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Abstract:  Phase retardation imaging including local birefringence imag-
ing of biological tissues is described by generalized Jones-matrix optical
coherence tomography. The polarization properties of alocal tissue can be
obtained from two Jones matrices that are measured by backscattered lights
from the front and back boundaries of the local tissue. The error in the phase
retardation measurement due to background noise is analyzed theoreticaly,
numerically, and experimentally. The minimum detectabl e phase retardation
is estimated from numerical simulations. The theoretical analysis suggests
that the measurements with two orthogonal input polarization states have
the lowest retardation error. Local birefringence imaging is applied to the
human anterior eye chamber and skin in vivo.

© 2010 Optical Society of America

OCI S codes: (170.4500) Optical coherence tomography; (120.5410) Polarimetry; (260.1440);
(260.5430) Polarization Birefringence; (170.4470) Ophthalmology; (170.1870) Dermatol ogy.

References and links

1

2.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory,
C. A. Pulidfito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).

J. S. Schuman, M. R. Hee, C. A. PRuligfito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. |zatt,
E. A. Swanson, and J. G. Fujimoto, “Quantification of nerve fiber layer thickness in normal and glaucomatous
eyes using optical coherence tomography,” Arch. Ophthalmol. 113, 586-596 (1995).

G. J. Tearney, M. E. Brezinski, S. A. Boppart, B. E. Bouma, N. Weissman, J. F. Southern, E. A. Swanson, and
J. G. Fujimoto, “Imagesin cardiovascular medicine. Catheter-based optical imaging of a human coronary artery,”
Circulation 94, 3013 (1996).

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,”
J. Am. Acad. Dermatol. 37, 958-963 (1997).

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive |ow-coherence reflectometer
for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903-908 (1992).

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “ Thickness and birefringence of healthy retinal
nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol.
Vis. Sci. 45, 2606-2612 (2004).

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “ Phase retardation measurement of retinal nerve
fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarime-
try,” J. Biomed. Opt. 13, 014013 (2008).

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer
birefringence eval uated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A com-
parison,” J. Biophoton. 1, 129-139 (2008).

#118929 - $15.00 USD  Received 22 Oct 2009; revised 21 Dec 2009; accepted 23 Dec 2009; published 6 Jan 2010
(C) 2010 OSA 18 January 2010/ Vol. 18, No. 2/ OPTICS EXPRESS 854



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S. D. Gidtting, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto,
and M. E. Brezinski, “Assessment of coronary plague collagen with polarization sensitive optical coherence
tomography (PS-OCT),” Int. J. Cardiol. 107, 400409 (2006).

S. K. Nadkarni, M. C. Pierce, B. H. Park, J. F. de Boer, P. Whittaker, B. E. Bouma, J. E. Bressner, E. Halpern,
S. L. Houser, and G. J. Tearney, “Measurement of Collagen and Smooth Muscle Cell Content in Atherosclerotic
Plaques Using Polarization-Sensitive Optical Coherence Tomography,” J. Am. Coll. Cardiol. 49, 1474-1481
(2007).

S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, “ Depth-resolved birefringence and differential optical axis
orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 29,
2025-2027 (2004).

M. Todorovic, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological
samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29, 2402—
2404 (2004).

N. Kemp, H. Zaatari, J. Park, H. G. R. Ill, and T. Milner, “Depth-resolved optic axis orientation in multiple
layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-
OCT),” Opt. Express 13, 4507-4518 (2005). URL http://www.opticsexpress.org/abstract.
cfm?URI=0e-13-12-4507.

S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, “Polarization contrast imaging of biological tissues by
polarization-sensitive Fourier-domain optical coherence tomography,” Appl. Opt. 45, 11421147 (2006).

S. Jiao, G. Yao, and L. V. Wang, “Depth-Resolved Two-Dimensional Stokes Vectors of Backscattered Light and
Mueller Matrices of Biological Tissue Measured With Optical Coherence Tomography,” Appl. Opt. 39, 6318—
6324 (2000).

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix anaysis for a polarization-sensitive optical
coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512-2514 (2004).

S. Jieo and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence
tomography,” J. Biomed. Opt. 7, 350-358 (2002).

S.-Y. Luand R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766
(1994).

M. Yamanari, S. Makita, V. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier
domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14,
6502-6515 (2006). URL http://www.opticsexpress.org/abstract.cfm?id=90792.

S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Optical-fiber-based Mueller optical coherence tomography,” Opt.
Lett. 28, 1206-1208 (2003).

G. Strang, Introduction to linear algebra, 3rd ed. (Wellesley Cambridge Pr, 2003).

N. Kemp, H. Zaatari, J. Park, H. G. R. Ill, and T. Milner, “Form-biattenuance in fibrous tissues measured
with polarization-sensitive optical coherence tomography (PS-OCT),” Opt. Express 13, 4611-4628 (2005). URL
http://www.opticsexpress.org/abstract.cfm?URI=o0e-13-12-4611.

M. Everett, K. Schoenenberger, B. Colston Jr, and L. Da Silva, “Birefringence characterization of biological
tissue by use of optical coherence tomography,” Opt. Lett. 23, 228-230 (1998).

K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. D. Silva, and M. J. Everett, “Mapping of Birefringence
and Thermal Damagein Tissue by use of Polarization-Sensitive Optical Coherence Tomography,” Appl. Opt. 37,
60266036 (1998).

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography
with continuous source polarization modulation,” Opt. Express 16, 5892-5906 (2008). URL http://www.
opticsexpress.org/abstract.cfm?URI=o0e-16-8-5892.

S. Yazdanfar, C. Yang, M. Sarunic, and J. lzatt, “Frequency estimation precision in Doppler optica co-
herence tomography using the Cramer-Rao lower bound,” Opt. Express 13, 410-416 (2005). URL http:
//www.opticsexpress.org/abstract.cfm?URI=0e-13-2-410.

