4)
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where Ĩi,p (i = 1,2; p = H,V ) is an OCT signal with i-th incident beam and p polarization
detector; Href,Vref, the electric field of the reference light on the horizontal and vertical channels
of the detector, and ηH ,ηV , the quantum efficiency of the horizontal and vertical channels. It is
convenient to define the matrices of input electric fields and OCT signals as

Ein =
[
Hin1 Hin2

Vin1 Vin2

]
(5)

S(z) =
[
Ĩ1,H(z) Ĩ2,H(z)
Ĩ1,V (z) Ĩ2,V (z)

]
. (6)

Equation (4) can be rewritten as

S(z) =
[

ηHH∗
ref 0

0 ηVV ∗
ref

]
J(z)Ein

[
1 0
0 eiΨ

]
. (7)

Thus, the Jones matrix J can be obtained by using the following formula:

J(z) =
[

ηHH∗
ref 0

0 ηVV ∗
ref

]−1

S(z)
[
1 0
0 eiΨ

]−1

Ein
−1 (8)

In previous single-mode fiber-based PS-OCT, the polarization states of light reflected at the
reference point, e.g., the surface of the sample or a reflective material such as a glass plate in
the sample arm, are used to cancel the effects of fiber components on the phase retardation
measurement. It is achieved by multiplying the Jones matrix measured at the reference point
with all other Jones matrices [16] in the following manner:

J(z)J(zref)−1 = JoutJsample,TJ−1
out

=
[

ηHH∗
ref 0

0 ηVV ∗
ref

]−1

S(z)S(zref)−1
[

ηHH∗
ref 0

0 ηVV ∗
ref

]
,

(9)

where zref is the depth of the reference point, which is selected to be J(zref) = JoutJin.
Since JS,T is transpose symmetric [17], JS,T can be diagonalized by using an orthogonal

matrix, i.e., a rotation matrix. This means that the two eigenvectors of JS,T are orthogonal to
each other. Hence, it can be decomposed with a linear retarder and a linear polarizer with the
same optic axis [18].

By setting ηH |Href| = ηV |Vref| in an optical setup of PS-OCT, or by numerically com-
pensating the reference amplitudes after the detection, the product of OCT signal matrices
M(zref,z) = S(z)S(zref)−1 can be expressed by using Eq. (9).

M(zref,z) =
[
1 0
0 eiγ

]
JoutJS,TJ−1

out

[
1 0
0 eiγ

]−1

, (10)

where γ is the phase difference between the horizontal and vertical components of the reference
light at the detector. This phase difference exists if the polarization state of the reference light at
the detector is not linear. However, the value of γ is not required to obtain the phase retardation
and diattenuation of the sample. Here the amplitude factor of reference beams is eliminated
since it does not influence the following discussions. Since the matrix [1,0;0,exp(iγ)]Jout is
unitary, the matrix M(zref,z) is unitarily similar to the sample Jones matrix JS,T. Hence, both
the diagonalization method [16, 19] and methods assuming unitary transformed Jones matrix
[18, 20] can be applied to obtain the sample phase retardation and diattenuation.

Note that knowledge of the exact polarization states of incident light is not required, and
Eqs. (8) to (10) are valid unless two input polarization states are identical.
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2.2. Local birefringence measurement

The polarization properties of local tissues cannot be obtained from Eq. (10) since the Jones
matrix includes polarization changes from the surface to a certain depth of the samples. Since
in almost all single-mode fiber-based PS-OCTs, the reference point is set at the surface of a
sample in order to neglect the influence of a fiber’s birefringence, it is straightforward to shift
the depth of the reference point adjacent to the depth of interest to avoid the birefringence of
tissues above the interest point. To achieve the Jones matrix of the local tissue ranging from
zi−n–zi, the signals of the backscattered lights at the depth of zi−n−1 are used as the reference.
Equation (10) can then be rewritten as follows:

M(zi−n−1,zi) =
[
1 0
0 eiγ

]
JoutJS,T(zi) [JS,T(zi−n−1)]

−1 J−1
out

[
1 0
0 eiγ

]−1

. (11)

The cumulative and round-trip sample Jones matrix JS,T consists of single-trip Jones matrices
of local sites as

JS,T(zi) =
[
JT

S (z1,z2) · · ·JT
S (zi−1,zi)

]
[JS(zi−1,zi) · · ·JS(z1,z2)] , (12)

where JS(zi,zi+1)(i = 1,2,3, · · ·) is the single-trip Jones matrix of the local tissue from the
depth of zi to zi+1. Hence, Eq. (11) is rewritten as

M(zi−n−1,zi) =
[
1 0
0 eiγ

]
Jout

[
JT

S (z1,z2) · · ·JT
S (zi−n−2,zi−n−1)

]
JS,T(zi−n,zi)

× [
JT

S (z1,z2) · · ·JT
S (zi−n−2,zi−n−1)

]−1
J−1

out

[
1 0
0 eiγ

]−1

. (13)

where the Jones matrix JS,T(zi−n,zi) is the round-trip local polarization properties of the tissue
located at the depth from zi−n to zi.