B. H. Park, M. C. Pierce, B. Cense, S--H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-
time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um,” Opt. Express 13,
3931-3944 (2005). URL http://www.opticsexpress.org/abstract.cfm?id=84093.

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Optic axis determination accuracy for fiber-based
polarization-sensitive optical coherence tomography,” Opt. Lett. 30, 2587-2589 (2005).

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery struc-
tures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,”
Opt. Express 17, 3980-3996 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=
oe-17-5-3980.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between
dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032
2009).

D. J. Maitland and J. T. W. Jr., “Quantitative measurements of linear birefringence during heating of native
collagen,” Lasers. Surg. Med. 20, 310-318 (1997).

#118929 - $15.00 USD  Received 22 Oct 2009; revised 21 Dec 2009; accepted 23 Dec 2009; published 6 Jan 2010
(C) 2010 OSA 18 January 2010/ Vol. 18, No. 2/ OPTICS EXPRESS 855



32. A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue
discrimination in anterior eyeusing three optical parameters obtained by polarization sensitive optical coher-
ence tomography,” Opt. Express 17, 17,426-17,440 (2009). URL http://www.opticsexpress.org/
abstract.cfm?URI=0e-17-20-17426.

33. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging Polarimetry in
Age-Related Macular Degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).

34. C.E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson., “High-speed fiber based polarization-
sengitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000).

35. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. D. Boer, “Birefringence measurements in human
skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9, 287-291 (2004).

36. W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Degardins, B. Park, J. de Boer, G. Tearney, and B. Bouma,
“High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt.
Express 16, 1096-1103 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=
oe-16-2-1096.

37. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by
polarization-sensitive swept-source optical coherence tomography withl-um probe,” Opt. Express 17, 12,385~
12,396 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=0e-17-15-12385.

1. Introduction

Optical coherence tomography (OCT) is a high-resolution cross-sectional imaging technique
of biological tissues[1]. It has been applied to several clinical applications such as ophthalmol -
ogy [2], cardiology [3], and dermatology [4]. Its ability to investigate three-dimensional sub-
surface structures has been widely accepted. On the other hand, the characterization of tissues
is essential for interpreting organs and discriminating abnormal tissues. However, the contrast
in OCT comprises only scattering intensity. Hence, the discrimination of tissuesthat have close
backscattering is extremely difficult. Additional contrastsfor OCT will extend the field of OCT
applications.

Polarization-sensitive OCT (PS-OCT) [5] is a promising branch of OCT. PS-OCT can be
used to detect fibroustissues by measuring the changesin the polarization state of light. It shows
the applicability for diagnosing glaucoma[6-8] and plaques[9,10]. However, conventional PS-
OCT is not suitable for discriminating fibrous tissues. This is because the phase retardation of
light, which is accumulated by passing light through birefringent tissues, is measured and the
presence of phase retardation in conventional PS-OCT image does not imply the existence of
birefringent tissues. The phase retardation inside birefringent tissues changes, whilethat in non-
birefringent tissues does not change. Hence, the discrimination of birefringent tissues requires
the examiner to have considerable experience and some technical knowledge.

Severa studies have attempted to resolve the polarization properties of a local site [11—
14]. Local phase retardation, which corresponds to the local birefringence of a tissue, can be
obtained from accumulated polarization changes at two different axial positions [11]. Since
this method does not assume the existence of diattenuation, retardation errors exist when there
is diattenuation. In other methods [12, 14], the local polarization properties—retardation and
diattenuation—are obtained by peeling off upper layers one by one; however, this requires
complex calculus.

Further, it isdifficult to determine the local birefringence of aweakly birefringent and weakly
scattering tissue. The phase retardation caused by a single layer has to be measured, but the
thinner single layer will cause smaller phase retardation. In addition, the low reflectivity of
biological samples restricts the signal-to-noise ratio (SNR), and it will affect the contrast of
local birefringence images. Hence, it is necessary to investigate the performance of PS-OCT in
order to improve local birefringence imaging.

In this paper, we generalize the phase retardation measurement by using Jones matrix OCT
and reveal that local birefringence imaging is one part of that. A high-contrast local birefrin-
gence imaging method is proposed. The influences of background noises on the phase retar-
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Fig. 1. Schematic diagram of a fiber-based PS-OCT. PDH,PDV, photodetection devices to
detect horizontal and vertical polarization components; Pol. mod., polarization modul ator;
and Poal., polarizer. In the case of time-domain and spectral-domain OCTSs, the light source
is a broadband light source. It is wavelength-swept light source for swept-source OCT.
Photodetection devices are photodetectors for time-domain and swept-source OCTs. They
are spectrometers for spectral-domain OCT. Typically the polarizer is introduced in the
reference arm to deliver the same optical power of reference beam to two photodetection
devices.

dation measurement with Jones matrix OCT is analyzed theoretically and numerically. In vivo
depth-resolved local birefringence imaging of biological tissues is performed. The optimum
pair of incident polarization states from the perspective of background noiseis discussed.

2. Theory
2.1. Jones matrix measurement in polarization-sensitive OCT

The polarization properties of the samplethat is measured using PS-OCT can befully described
by a Jones matrix since the depolarization cannot be measured [15]. Here, we describe the
general expression of the Jones matrix measurement using PS-OCT. In Fig. 1, the schematic
diagram of afiber-based PS-OCT is shown. To measure the Jones matrix of asample, the states
of polarization of the backscattered light with at least two incident states should be measured.
The incident lights that have polarization states, Ejns, Einz, pass through the system and are
backscattered by the sample. The corresponding polarization states of the lights at the detector,
Eout1, Eout2, Can be expressed by using Jones calculus as follows:

Hout1(2) Hin
o = [\o0] = I0Ewn =30 | @
St = (o] = e 00 7] e @

where v isthe phase difference between two incident lights. J isthe Jones matrix of the system
including the sample and optical fibers, and can be expressed as

J(2) = JouIs7(2)Jin, 3

where Js 1 is the round-trip Jones matrix of the sample, and Jin, Jout represent the Jones ma-
trix of the optical fibers of the input and output paths. In general, the lights are divided into
horizontal and vertical components by using polarizing optics, and interferometric signals at
two orthogonal polarization states are detected. The detected interferometric signals can be
expressed in the following matrix form:

i@ Dr@] _[mHy 0 ;) [Hin €YHinz @
liv(@ lyv(@)] | 0  mvVg Vie  €YViz |’
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where INi_,p (i=12 p=H,V)isan OCT signal with i-th incident beam and p polarization
detector; Hyet, Vier, the electric field of the reference light on the horizontal and vertical channels
of the detector, and ny, nv, the quantum efficiency of the horizontal and vertical channels. Itis
convenient to define the matrices of input electric fields and OCT signals as

) o Hinl Hin2
Em N [Vinl Vin2:| (5)
_ [lw@ Tn(
5@ = [ll,v(z) lov(2) ] ©)
Equation (4) can be rewritten as
_ [MHH 0 N

S(Z)_|: 0 v er ‘](Z)Eln 0 e|‘l‘ . (7)

Thus, the Jones matrix J can be obtained by using the following formula:
g =M 0 1761 0) e ®)

- 0 nVVrTef 0 €¥ n

In previous single-mode fiber-based PS-OCT, the polarization states of light reflected at the
reference point, e.g., the surface of the sample or a reflective material such as a glass plate in
the sample arm, are used to cancel the effects of fiber components on the phase retardation
measurement. It is achieved by multiplying the Jones matrix measured at the reference point
with all other Jones matrices [16] in the following manner:

J(2)d (Zref)_l = Joutharnp|9,TJgujf

‘ -1 ' 9)
— T'H Href 0 :| S z S -1 [TIH Href 0 :l (
[ 0 Vit (2)Sze) 0 WViet ]’

where z¢ is the depth of the reference point, which is selected to be J(zef) = JoutJdin.

Since Js is transpose symmetric [17], Js1 can be diagonalized by using an orthogonal
matrix, i.e., a rotation matrix. This means that the two eigenvectors of Jst are orthogonal to
each other. Hence, it can be decomposed with a linear retarder and a linear polarizer with the
same optic axis [18].

By setting nu|Hrer| = Mv[Vier| in an optical setup of PS-OCT, or by numerically com-
pensating the reference amplitudes after the detection, the product of OCT signal matrices
M (Zef,2) = S(2)S(ze) ~* can be expressed by using Eq. (9).

1
1 0 111 O
M (Zef, 2) = [O eiy] Jouds o {0 eiy] ; (10)

where y isthe phase difference between the horizontal and vertical components of the reference
light at the detector. This phase difference existsif the polarization state of the reference light at
the detector is not linear. However, the value of y is not required to obtain the phase retardation
and diattenuation of the sample. Here the amplitude factor of reference beams is eliminated
since it does not influence the following discussions. Since the matrix [1,0;0, exp(iy)]Jout IS
unitary, the matrix M (z.f,2) is unitarily similar to the sample Jones matrix Js 7. Hence, both
the diagonalization method [16, 19] and methods assuming unitary transformed Jones matrix
[18, 20] can be applied to obtain the sample phase retardation and diattenuation.

Note that knowledge of the exact polarization states of incident light is not required, and
Egs. (8) to (10) are valid unless two input polarization states are identical.
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2.2. Local birefringence measurement

The polarization properties of local tissues cannot be obtained from Eg. (10) since the Jones
matrix includes polarization changes from the surface to a certain depth of the samples. Since
in amost all single-mode fiber-based PS-OCTSs, the reference point is set at the surface of a
sample in order to neglect the influence of afiber’s birefringence, it is straightforward to shift
the depth of the reference point adjacent to the depth of interest to avoid the birefringence of
tissues above the interest point. To achieve the Jones matrix of the local tissue ranging from
Z_n—Z, the signas of the backscattered lights at the depth of z_,_; are used as the reference.
Equation (10) can then be rewritten as follows:

1
M(z-n-1,2) = [é e(|:)y:| JoudsT(z) IsT(Zi-n-1)] Ik [é e(|)y:| : (11)

The cumulative and round-trip sample Jones matrix Js t consists of single-trip Jones matrices
of local sitesas

Is1(z) = [I(z1.22) ---I§(2-1,2)] Us(z-1,2) -+ Is(z1, 22)] , (12)

where Js(z,z41)(i = 1,2,3,---) is the single-trip Jones matrix of the local tissue from the
depth of z to z.1. Hence, Eq. (11) isrewritten as

1 O
M(z-n-1,2z) = [O eiy] Jout [38(22,22) -+ I&(Z-n-2,2-n-1)] IsT(Zi-n. Z)

141 0]t
X[Jg(zlazz)"'Jg(zi—nfz’zifnfl)] 1‘Jou% [o éy] - (13

where the Jones matrix Js1(z-n, ) isthe round-trip local polarization properties of the tissue
located at the depth from z_, to 7.

Since Eq. (13) isasimilar matrix of Js1(z_n,z), the eigenvalues of both matrices are iden-
tical [21]. The eigenvalues of the Jones matrix of the local tissue Js1(7_n,z) will be obtained
by the matrix diagonalization of M (z_n_1,7). Equation (13) can be rewritten in a similarity
transformation with the eigenvalues, A, », as

M@-naz)=A g A (14)
where
_ JR(z)e*@ &(Z-n2)+ir(z-n,z)
M2 = W@(p [i > } (15)
A = |5 &]onlE@z) a2z 0 ]R-0) (16)

Here, 112 and A are the eigenvalues and eigenvector matrix of M (Z_n_1,%); r(z-n,z) and
€(z-n,z), the round-trip phase retardation and relative-attenuation [22], respectively, of the
local tissue located at the depth from z_, to z; w/R(z)éW), a complex reflectivity coefficient
at adepth of z; R(0) = [cos(0),sin(0); —sin(O),cos(H)], arotation matrix where 6 denotesthe
optic axisorientation of thelocal tissue. Thelocal phase retardation and rel ative-attenuation can
be calculated from the eigenvalues A1 » as

) ) o 71|m[ll/7tz]
Mz nz) = ‘tan RelA1/22] (17)
€(z-nz) = InfAa/22|. (18)
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Note that by using this method, local phase retardation and local relative-attenuation can be
obtained even though diattenuation exists in the sample arm and tissues above the reference
point (Appendix A). However, the relative optic axis orientation cannot be obtained from A if
diattenuation exists.