Since Eq. (13) is a similar matrix of JS,T(zi−n,zi), the eigenvalues of both matrices are iden-
tical [21]. The eigenvalues of the Jones matrix of the local tissue JS,T(zi−n,zi) will be obtained
by the matrix diagonalization of M(zi−n−1,zi). Equation (13) can be rewritten in a similarity
transformation with the eigenvalues, λ1,2, as

M(zi−n−1,zi) = A
[

λ1 0
0 λ2

]
A−1, (14)

where

λ1,2 =

√
R(zi)eiφ(zi)√

R(zi−n)eiφ(zi−n)
exp

[
±ε(zi−n,zi)+ ir(zi−n,zi)

2

]
(15)

A =
[
1 0
0 eiγ

]
Jout

[
JT

S (z1,z2) · · ·JT
S (zi−n−2,zi−n−1)

]
R(−θ). (16)

Here, λ1,2 and A are the eigenvalues and eigenvector matrix of M(zi−n−1,zi); r(zi−n,zi) and
ε(zi−n,zi), the round-trip phase retardation and relative-attenuation [22], respectively, of the
local tissue located at the depth from zi−n to zi;

√
R(z)eiφ(z), a complex reflectivity coefficient

at a depth of z; R(θ) = [cos(θ),sin(θ);−sin(θ),cos(θ)], a rotation matrix where θ denotes the
optic axis orientation of the local tissue. The local phase retardation and relative-attenuation can
be calculated from the eigenvalues λ1,2 as

r(zi−n,zi) =
∣∣∣∣tan−1 Im[λ1/λ2]

Re[λ1/λ2]

∣∣∣∣ (17)

ε(zi−n,zi) = ln |λ1/λ2|. (18)
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Note that by using this method, local phase retardation and local relative-attenuation can be
obtained even though diattenuation exists in the sample arm and tissues above the reference
point (Appendix A). However, the relative optic axis orientation cannot be obtained from A if
diattenuation exists.

If no diattenuation exists in the tissues and sample arm, the Jones matrices of local tissues
and Jout are unitary. Hence, Eq. (13) becomes the unitary transform of the local Jones matrix
JS,T(zi−n,zi). The local phase retardation can be obtained by unitary transformation [16] or
matrix trace [Eq. (38) in Ref. 18]:

r(zi−n,zi) = 2cos−1 |trM|
[2tr(M†M)]1/2

, (19)

where the operators tr and det are the trace and determinant of a matrix, respectively. † indicates
the complex conjugate transpose operation.

The local birefringence b of the tissue is calculated by

b(zi−n,zi) =
r(zi−n,zi)

2k0Δz
, (20)

where k0 is the center wavenumber of the light source in space, and Δz = zi − zi−n is the thick-
ness of the measured local tissue. The factor 2 is a result of the round-trip propagation in the
sample. The large separation Δz gives us a large local phase retardation. Consequently, a high
contrast in local birefringence imaging is obtained. However, the axial resolution is reduces.

3. Noise performance of generalized Jones matrix OCT

The signal-to-noise ratio of OCT signals might have significant roles in the performance of
the phase retardation measurement. The systematic error in amplitude-based PS-OCT [5] due
to background noise has already been reported [23, 24]. However, the error in the Jones ma-
trix method has not been investigated yet. In this section, the systematic phase retardation er-
ror due to additive background noise is theoretically described and compared with numerical
simulations and experimental results. The performance of the phase retardation measurement
depending on the signal-to-noise ratio is then discussed.

3.1. Analysis methods

3.1.1. Theoretical analysis of the matrix trace method

In order to mathematically describe the tendency of the systematic error in phase retardation, the
error propagation analysis is applied from the detected OCT signals [Eq. (6)] to the product of
OCT signal matrices M, and the measured phase retardation with background noise is obtained.
Signal matrices with background noises can be defined as

S = S0 +
[

ΔIr11 + iΔIi11 ΔIr12 + iΔIi12

ΔIr21 + iΔIi21 ΔIr22 + iΔIi22

]
(21)

S′ = S′
0 +

[
ΔIr′11 + iΔIi′11 ΔIr′12 + iΔIi′12
ΔIr′21 + iΔIi′21 ΔIr′22 + iΔIi′22

]
, (22)

where S and S′ are the measured signal matrices for measurement and reference, respectively.
ΔIri j and ΔIii j are the errors of the real and imaginary parts due to background noises, respec-
tively. The errors in the matrix M are defined as