If no diattenuation exists in the tissues and sample arm, the Jones matrices of local tissues
and Jot are unitary. Hence, Eq. (13) becomes the unitary transform of the local Jones matrix
Js1(zi—n,7). The local phase retardation can be obtained by unitary transformation [16] or
matrix trace [Eq. (38) in Ref. 18]:

[trM |

s ) — —1 __

(19
where the operatorstr and det are the trace and determinant of amatrix, respectively. T indicates
the complex conjugate transpose operation.

Theloca birefringence b of thetissueis calculated by

b(zi—mzi) - %7

(20)
where kg is the center wavenumber of the light source in space, and Az= z — z_p, isthe thick-
ness of the measured local tissue. The factor 2 is aresult of the round-trip propagation in the
sample. The large separation Az gives us alarge local phase retardation. Consequently, a high
contrast in local birefringence imaging is obtained. However, the axial resolution is reduces.

3. Noise performance of generalized Jones matrix OCT

The signal-to-noise ratio of OCT signals might have significant roles in the performance of
the phase retardation measurement. The systematic error in amplitude-based PS-OCT [5] due
to background noise has already been reported [23, 24]. However, the error in the Jones ma-
trix method has not been investigated yet. In this section, the systematic phase retardation er-
ror due to additive background noise is theoretically described and compared with numerical
simulations and experimental results. The performance of the phase retardation measurement
depending on the signal-to-noise ratio is then discussed.

3.1. Analysis methods
3.1.1. Theoretical analysis of the matrix trace method

In order to mathematically describe the tendency of the systematic error in phaseretardation, the
error propagation analysisis applied from the detected OCT signals [Eg. (6)] to the product of
OCT signal matrices M, and the measured phase retardation with background noiseis obtained.
Signal matrices with background noises can be defined as

- Alryg+iAlizy  Alrga+iAlig

> SOJFL'erHA”zl Alrgg +iAliz (21)
_ AlTh, +iAliy,  Alry,+iAlif,

S - %+{Alr’zl+iAli’21 Althy +iAliby |’ (22)

where Sand S’ are the measured signal matrices for measurement and reference, respectively.
Alrij and Alij; are the errors of the real and imaginary parts due to background noises, respec-
tively. The errorsin the matrix M are defined as

(23)

M = Mg+ AMr11 +iAMiy; AMrio +iAMiqo
~ V0T AMIg; +iAMio;  AMrgs +iAMigy |
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where

Mo =SS,
o - ~ ~o1
_ F},H LZ,H} F:l,H |~/2,H] (24)
liv  lov | |Viv Vav]

In order to obtain the errors in the product matrix in Eq. (23), the error propagation analysis
isapplied as

VI PAIZ, -+ [T [PAIZ, + [ 24173 + 1.1 2175,

AMrq1 = AMill = - : (25)
| det So
VT 2812 + [T PAI2 + T, 2412+ T 2813
AMF o — AMi _ 2.H 11 2H 11 1.H 12 1H 21 (26)
12 12 [det S|
. \/||~§,v [2A1Z, + iz [2A13, + [Ty 2A13, + i1y 2413,
AMry1 = AMip; = detS| 27)
||~ ‘2A|’2 +||~ |2A|/2 _|_||"'/ |2A|2 +||~/ |2A|2
AMPos — AMi B 2V 11 v 21 2H 21 1V 22 (28)
2= 2 = [det S| .

Here it is assumed that the errors in the interference signals are independent of each other;
however, the fluctuations in the real and imaginary parts of each interference signal have the
same magnitude, Aljj = Alrjj = Alijj. This assumption of the inter-independency of the noise
isvalid as far as the OCT system operates in the shot-noise-limited or detector-noise-limited
regimes. From Egs. (23) to (28), the magnitudes of the denominator and numerator of Eq. (19)
are obtained. The phase retardation with background noise can be expressed as

2
X \/Ztr[M IMo] cos? § + 2L (r[S]So] + r[S/{S )

I'm=2C0S~ T > T T
V2, MM o] + 22 (trS]So] + tr[S3Sa))

(29)

Here we have assumed that all the errorsin each component of the matrix M [Egs. (25) to (28)]
are independent of each other; moreover, among the real and imaginary parts, and the noise
power of each channel are identical, i.e,, 2A12 = 2A12 = 2AI2, = 2A13, = 2Al13,. In redlity,
some noise components are not independent to each other; some components share original
raw signals. For more accurate analysis, rigorous treatments of statistical properties of these
components are required. Neglecting the correl ations among noise components will cause per-
turbation in results. However, it is not large and major tendency is preserved as shown in Sec.
3.3.

In Eg. (19), we have assumed the absence of diattenuation of the sample. By using this
assumption in Eqg. (29), this equation can be further ssmplified. Because of the absence of diat-
tenuation, the measured Jones matrix J is considered as a unitary matrix and can be expressed
asfollows: o

a __h*
J_\/Fe[b a*], (30)
where Ristheintensity reflection coefficient and |a|? + |b|? = 1. Consequently, the signal matrix
will be described using Eq. (4) as

S=1nv/ Rl

(31)

aHiny — b"Vimy aHinz — b*Vinz_eiu./
bHiny 4+ a*Vini€?  bHin2 + a*Vine’eV' | -
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Here, it is assumed that the signal efficiency of both horizontal and vertical channels are bal-
anced, i.e.,, Nu|Hret| = v |[Viet| = N/ Iver- The absolute of the determinant of Eq. (31) becomes

|detS| = 1Rl ;e |detEip| . (32)

We found that |detE;y,| is the absolute of the inner product between the two Jones vectors
[Hml,\/inl]T and [sz,—Hmz]T; these represent two incident polarization states, but one is ro-
tated to become orthogonal to the original [Vino, —Hino] ™ L [Hinz, Vin] . Hence, the absolute
determinant can be expressed using an angle § between two Stokes vectors, which corresponds
to the two input polarization states on Poincaré sphere as

|detEin| = ‘HinlvinZ_Vianin2| =V |in1|in2‘3in§/2|a (33)

where ling = [Hing|? + [Ving|? and ling = [Hinz|? + [Vinz|? are the intensities of two incident lights.
According to Egs. (31)—33), each term of Eq. (29) becomes the following:

/S = n2Rlet(ling + lin2) (34
|detSol = N°Rlrerv/limlinz| Sin¢ /2| (35)
trMIMo] = 2% (36)

37)

By substituting Egs. (34-36) into Eq. (29), the measured phase retardation with background
noise can be described as

cos? L + ESNRoA esc? §
rm=2cos ! \/ z RO . (38)
\/1+4ESNRoEcse? §
where ESNRpr is the effective SNR of the phase retardation measurement; it is defined as
1 1 1 1 1 1
- _ = . 39
ESNRer 4<SNR1+SNR2+SNR1+SNR’2> (39)

NR«(k = 1,2) is the signal-to-noise ratio of an OCT signal with a k-th input light. Then,
SNR« = 12Rlrerlink/(2417).

3.1.2. Numerical simulations

Numerical simulations of phase retardation measurements with background noise are per-
formed in order to investigate the error and statistical properties for both matrix trace and diag-
onalization methods. For simulations, the Monte-Carlo method is used. The measured signals
are assumed to have additive complex noises as follows:

l:ELH(Z) |:2.,H(Z):| _3 |:Hinl Hinz] N [nll(z) nﬁ(z)} 7 (40)

liv(2) lov(2) Vim  Vin2 N21(2) nNz2(2)

where nj, obeys complex normal distributions in which the real and imaginary parts are in-
dependent Gaussian variables and have zero-mean and identical standard deviation oj,. Eight
normal random variables are numerically generated and added to theoretical signals. Their stan-
dard deviations are defined by parameters SNRy, as 2672, = (|Hinm|? + [Vinm|?) /SNRm.

The models of two Jones matrices are defined as follows. The reference Jones matrix is
constructed with the following two arbitrary unitary matrices:

J =Jy1duo. (41
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Fig. 2. Therelationship between phase retardation and the ratio of SNRs. ESNRpr = 30 dB
and incident intensity ratior; = 1.

Ju isthe unitary matrix that has the determinant of unity. The Jones matrix measured at below
the target is then

J=Ju1di(r,0)du2, (42)

where J;, (1, 0) is the Jones matrix of a linear retarder with retardation r and its optic axis
orientation 6.

Two matrices of eight numerically generated OCT signals are processed using matrix di-
agonalization and the matrix trace method [Eq. (19)]. It is applied for severd trials, and the
distribution of resulting phase retardations can be obtained.

3.1.3. Experiment

In order to compare the theoretical phase retardation error and simulation results with ex-
perimental results, measurements using a glass plate were performed. In this experiment,
we utilized a swept-source PS-OCT system with continuous polarization modulation [25].
In this system, the input light is modulated by a polarization modulator. It can be consid-
ered that there are two orthogonal incident polarization states wherein the phase of one of the
states is modulated. This configuration provides the following conditions. ESN R,;F{(zi,n, z)=

(1+ 7l ) (SNRu(@) ™+ SNRy(z-n) 4)/4, and sin?{ /2= 1.

The glass plate at the sample arm is measured using the PS-OCT with a variable attenuator.
A sequence of 1000 axial profilesisacquired. Another set of data with a different SNR isthen
obtained by changing the attenuation. The phase retardations of each data set are calculated
using signals at the front and back surfaces of the glass plate. ESNRpg is calculated according
to Eq. (39). It isassumed that the glass plate has no birefringence, i.e., it will provide zero phase
retardation. The measured OCT signals are processed by the diagonalization and matrix trace
methods [Eq. (19)].

3.2. Validity of ESNRpR

Thetheoretical analysis (Sec. 3.1.1) showsthat the phase retardation error depends on ESNRpg,
which is alinear combination of four inverted SNRs with two incident polarization states and
two different targets [Eq. (39)]. To validate that the measured retardation depends only on this
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Fig. 3. (a c, €) Measured phase retardations with several set phase retardations r and (b,
d, f) contour plots of phase retardation error Ar = r — r, obtained by theoretical analysis
according to Eq. (38) (a, b), Monte Carlo simulations of matrix trace method by using
Eq. (19) (c, d), and diagonalization method (e, f).

ESNRpR, humerical simulations have been performed with different ratios between SNRswhile
the ESNRpRr values are identical. It is defined that 1/ESNRpr = (14 rRr)(1+411)/(4SNRy),
whererr = R/Rig and ry = lina/linz- The numerical simulation results and the theoretical curve
of Eq. (19) are shown in Fig. 2. The phase retardation does not depending on the ratio of
the SNRs. Hence, ESNRprR is effective to evaluate the performance of the phase retardation
measurement.

3.3.  Error in phase retardation measurement

The estimated measured phase retardations at several set phase retardations are plotted as shown
in Figs. 3(a), 3(c), and 3(e). In the Monte Carlo simulation results, the phase retardation is
obtained by averaging 16384 trials. It is clear that the measured phase retardation erroneously
approaches around %” rad as ES\NRpr decreases. The phase retardation error Ar =r —r, is
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Fig. 4. Plots of phase retardation with background error in (a) matrix trace method and (b)
diagonalization method, where the set phase retardation r = O radian. The red curve shows
the result of theoretical analysis. The box and whisker plots exhibit the distribution from
the simulation. Blue squares are the experimental results. The retardation of thelocal tissue
is set to zero.

mapped on Figs. 3(b), 3(d), 3(f). It shows that phase retardation error increases as ESNRpr
decreases. These results are identical to those from the amplitude-based PS-OCT method [23],
except the asymptotic value of phase retardation at lower SNR. It is 7 rad (double pass) for
the amplitude-based PS-OCT [23]. The diagonalization method exhibits a smaller retardation
error than the matrix trace method, and the distribution of the retardation error is closer to the
symmetric.