M = M0 +
[

ΔMr11 + iΔMi11 ΔMr12 + iΔMi12

ΔMr21 + iΔMi21 ΔMr22 + iΔMi22

]
, (23)
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where

M0 = S0 S′−1
0

=
[
Ĩ1,H Ĩ2,H

Ĩ1,V Ĩ2,V

][
Ĩ′1,H Ĩ′2,H

Ĩ′1,V Ĩ′2,V

]−1

.
(24)

In order to obtain the errors in the product matrix in Eq. (23), the error propagation analysis
is applied as

ΔMr11 = ΔMi11 =

√
|Ĩ′2,V |2ΔI2

11 + |Ĩ′1,V |2ΔI2
12 + |Ĩ2,H |2ΔI′221 + |Ĩ1,H |2ΔI′222

|detS′
0| (25)

ΔMr12 = ΔMi12 =

√
|Ĩ′2,H |2ΔI2

11 + |Ĩ2,H |2ΔI′211 + |Ĩ′1,H |2ΔI2
12 + |Ĩ1,H |2ΔI′221

|detS′
0| (26)

ΔMr21 = ΔMi21 =

√
|Ĩ′2,V |2ΔI2

21 + |Ĩ2,V |2ΔI′221 + |Ĩ′1,V |2ΔI2
22 + |Ĩ1,V |2ΔI′222

|detS′
0| (27)

ΔMr22 = ΔMi22 =

√
|Ĩ2,V |2ΔI′211 + |Ĩ1,V |2ΔI′221 + |Ĩ′2,H |2ΔI2

21 + |Ĩ′1,V |2ΔI2
22

|detS′
0| . (28)

Here it is assumed that the errors in the interference signals are independent of each other;
however, the fluctuations in the real and imaginary parts of each interference signal have the
same magnitude, ΔIi j = ΔIri j = ΔIii j. This assumption of the inter-independency of the noise
is valid as far as the OCT system operates in the shot-noise-limited or detector-noise-limited
regimes. From Eqs. (23) to (28), the magnitudes of the denominator and numerator of Eq. (19)
are obtained. The phase retardation with background noise can be expressed as

rm = 2cos−1

⎡
⎣

√
2tr[M†

0M0]cos2 r
2 + 2ΔI2

|detS′0|2 (tr[S†
0S0]+ tr[S′†

0S′
0])

√
2
√

tr[M†
0M0]+ 4ΔI2

|detS′0|2 (tr[S†
0S0]+ tr[S′†

0S′
0])

⎤
⎦ . (29)

Here we have assumed that all the errors in each component of the matrix M [Eqs. (25) to (28)]
are independent of each other; moreover, among the real and imaginary parts, and the noise
power of each channel are identical, i.e., 2ΔI2 = 2ΔI2

11 = 2ΔI2
12 = 2ΔI2

21 = 2ΔI2
22. In reality,

some noise components are not independent to each other; some components share original
raw signals. For more accurate analysis, rigorous treatments of statistical properties of these
components are required. Neglecting the correlations among noise components will cause per-
turbation in results. However, it is not large and major tendency is preserved as shown in Sec.
3.3.

In Eq. (19), we have assumed the absence of diattenuation of the sample. By using this
assumption in Eq. (29), this equation can be further simplified. Because of the absence of diat-
tenuation, the measured Jones matrix J is considered as a unitary matrix and can be expressed
as follows:

J =
√

R

[
a −b∗
b a∗

]
, (30)

where R is the intensity reflection coefficient and |a|2 + |b|2 = 1. Consequently, the signal matrix
will be described using Eq. (4) as

S = η
√

RIref

[
aHin1 −b∗Vin1 aHin2 −b∗Vin2eiψ

bHin1 +a∗Vin1eiγ bHin2 +a∗Vin2eiγeiψ

]
. (31)

#118929 - $15.00 USD Received 22 Oct 2009; revised 21 Dec 2009; accepted 23 Dec 2009; published 6 Jan 2010

(C) 2010 OSA 18 January 2010 / Vol. 18,  No. 2 / OPTICS EXPRESS  861



Here, it is assumed that the signal efficiency of both horizontal and vertical channels are bal-
anced, i.e., ηH |Href| = ηV |Vref| = η

√
Iref. The absolute of the determinant of Eq. (31) becomes

|detS| = η2RIref |detEin| . (32)

We found that |detEin| is the absolute of the inner product between the two Jones vectors
[Hin1,Vin1]T and [Vin2,−Hin2]T ; these represent two incident polarization states, but one is ro-
tated to become orthogonal to the original [Vin2,−Hin2]T ⊥ [Hin2,Vin2]T . Hence, the absolute
determinant can be expressed using an angle ζ between two Stokes vectors, which corresponds
to the two input polarization states on Poincaré sphere as

|detEin| = |Hin1Vin2 −Vin1Hin2| =
√

Iin1Iin2|sinζ/2|, (33)

where Iin1 = |Hin1|2 + |Vin1|2 and Iin2 = |Hin2|2 + |Vin2|2 are the intensities of two incident lights.
According to Eqs. (31)–(33), each term of Eq. (29) becomes the following:

tr[S†
0S0] = η2RIref(Iin1 + Iin2) (34)

|detS′
0| = η2R′Iref

√
Iin1Iin2|sinζ/2| (35)

tr[M†
0M0] = 2

R
R′ (36)

(37)

By substituting Eqs. (34–36) into Eq. (29), the measured phase retardation with background
noise can be described as

rm = 2cos−1

⎡
⎣

√
cos2 r

2 +ESNR−1
PR csc2 ζ

2√
1+4ESNR−1

PR csc2 ζ
2

⎤
⎦ . (38)

where ESNRPR is the effective SNR of the phase retardation measurement; it is defined as

1
ESNRPR

=
1
4

(
1

SNR1
+

1
SNR2

+
1

SNR′
1

+
1

SNR′
2

)
. (39)

SNRk(k = 1,2) is the signal-to-noise ratio of an OCT signal with a k-th input light. Then,
SNRk = η2RIrefIink/(2ΔI2).

3.1.2. Numerical simulations

Numerical simulations of phase retardation measurements with background noise are per-
formed in order to investigate the error and statistical properties for both matrix trace and diag-
onalization methods. For simulations, the Monte-Carlo method is used. The measured signals
are assumed to have additive complex noises as follows:[

Ĩ1,H(z) Ĩ2,H(z)
Ĩ1,V (z) Ĩ2,V (z)

]
= J

[
Hin1 Hin2

Vin1 Vin2

]
+

[
n11(z) n12(z)
n21(z) n22(z)

]
, (40)

where nlm obeys complex normal distributions in which the real and imaginary parts are in-
dependent Gaussian variables and have zero-mean and identical standard deviation σlm. Eight
normal random variables are numerically generated and added to theoretical signals. Their stan-
dard deviations are defined by parameters SNRm as 2σ2

lm = (|Hinm|2 + |Vinm|2)/SNRm.
The models of two Jones matrices are defined as follows. The reference Jones matrix is

constructed with the following two arbitrary unitary matrices:

J′ = JU1JU2. (41)
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and incident intensity ratio rI = 1.

JU is the unitary matrix that has the determinant of unity. The Jones matrix measured at below
the target is then

J = JU1Jlr(r,θ)JU2, (42)

where Jlr(r,θ) is the Jones matrix of a linear retarder with retardation r and its optic axis
orientation θ .

Two matrices of eight numerically generated OCT signals are processed using matrix di-
agonalization and the matrix trace method [Eq. (19)]. It is applied for several trials, and the
distribution of resulting phase retardations can be obtained.

3.1.3. Experiment

In order to compare the theoretical phase retardation error and simulation results with ex-
perimental results, measurements using a glass plate were performed. In this experiment,
we utilized a swept-source PS-OCT system with continuous polarization modulation [25].
In this system, the input light is modulated by a polarization modulator. It can be consid-
ered that there are two orthogonal incident polarization states wherein the phase of one of the
states is modulated. This configuration provides the following conditions. ESNR−1

PR(zi−n,zi) =(
1+ 1

J2
1 (A0)

)
(SNR1(zi)−1 +SNR1(zi−n)−1)/4, and sin2 ζ/2 = 1.

The glass plate at the sample arm is measured using the PS-OCT with a variable attenuator.
A sequence of 1000 axial profiles is acquired. Another set of data with a different SNR is then
obtained by changing the attenuation. The phase retardations of each data set are calculated
using signals at the front and back surfaces of the glass plate. ESNRPR is calculated according
to Eq. (39). It is assumed that the glass plate has no birefringence, i.e., it will provide zero phase
retardation. The measured OCT signals are processed by the diagonalization and matrix trace
methods [Eq. (19)].

3.2. Validity of ESNRPR

The theoretical analysis (Sec. 3.1.1) shows that the phase retardation error depends on ESNRPR,
which is a linear combination of four inverted SNRs with two incident polarization states and
two different targets [Eq. (39)]. To validate that the measured retardation depends only on this
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Fig. 3. (a, c, e) Measured phase retardations with several set phase retardations r and (b,
d, f) contour plots of phase retardation error Δr = r− rm obtained by theoretical analysis
according to Eq. (38) (a, b), Monte Carlo simulations of matrix trace method by using
Eq. (19) (c, d), and diagonalization method (e, f).

ESNRPR, numerical simulations have been performed with different ratios between SNRs while
the ESNRPR values are identical. It is defined that 1/ESNRPR = (1 + rR)(1 + rI)/(4SNR1),
where rR = R/Rref and rI = Iin1/Iin2. The numerical simulation results and the theoretical curve
of Eq. (19) are shown in Fig. 2. The phase retardation does not depending on the ratio of
the SNRs. Hence, ESNRPR is effective to evaluate the performance of the phase retardation
measurement.