The theoretical curve, simulated values, and experimental values of the measured phase re-
tardation are plotted in Fig. 4. Figure 4(a) shows the results based on the trace method. The
experimental results (blue rectangles) are in good agreement with both the theoretical analysis
results calculated by Eq. (38) (red curve) and the numerical simulation results (box and whisker
plots). The results show that the phase retardation error due to background noise strongly de-
pends on ESNRpr. Since ESNRpr is dominated by the lowest SNR of its constituents, the
retardation error strongly depends on the lowest SNR of the four detection channels. The ex-
perimental results (blue rectangles) and numerical simulations (box and whisker plots) using the
diagonalization method are also in good agreement, as shown in Fig. 4(b). The diagonalization
method exhibits a smaller discrepancy between the ideal retardation and resulting retardation
at low ESNRpR values.

The differencein the methods is perhaps aresult of the characterization of diattenuation. The
random noises may be accounted as pseudo-diattenuation. Since in the diagonalization method,
sample diattenuation does not produce phase retardation error (Appendix A), the retardation
error is suppressed. Alternatively, random noises will affect eigenvectors. Although the phase
retardation error is small, the distribution is spread more widely than the results of the matrix
trace method at very low ESNRpR values.

Figures 5 and 6 show the distribution of the phase retardation obtained by numerical simula-
tions and experiments both in the case of the diagonalization method (Fig. 5) and matrix trace
method (Fig. 6), where the set phase retardation is O radian. They show that the distributions
for both the simulation and experimental results are in good agreement. As ESNRpr decrease,
the distribution is distorted and becomes asymmetrical. Although ESNRpg is high [Figs. 5(€),
5(f), 6(e), 6(f)], the discrepancies from the set phase retardation are significant since the value
is close to the edge of the phase retardation range [0,7) [7]. It is hence suggested that asimple
averaging of the phase retardation is not a proper estimator.
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Fig. 8. Log-log plots of standard deviation of phase retardation to ESNRpR. In both meth-
ods, the standard deviations are approaching to oy = /2/ESNRpr as ESNRpr increases.
The diagonalization method exhibits slightly lower standard deviation than that of the trace
method at low ESNRpg.

3.4. Accuracy of phase retardation measurements.

Fluctuations of measured phase retardation limit the accuracy of the measurement. In the previ-
ous section, we found that the background noises resulted in either systematic overestimation or
underestimation of phase retardation, not only in the fluctuation of the measured phase retarda-
tion. The fluctuations in the measured phase retardation do not represent the accuracy directly.
Figure 7 illustrates an example of the relationship between set and measured retardations. The
standard deviation in phase retardation with respect to the set retardation can be defined using
the slopes of the set and measured retardation curves as

Orm

= rm’
ar

o (43)
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where oy, is the standard deviation of the measured phase retardation and dry/dr is the slope
of the curve. The derivatives are calculated by using the differences between the mean of the
measured phase retardation.

In Fig. 8, the standard deviations of phase retardation are plotted against ESNRpr. Near the
edge of the phase retardation measurement range (r = 7r/12, 11z /12), the standard deviation in
the diagonalization method is smaller than that in the matrix trace method. It seems that there
isalinear relationship between logo; and logESNRpR, particularly in the case of the 27/3 set
retardation, which exhibits alow phase retardation error (Fig. 3).

Since the phase retardation is the phase difference between the complex eigenvalues of the
sample Jones matrix [Eq. (14)], it is expected that the relationship between the standard de-
viation of phase retardation and ESNRpr will be similar to that between the phase difference
and SNR of complex signals; oxy = 1/1/SNR[26, 27]. In addition, the optic axis determina-
tion accuracy of the Stokes-vector method also exhibits a similar tendency [28]. A line fitting
to the curves of the 27/3 set phase retardation at high ESNRpr values (> 10 dB) has been
applied using the regression model logo; = 1/2(loga— logESNReR), which is equivalent to
or = v/a/ESNRpg. The fitting to both the simulation results with the matrix trace and diag-
onalization methods reveals afitting coefficient a = 2.0. Figure 8(b) shows that all the curves
approach theline of o; = /2/ESNRpg a high ESNRpg values. Thisis probably afundamental
limit of the phase retardation measurement with additive noise at large ESNRpg.

4. Local birefringenceimaging

The local birefringence algorithm is applied for the PS-OCT images of biological tissues. The
human anterior eye chamber and skin are measured using a 1.3—um swept-source PS-OCT [25].
An informed consent was obtained from all subjects. All protocols adhered to the tenets of the
Declaration of Helsinki and were approved by the Institutional Review Board of the University
of Tsukuba. The scanning rate of the wavelength-swept light source is 20 kHz, and its tuning
band width is 110 nm. An axial resolution of 11.9 u is provided in the tissue.

The phase retardation imaging of the anterior eye chamber is a promising application. For
quantitatively evaluating the risk of angle-closure glaucoma by using OCT, the detection of
landmark structures such as trabecular meshwork isimportant. Figure 9 shows a comparison of
the OCT, cumulative phase retardation, and local birefringence images, which have been pre-
pared from adata set of subject 6 in Ref. 29. The axial separation of two measurement pointsis
approximately 77.3 um in the tissue. The phase retardation and local birefringence images are
smoothed by amedian filter with a3 x 3 cross-shaped neighborhoods. The local birefringence
images exhibit a high birefringent tissue near the angle. This might correspond to the trabec-
ular meshwork, which is a drainage channel of agueous humor. A layer with arelatively high
birefringence appeared in the sclera. Collagen bundles in the sclera may account for this high
birefringence. The local birefringence image obtained by using diagonalization [Fig. 9(c)] ex-
hibits a better contrast than that obtained by using the matrix trace method in which the sample
diattenuation is ignored [Fig. 9(d)]. Figure 9(d) exhibits artificial birefringence in the tissues
anterior to the sclera and iris, although they might have no birefringence. The diagonalization
method exhibits a better contrast in the local birefringence imaging.