3.3. Error in phase retardation measurement

The estimated measured phase retardations at several set phase retardations are plotted as shown
in Figs. 3(a), 3(c), and 3(e). In the Monte Carlo simulation results, the phase retardation is
obtained by averaging 16384 trials. It is clear that the measured phase retardation erroneously
approaches around 2π

3 rad as ESNRPR decreases. The phase retardation error Δr = r − rm is
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diagonalization method, where the set phase retardation r = 0 radian. The red curve shows
the result of theoretical analysis. The box and whisker plots exhibit the distribution from
the simulation. Blue squares are the experimental results. The retardation of the local tissue
is set to zero.

mapped on Figs. 3(b), 3(d), 3(f). It shows that phase retardation error increases as ESNRPR

decreases. These results are identical to those from the amplitude-based PS-OCT method [23],
except the asymptotic value of phase retardation at lower SNR. It is π

2 rad (double pass) for
the amplitude-based PS-OCT [23]. The diagonalization method exhibits a smaller retardation
error than the matrix trace method, and the distribution of the retardation error is closer to the
symmetric.

The theoretical curve, simulated values, and experimental values of the measured phase re-
tardation are plotted in Fig. 4. Figure 4(a) shows the results based on the trace method. The
experimental results (blue rectangles) are in good agreement with both the theoretical analysis
results calculated by Eq. (38) (red curve) and the numerical simulation results (box and whisker
plots). The results show that the phase retardation error due to background noise strongly de-
pends on ESNRPR. Since ESNRPR is dominated by the lowest SNR of its constituents, the
retardation error strongly depends on the lowest SNR of the four detection channels. The ex-
perimental results (blue rectangles) and numerical simulations (box and whisker plots) using the
diagonalization method are also in good agreement, as shown in Fig. 4(b). The diagonalization
method exhibits a smaller discrepancy between the ideal retardation and resulting retardation
at low ESNRPR values.

The difference in the methods is perhaps a result of the characterization of diattenuation. The
random noises may be accounted as pseudo-diattenuation. Since in the diagonalization method,
sample diattenuation does not produce phase retardation error (Appendix A), the retardation
error is suppressed. Alternatively, random noises will affect eigenvectors. Although the phase
retardation error is small, the distribution is spread more widely than the results of the matrix
trace method at very low ESNRPR values.

Figures 5 and 6 show the distribution of the phase retardation obtained by numerical simula-
tions and experiments both in the case of the diagonalization method (Fig. 5) and matrix trace
method (Fig. 6), where the set phase retardation is 0 radian. They show that the distributions
for both the simulation and experimental results are in good agreement. As ESNRPR decrease,
the distribution is distorted and becomes asymmetrical. Although ESNRPR is high [Figs. 5(e),
5(f), 6(e), 6(f)], the discrepancies from the set phase retardation are significant since the value
is close to the edge of the phase retardation range [0,π) [7]. It is hence suggested that a simple
averaging of the phase retardation is not a proper estimator.
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The diagonalization method exhibits slightly lower standard deviation than that of the trace
method at low ESNRPR.

3.4. Accuracy of phase retardation measurements.

Fluctuations of measured phase retardation limit the accuracy of the measurement. In the previ-
ous section, we found that the background noises resulted in either systematic overestimation or
underestimation of phase retardation, not only in the fluctuation of the measured phase retarda-
tion. The fluctuations in the measured phase retardation do not represent the accuracy directly.
Figure 7 illustrates an example of the relationship between set and measured retardations. The
standard deviation in phase retardation with respect to the set retardation can be defined using
the slopes of the set and measured retardation curves as

σr =
σrm

∂ rm
∂ r

, (43)
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where σrm is the standard deviation of the measured phase retardation and ∂ rm/∂ r is the slope
of the curve. The derivatives are calculated by using the differences between the mean of the
measured phase retardation.

In Fig. 8, the standard deviations of phase retardation are plotted against ESNRPR. Near the
edge of the phase retardation measurement range (r = π/12, 11π/12), the standard deviation in
the diagonalization method is smaller than that in the matrix trace method. It seems that there
is a linear relationship between logσr and logESNRPR, particularly in the case of the 2π/3 set
retardation, which exhibits a low phase retardation error (Fig. 3).

Since the phase retardation is the phase difference between the complex eigenvalues of the
sample Jones matrix [Eq. (14)], it is expected that the relationship between the standard de-
viation of phase retardation and ESNRPR will be similar to that between the phase difference
and SNR of complex signals; σΔφ =

√
1/SNR [26, 27]. In addition, the optic axis determina-

tion accuracy of the Stokes-vector method also exhibits a similar tendency [28]. A line fitting
to the curves of the 2π/3 set phase retardation at high ESNRPR values (> 10 dB) has been
applied using the regression model logσr = 1/2(loga− logESNRPR), which is equivalent to
σr =

√
a/ESNRPR. The fitting to both the simulation results with the matrix trace and diag-

onalization methods reveals a fitting coefficient a = 2.0. Figure 8(b) shows that all the curves
approach the line of σr =

√
2/ESNRPR at high ESNRPR values. This is probably a fundamental

limit of the phase retardation measurement with additive noise at large ESNRPR.

4. Local birefringence imaging

The local birefringence algorithm is applied for the PS-OCT images of biological tissues. The
human anterior eye chamber and skin are measured using a 1.3–μm swept-source PS-OCT [25].
An informed consent was obtained from all subjects. All protocols adhered to the tenets of the
Declaration of Helsinki and were approved by the Institutional Review Board of the University
of Tsukuba. The scanning rate of the wavelength-swept light source is 20 kHz, and its tuning
band width is 110 nm. An axial resolution of 11.9 μ is provided in the tissue.

The phase retardation imaging of the anterior eye chamber is a promising application. For
quantitatively evaluating the risk of angle-closure glaucoma by using OCT, the detection of
landmark structures such as trabecular meshwork is important. Figure 9 shows a comparison of
the OCT, cumulative phase retardation, and local birefringence images, which have been pre-
pared from a data set of subject 6 in Ref. 29. The axial separation of two measurement points is
approximately 77.3 μm in the tissue. The phase retardation and local birefringence images are
smoothed by a median filter with a 3 × 3 cross-shaped neighborhoods. The local birefringence
images exhibit a high birefringent tissue near the angle. This might correspond to the trabec-
ular meshwork, which is a drainage channel of aqueous humor. A layer with a relatively high
birefringence appeared in the sclera. Collagen bundles in the sclera may account for this high
birefringence. The local birefringence image obtained by using diagonalization [Fig. 9(c)] ex-
hibits a better contrast than that obtained by using the matrix trace method in which the sample
diattenuation is ignored [Fig. 9(d)]. Figure 9(d) exhibits artificial birefringence in the tissues
anterior to the sclera and iris, although they might have no birefringence. The diagonalization
method exhibits a better contrast in the local birefringence imaging.

Cross-sectional OCT, phase retardation, and local birefringence images of the human skin are
shown in Fig. 10. The axial distance between two measurement points for local birefringence
calculations is 67.1 μm. Phase retardation and local birefringence images are smoothed by
a median filter with a 3 × 3 cross-shaped neighborhoods. An inhomogeneous distribution of
birefringent tissues is shown. The distribution of the local birefringence appears more clearly
in en- f ace slices (Fig. 11). Speckle-like noises in en- f ace slices are removed by a median
filter with a 3 × 3 cross-shaped neighborhoods. A high birefringence appears around the dark
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Fig. 9. Cross-sectional PS-OCT images of the human anterior eye chamber in vivo. (A)
polarization-insensitive OCT image; (B) conventional cumulative phase retardation image;
(C) local birefringence image with diagonalization method; and (D) local birefringence
image using matrix trace method.
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Fig. 10. Cross-sectional images of the human skin. (A) The en- f ace projection image indi-
cates the location of cross sections; (B) Polarization-insensitive OCT image; (C) cumulative
phase retardation image; (D) local retardation image by using diagonalization method.

spots in the dermis, as shown in Figs. 11(f) and 11(g). They may corresponding to highly dense
collagenous fiber bundles around the infundibulum [30]. The averaged birefringence at this
high birefringent tissue [Fig. 11(f), yellow box] is 1.96 ×10−3. This is in good agreement with
birefringence of collagen measured (1.59×10−3 ∼ 3.0×10−3) [31].

The local birefringence imaging exhibits a better discrimination of birefringent tissues, which
had been difficult to achieve previously in conventional cumulative phase retardation imaging
[32]. In cumulative phase retardation OCT images, the existence of birefringence appears as
changes in the phase retardation along the depth [29, 33]. The local birefringence imaging will
provide more intuitive birefringent tissue discrimination.

5. Discussion

5.1. Boundary effect on local birefringence imaging

The boundary effect will occur when the region of interest (ROI) of the local phase retardation
measurement covers the boundary between the tissues with different birefringences. Figure 12
shows the schematic diagram of the ROI in the sample with two tissues. It can be modeled with
Jones matrices, and local birefringence measurement will be simulated.

Single-trip Jones matrices of two tissues can be expressed as

J1(zu,zd) = R(−θ1)

[
exp[i

∫ zd
zu

b1
2 kzdz] 0

0 exp[−i
∫ zd

zu

b1
2 kzdz]

]
R(θ1) (44)

J2(zu,zd) = R(−θ2)

[
exp[i

∫ zd
zu

b2
2 kzdz] 0

0 exp[−i
∫ zd

zu

b2
2 kzdz]

]
R(θ2), (45)
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Fig. 11. En- f ace local birefringence images of the human skin. The projections of (A)
polarization-insensitive OCT and (B) local birefringence images show the distribution
of pores and high birefringence around them. En- f ace local birefringence images at the
depths of (D) 144; (E) 211; (F) 267; and (G) 383 μm are shown. (C) cross-sectional local
retardation image by using diagonalization method. An averaged birefringence inside the
yellow box in (F) is 1.96 ×10−3.