Cross-sectional OCT, phase retardation, and local birefringence images of the human skin are
shown in Fig. 10. The axia distance between two measurement points for local birefringence
calculations is 67.1 um. Phase retardation and local birefringence images are smoothed by
a median filter with a 3 x 3 cross-shaped neighborhoods. An inhomogeneous distribution of
birefringent tissues is shown. The distribution of the local birefringence appears more clearly
in en-face dlices (Fig. 11). Speckle-like noises in en-face slices are removed by a median
filter with a3 x 3 cross-shaped neighborhoods. A high birefringence appears around the dark
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Fig. 9. Cross-sectional PS-OCT images of the human anterior eye chamber in vivo. (A)
polarization-insensitive OCT image; (B) conventional cumulative phase retardation image;
(C) loca bhirefringence image with diagonalization method; and (D) local birefringence
image using matrix trace method.
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Fig. 10. Cross-sectional images of the human skin. (A) The en- f ace projection image indi-
catesthelocation of cross sections; (B) Polarization-insensitive OCT image; (C) cumulative
phase retardation image; (D) local retardation image by using diagonalization method.

spotsin the dermis, as shown in Figs. 11(f) and 11(g). They may corresponding to highly dense
collagenous fiber bundles around the infundibulum [30]. The averaged birefringence at this
high birefringent tissue [Fig. 11(f), yellow box] is 1.96 x 103, Thisisin good agreement with
birefringence of collagen measured (1.59 x 1023 ~ 3.0 x 10~3) [31].

Thelocal birefringenceimaging exhibitsabetter discrimination of birefringent tissues, which
had been difficult to achieve previously in conventional cumulative phase retardation imaging
[32]. In cumulative phase retardation OCT images, the existence of birefringence appears as
changes in the phase retardation along the depth [29, 33]. The local birefringence imaging will
provide more intuitive birefringent tissue discrimination.

5. Discussion
5.1. Boundary effect on local birefringence imaging

The boundary effect will occur when the region of interest (ROI) of the local phase retardation
measurement covers the boundary between the tissues with different birefringences. Figure 12
shows the schematic diagram of the ROI in the sample with two tissues. It can be modeled with
Jones matrices, and local birefringence measurement will be simulated.

Single-trip Jones matrices of two tissues can be expressed as

i [ by

Ji(zu,z0) = R(=61) [exp[leUOZkZdZ] exp[—i Z(Zjdtgkzdz] R(61) (44)
i (% b

Jo(zu,24) = R(-02) [wp[lfmosz] exp[—i Z(ZjdbzszdZ} R(62), (49)
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Fig. 11. En-face local birefringence images of the human skin. The projections of (A)
polarization-insensitive OCT and (B) loca birefringence images show the distribution
of pores and high birefringence around them. En-face local birefringence images at the
depths of (D) 144; (E) 211; (F) 267; and (G) 383 um are shown. (C) cross-sectional local
retardation image by using diagonalization method. An averaged birefringence inside the
yellow box in (F) is 1.96 x1073.
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Fig. 12. Schematic diagram of the tissue boundary. Tissues 1 and 2 have the birefringences
by and by, respectively. Their optic axis orientations are 61 and 65, respectively.
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Fig. 13. Theoretical measured birefringence around the tissue boundary. It depends on the
difference in the optic axis orientations of tissues Af. by, by: Theoretical birefringences of
tissues 1 and 2, respectively.

where b and 6 are birefringence and optic axis orientation of each tissue located from z, to zg,
respectively, and R is arotation matrix.

The accumulated round-trip Jones matrices measured at the depths of z; and z, can be de-
scribed asfollows:

Ir(zm) = I (Zeur,2)I1(Zeurf 22) (46)
where zg,¢ is the depth of the sample surface and z, is the depth of the boundary between two

tissues. Thelocal single-trip phase retardation r (z1,z2) will be measured by applying the matrix
trace method for Jr(2z2)J7*(z1). Then, measured birefringence will be

b(2) = r(z Azz/kZO,Az;- Az/2)
b1 (z<z-%)
cos~1[| cos( Abkoz— 3 bskoAz) cosZ(éi);oos(bskoz-%AbkoAz)sjnZ(AeJ)\] (- 2 <2< 24 %2)
by (22 2+ %)

(48)

wherez= (2, + z1) /2 is the central depth of the measured local tissue. bs = by + by and Ab =
b; — by are the sum and difference of the tissue birefringence, respectively. A6 = 6; — 6 isthe
difference between the optic axis orientations of two tissues.

The theoretically predicted measured results of the local birefringence around the boundary
are shown in Fig. 13. As shown in the plot, the measured birefringence strongly depends on
the difference in the optic axis orientation A6. However, if one of the two tissues has no bire-
fringence, the measured local birefringence does not depend on A6 and is linearly increased or
decreased. The results show that a dark line will appear near a boundary between two birefrin-
gent tissues at AG = 90°. A small axial separation can reduce only the axial range of an area
with erroneous local birefringence due to the boundary effect, however, cannot reduce the mag-
nitude of the error. As reduce the axial separation, the SNR of the birefringence measurement
will be reduced.
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Fig. 14. Schematic diagram of the local birefringence measurement of the sample that ex-
hibits diattenuation.

5.2. Input polarization states

In the experiments on PS-OCT, we introduced two orthogonal polarization states. The phase
retardation error analysis in Sec. 3.1.1 shows that using two orthogonal polarization states is
the most appropriate way from the point of view of phase retardation error due to low signal-
to-noiseratio, at least for the Jones matrix method.