Δz

z
b1, θ1 b2, θ2

z1 z2zb

Fig. 12. Schematic diagram of the tissue boundary. Tissues 1 and 2 have the birefringences
b1 and b2, respectively. Their optic axis orientations are θ1 and θ2, respectively.
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Fig. 13. Theoretical measured birefringence around the tissue boundary. It depends on the
difference in the optic axis orientations of tissues Δθ . b1,b2: Theoretical birefringences of
tissues 1 and 2, respectively.

where b and θ are birefringence and optic axis orientation of each tissue located from zu to zd ,
respectively, and R is a rotation matrix.

The accumulated round-trip Jones matrices measured at the depths of z1 and z2 can be de-
scribed as follows:

JT (z1) = JT
1 (zsurf,z1)J1(zsurf,z1) (46)

JT (z2) = JT
1 (zsurf,zb)JT

2 (zb,z2)J2(zb,z2)J1(zsurf,zb), (47)

where zsurf is the depth of the sample surface and zb is the depth of the boundary between two
tissues. The local single-trip phase retardation r(z1,z2) will be measured by applying the matrix
trace method for JT (z2)J−1

T (z1). Then, measured birefringence will be

b′(z) =
r(z−Δz/2,z+Δz/2)

2k0Δz

=

⎧⎪⎪⎨
⎪⎪⎩

b1 (z ≤ zb − Δz
2 )

cos−1[|cos(Δbk0z− 1
2 bsk0Δz)cos2(Δθ)+cos(bsk0z− 1

2 Δbk0Δz)sin2(Δθ)|]
k0Δz (zb − Δz

2 < z < zb + Δz
2 )

b2 (z ≥ zb + Δz
2 )

(48)

where z = (z2 + z1)/2 is the central depth of the measured local tissue. bs = b1 +b2 and Δb =
b1 −b2 are the sum and difference of the tissue birefringence, respectively. Δθ = θ1 −θ2 is the
difference between the optic axis orientations of two tissues.

The theoretically predicted measured results of the local birefringence around the boundary
are shown in Fig. 13. As shown in the plot, the measured birefringence strongly depends on
the difference in the optic axis orientation Δθ . However, if one of the two tissues has no bire-
fringence, the measured local birefringence does not depend on Δθ and is linearly increased or
decreased. The results show that a dark line will appear near a boundary between two birefrin-
gent tissues at Δθ = 90◦. A small axial separation can reduce only the axial range of an area
with erroneous local birefringence due to the boundary effect, however, cannot reduce the mag-
nitude of the error. As reduce the axial separation, the SNR of the birefringence measurement
will be reduced.
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Fig. 14. Schematic diagram of the local birefringence measurement of the sample that ex-
hibits diattenuation.

5.2. Input polarization states

In the experiments on PS-OCT, we introduced two orthogonal polarization states. The phase
retardation error analysis in Sec. 3.1.1 shows that using two orthogonal polarization states is
the most appropriate way from the point of view of phase retardation error due to low signal-
to-noise ratio, at least for the Jones matrix method.

On the other hand, a combination of incident polarization states that are perpendicular to each
other on the Poincaré sphere is used and the optimum set in PS-OCT imaging using Stokes-
vector method [27, 34–36].

This dissimilarity maybe arise from the different degrees of freedom between the Jones ma-
trix and Stokes-vector methods [37].

5.3. Free-space Jones matrix OCT for cumulative phase retardation measurement

In the case of phase retardation (not local) measurement by using free-space PS-OCT, either
the reference measurement is not required or it need not be measured simultaneously with
the sample measurement. Since the incident polarization states and polarization properties of
optics are stable and can be known, the polarization properties of the sample can be directly ob-
tained by substituting Ein and system parameters into Eq. (7). SNRs of the calibration measure-
ment can be very large with high reflectivity of a reference sample such as a mirror. Hence,
ESNR−1

PR ≈ SNR−1
1 +SNR−2

2 However, the phase difference ψ should be obtained to obtain the
Jones matrix of the sample [17].

6. Conclusion

The Jones matrix OCT has been generalized, and its performances are investigated. A compar-
ison of phase retardation calculation methods reveals that the diagonalization method exhibits
a slightly better phase retardation accuracy and lower phase retardation error than the matrix
trace method at low ESNRPR values. In either case, low ESNRPR will significantly increase the
error and reduce the accuracy of phase retardation. A local birefringence imaging is described
with the generalized Jones matrix OCT. Local birefringence imaging has been applied to bio-
logical tissues. A large axial separation between two measurement points increases the contrast
of local birefringence images.

Appendix A. Diattenuation of the sample

The diattenuation of tissues does not cause phase retardation error in the diagonalization
method, and the local relative-attenuation can be measured. However, retardation error will
be caused in the unitary transform method [16], matrix trace method [Eq. (19)], and the quater-
nion method [11]. Here, the effect of the existence of diattenuation in a sample is investigated
for the diagonalization and matrix trace methods by numerical simulations, and the latter is
theoretically considered.
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The sample with diattenuation and its Jones matrix are modeled as shown in Fig. 14. Then,
the measured Jones matrices at the front and back boundaries of the local tissue are

J(zi−n−1) = JoutJT
S (zsurf,zi−n−1)JS(zsurf,zi−n−1)Jin (49)

J(zi) = JoutJT
S (zsurf,zi−n−1)JT

S (zi−n,zi)JS(zi−n,zi)JS(zsurf,zi−n−1)Jin. (50)

The operation of the local Jones matrix measurement provides

J(zi)J−1(zi−n−1) = JDJRJT
S (zi−n,zi)JS(zi−n,zi)(JR)−1 (JD)−1 J−1

out, (51)

where the Jones matrix of the system from the local site to the detector JoutJT
S (zsurf,zi−n−1)

has been decomposed into the diattenuator JD and retarder JR. By substituting JD =
JT

U [P1,0;0,P2]JU and JS = R(−θs)[Ps1eir/2,0;0,Ps2e−ir/2]R(θs) into Eq. (51), it can be rewrit-
ten as

J(zi)J−1(zi−n−1) = JU1

[
P1 0
0 P2

]
JU2

[
Ps1eir/2 0

0 Ps2e−ir/2

]
J−1

U2

[
P1 0
0 P2

]−1

J−1
U1, (52)

where

JU1 = JT
U (53)

JU2 = JUJRR(−θs) (54)

are unitary matrices. P1,P2, and θP are the transmittances of eigenpolarization states and the
fast axis orientation above the local tissue, and Ps1,Ps2, and θs are double-pass transmittances
of eigenpolarization states and the fast axis orientation of the local tissue.

Here we define JU2 as a general unitary matrix form, i.e.,

JU2 =
[
eiα/2 0

0 e−iα/2

][
cos(β/2) sin(β/2)
−sin(β/2) cos(β/2)

][
eiγ 0
0 e−iγ

]
. (55)

Then, the measured phase retardation by using the matrix trace method is theoretically obtained
as

rm = 2cos−1

⎡
⎢⎢⎣ cos2 r

2 + 1−d
1+d sin2 r

2

√
2

√
1

1+d +
{

1+D2

2(1−D2)

[
1−d
1+d cos2 r

2 + sin2 r
2

]− d
1+d sin2 r

2 − 1−d
2(1+d)

}
sin2 β

⎤
⎥⎥⎦ , (56)

where d =
√

1−D2
s . Ds and D are diattenuations:

D =
P2

1 −P2
2

P2
1 +P2

2

= tanhε (57)

Ds =
P2

s1 −P2
s2

P2
s1 +P2

s2

= tanhεs, (58)

where ε and εs are relative-attenuations of the superior part and local tissue.
The retardation error due to diattenuations occurs if β is non-zero. Here β means the relative

angle between the optic axes of the local tissue and above it.
Figure 15 shows the comparison of the phase retardation error due to the diattenuation of

superior tissues JD. In Fig. 15, the horizontal axis is plotted by the relative-attenuation ε =
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Fig. 15. Phase retardation error due to the diattenuation above the local tissue. The numer-
ical simulation results of (a) Eq. (56) and (b) the diagonalization method. β = π/2 and
εs = 0.5.
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Fig. 16. Numerical simulation of the measured local relative-attenuation εs by using the
diagonalization method. εs is set to be 0.5.

tanh−1 D [22], since it is convenient for depth-resolved polarimetry. The numerical simulation
results of the diagonalization method show no phase retardation error due to the diattenuations
[Fig. 15(b)]. On the other hand, the matrix trace method exhibits phase retardation error at
large relative-attenuations [Fig. 15(a)]. The relative-attenuation ε can be significantly large if
anisotropic tissues such as the collagen fiber and muscles are stacked in thick block and its
orientation is aligned. Several diattenuations of biological tissues are measured [12,16,17,22].
According to these results, the relative-attenuation per depth is less than 1 mm−1. Unless the
volume of well-aligned fibrous tissues is thicker than 500 μm, the error in the phase retardation
due to the diattenuation will be less than ∼ 4◦. In the case of low diattenuation of the sample,
the matrix trace method will be applicable to local phase retardation measurement.

Figure 16 shows the numerical simulation of local relative-attenuation measurements with
the diagonalization method. It shows that the diagonalization method can be used to measure
the local diattenuation.
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