On the other hand, acombination of incident polarization statesthat are perpendicular to each
other on the Poincaré sphere is used and the optimum set in PS-OCT imaging using Stokes-
vector method [27, 34-36].

This dissimilarity maybe arise from the different degrees of freedom between the Jones ma-
trix and Stokes-vector methods [37].

5.3.  Free-space Jones matrix OCT for cumulative phase retardation measurement

In the case of phase retardation (not local) measurement by using free-space PS-OCT, either
the reference measurement is not required or it need not be measured simultaneously with
the sample measurement. Since the incident polarization states and polarization properties of
optics are stable and can be known, the polarization properties of the sample can be directly ob-
tained by substituting E;, and system parametersinto Eq. (7). SNRs of the calibration measure-
ment can be very large with high reflectivity of a reference sample such as a mirror. Hence,
ESNRsA ~ SNR; !+ SNR, 2 However, the phase difference y should be obtained to obtain the
Jones matrix of the sample [17].

6. Conclusion

The Jones matrix OCT has been generalized, and its performances are investigated. A compar-
ison of phase retardation calculation methods reveals that the diagonalization method exhibits
a dlightly better phase retardation accuracy and lower phase retardation error than the matrix
trace method at low ESNRpg values. In either case, low ESNRpr will significantly increase the
error and reduce the accuracy of phase retardation. A local birefringence imaging is described
with the generalized Jones matrix OCT. Local birefringence imaging has been applied to bio-
logical tissues. A large axial separation between two measurement points increases the contrast
of local birefringence images.

Appendix A. Diattenuation of the sample

The diattenuation of tissues does not cause phase retardation error in the diagonalization
method, and the local relative-attenuation can be measured. However, retardation error will
be caused in the unitary transform method [16], matrix trace method [Eq. (19)], and the quater-
nion method [11]. Here, the effect of the existence of diattenuation in a sample is investigated
for the diagonalization and matrix trace methods by numerical simulations, and the latter is
theoretically considered.
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The sample with diattenuation and its Jones matrix are modeled as shown in Fig. 14. Then,
the measured Jones matrices at the front and back boundaries of the local tissue are

J(Zifnfl) = JoutJ—sr(Z&Jrf,Zifnfl)JS(Zsuthifnfl)Jin (49)
J(z) JoutdS (Zaurts Zi—n-1)I& (Z-n, 2)Is(Z-n, Z)Is(Zaurt s Zi—n-1)din-  (50)

The operation of the local Jones matrix measurement provides
3(2)3 (@ n-1) = I0IRIE(Z-n,2)s(zn2) (FR) T (Ib) o, (51)

where the Jones matrix of the system from the local site to the detector Jouth(z&,,f, Z_n-1)
has been decomposed into the diattenuator Jp and retarder Jr. By substituting Jp =
J[P1,0;0,P,]Jy and Js = R(—6s)[P1€"/2,0;0,Poe""/?|R(6s) into Eq. (51), it can be rewrit-
ten as

~ P, 0 Pyd/2 0 [P 0]t
J(z)J 1(Zi—n—1)=JU1{l ]Juz['ﬂ ]Jué[l }Jui, (52)

0 P 0 Poei1/2 0 P
where
Jur =13 (53)
Ju2 = JuJIrR(—6s) (54)

are unitary matrices. P, P, and 6p are the transmittances of eigenpolarization states and the
fast axis orientation above the local tissue, and Py, Py, and 65 are double-pass transmittances
of eigenpolarization states and the fast axis orientation of the local tissue.

Here we define Jy» as agenera unitary matrix form, i.e.,

S RS | 7 L NP €

Then, the measured phase retardation by using the matrix trace method istheoretically obtained
as

r 1-dqgpR2r
cos? 5 + g Sin® 5

m=2c0S * , (56)
1 14D2 _ [1-d ;2 d gn2 1-d | g2
ﬁ\/m+{z<f02) [Fdcos? 5 +sin? 5] — &g sin?§ — 5y Lin®
whered = /1 — DZ. Ds and D are diattenuations:
PZ_PZ
D = 2 —2=tanhe (57)
P2t P2
PZ _PZ
Ds = —L 2 _tanhe, 58

where € and &5 are relative-attenuations of the superior part and local tissue.

The retardation error due to diattenuations occursif 8 isnon-zero. Here B meanstherelative
angle between the optic axes of the local tissue and aboveit.

Figure 15 shows the comparison of the phase retardation error due to the diattenuation of
superior tissues Jp. In Fig. 15, the horizontal axis is plotted by the relative-attenuation € =
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Fig. 15. Phase retardation error due to the diattenuation above the local tissue. The numer-

ical simulation results of (a) Eq. (56) and (b) the diagonalization method. = /2 and
Ss == 05
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Fig. 16. Numerical simulation of the measured local relative-attenuation es by using the
diagonalization method. &s is set to be 0.5.

tanh~1D [22], since it is convenient for depth-resolved polarimetry. The numerical simulation
results of the diagonalization method show no phase retardation error due to the diattenuations
[Fig. 15(b)]. On the other hand, the matrix trace method exhibits phase retardation error at
large relative-attenuations [Fig. 15(a)]. The relative-attenuation & can be significantly large if
anisotropic tissues such as the collagen fiber and muscles are stacked in thick block and its
orientation is aligned. Several diattenuations of biological tissues are measured [12, 16,17, 22].
According to these results, the relative-attenuation per depth is less than 1 mm~1. Unless the
volume of well-aligned fibrous tissuesis thicker than 500 pm, the error in the phase retardation
due to the diattenuation will be less than ~ 4°. In the case of low diattenuation of the sample,
the matrix trace method will be applicable to local phase retardation measurement.

Figure 16 shows the numerical simulation of local relative-attenuation measurements with
the diagonalization method. It shows that the diagonalization method can be used to measure
the local diattenuation.
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