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A general theoretical framework of two-dimensional time-domain second-order and third-order ter-
ahertz spectroscopy has been presented. The theoretical treatment is based on a classical and phe-
nomenological model with weak nonlinearities. Three types of nonlinearity sources, anharmonicity,
nonlinear coupling, and nonlinear damping, were considered. The second-order THz spectroscopy
has an exact correspondence to fifth-order off-resonance Raman spectroscopy, and it has been shown
that the present treatment gives exactly the same results as of the quantum mechanical theory under
the weak nonlinearity condition. General expressions for the nonlinear signal have been obtained for
a single-mode system, and numerical calculations for delta-function incident terahertz pulses were
shown. For the third-order signal, two-level systems were also considered for comparison. Contribu-
tions of two types of incident pulse sequences have been studied separately in the third-order signals.
Profiles of the two-dimensional signals were found to depend on the origin and order of the nonlin-
earity and also on the pulse sequence. The results of the present study show that the two-dimensional
signal features of second- and third-order nonlinear terahertz spectroscopy can clarify the nature of
the system which is not accessible using linear spectroscopy. © 2010 American Institute of Physics.
[doi:10.1063/1.3507256]

I. INTRODUCTION

Because of recent progress in generation techniques of
intense terahertz (THz) radiation pulses,1–3 we are now able
to observe various nonlinear phenomena in THz spectral re-
gion using those intense THz pulses. Time-domain measure-
ments, especially, are expected to supply rich spectroscopic
information of the system as conventional linear time-domain
THz spectroscopies. Nonlinear transmission of intense THz
waves has been observed in electronic systems in different
types of semiconductors.4–9 More recently, nonlinearity in
vibrational10 and phonon11 systems has been observed.

Using nonlinear spectroscopy,12, 13 various types of in-
formation that is not accessed by linear spectroscopic mea-
surements can be obtained. Accessible information includes
dynamics of population and coherence, inhomogeneous dis-
tribution of resonance frequency, anharmonicity of intra- and
intermolecular vibrational modes, coupling between different
modes, and interaction between neighboring molecules. In the
optical frequency region, variety of techniques have been de-
veloped and applied for this purpose. Even when limited to
time-resolved or time-domain techniques, a wealth of infor-
mation has been obtained using spectroscopic measurements
such as pump-probe method, photon echoes, transient grating,
optical Kerr effect, transient hole burning, coherent Raman
scattering, impulsive Raman scattering, impulsive phonon ex-
citation, other various types of four-wave mixing, two-photon
absorption, and double resonance spectroscopy.

In the THz frequency region, however, it is not estab-
lished yet what types of spectroscopic measurements can be
performed and what kind of information is obtained from
them in the nonlinear regime. In experiments using a single
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intense THz pulse, extraction of nonlinear signal is not easy,
and only limited information is obtained from the experimen-
tal signals. By adding another THz pulse, extraction of non-
linear signals becomes easier, and rich spectroscopic informa-
tion can be obtained from the dependence of the signal on the
time interval between the two pulses. In this report, two-pulse
measurements are studied as a model experiment, where two
THz pulses are incident on the sample medium, and the wave-
form of the transmitted THz pulse is measured.

It is assumed, in the theoretical consideration, that only
nonlinear contribution to the transmitted THz pulse waveform
affected by both of the two incident THz pulses is extracted
in the measurements by using appropriate experimental tech-
niques. This assumption enables a perturbative approach in
the theoretical analysis. Since the signal is a function of the
pulse interval and the observation time, the measurement is
inherently a two-dimensional (2D) one. 2D spectroscopy in
frequency and time domain has been applied for studies of
vibrational and other excitation modes,14, 15 and proved to be
powerful in elucidating dynamics, inhomogeneity, and non-
linear coupling between modes. 2D THz spectroscopy was
first proposed by Okumura and Tanimura, and theoretically
shown that it can give information on anharmonicity of low-
frequency modes in liquid water16 and a free energy landscape
of a dipolar crystal system.17

Second-order and third-order nonlinear THz spectro-
scopies with two incident THz pulses will be discussed in
this study. When the system does not have inversion symme-
try, second-order nonlinearity is the most important, whereas
third order is the lowest when there is inversion symme-
try. The second-order 2D THz spectroscopy has close cor-
respondence with fifth-order 2D Raman spectroscopy,18 as
described in more detail in Sec. II C. Since the proposal
by Tanimura and Mukamel,19 extensive studies on fifth-order
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2D Raman spectroscopy have been reported on theories,19–25

experiments,26–37 and calculations.38–45 These studies have
clarified that information on inhomogeneity, nonlinearity ori-
gin, mode coupling, and intermolecular interaction can be ob-
tained from the 2D spectroscopy. It has also been shown that
multidimensional nonlinear response of classical systems has
a wealth of information on chaotic properties of the system.46

Second-order 2D THz spectroscopy should share exactly the
same ability as fifth-order 2D Raman spectroscopy because
of the theoretical correspondence between them. Third-order
2D THz spectroscopy,16, 17 on the other hand, is related to
but does not have exact correspondence with seventh-order
Raman spectroscopy, since seventh-order Raman signals
inevitably contains contributions from lower-order nonlinear-
ities, whereas third-order THz spectroscopy does not in cen-
trosymmetric media.

2D spectroscopy in the midinfrared (MIR) (Refs. 14 and
15) region is also a powerful tool for the study of dynamics
and nonlinearity of vibrational modes. MIR 2D spectroscopy,
however, is different from that in the THz region in two points.
First, the vibrational mode in MIR has essentially a quantum
mechanical nature while they are much more classical in THz
region. Second, time resolution of measurements is lower than
the vibrational period in MIR whereas time-resolved acquisi-
tion of oscillation waveforms is the particular feature of the
THz time-domain measurements.

The theoretical treatment in the present study is purely
classical and phenomenological.23, 24 Sources of weak non-
linearities are introduced into a classical oscillator described
by the Lorentz model. In the first paper on 2D Raman
spectroscopy19 and in succeeding papers by Tanimura’s
group,16, 20–22 a quantum mechanical treatment was used for
the derivation of the expression of nonlinear responses, and
tedious procedures were taken for the derivation of the ana-
lytical expression for the signal response. Their studies, how-
ever, are focused on systems with weak anharmonicity and/or
weak nonlinear coupling. Their model, therefore, of the mate-
rial system is almost of a classical nature, and it will be shown
that the theoretical expressions obtained in their study agree
exactly with those of the present one. Since in THz region
the photon energy is much smaller than the temperature, i.e.,
¯ω � kT , the systems have a classical nature in most cases.
By using a classical theory, therefore, the description and
analysis of the experiments is closed in classical physics. The
pure classical presentation in the present study is related to
the study of Jansen and Mukamel,47 where it was shown how
multiple-time response functions can be factorized into prod-
ucts of single-time response functions. Furthermore, second-
order nonlinear THz responses, which corresponds to fifth-
order Raman responses, consist of only coherent processes,
and do not contain contributions of diagonal elements of the
density matrix of the system. In this case, a classical model
is sufficient for the complete description of system responses.
This is equivalent to the fact that the linear optical response
of a harmonic oscillator can be described completely using a
classical Lorentz model.

The aim of this study is to elucidate what kind of informa-
tion can be obtained directly from experimental results with-
out depending on the model of the system. The classical and

phenomenological description of the system, adopted in the
present study, is the simplest and best for this purpose. The
major target of the present study is vibrational and phonon
systems since rich information can be obtained using 2D spec-
troscopy from systems with narrow spectral widths, although
the present theoretical treatment can also be applied to elec-
tronic and other types of systems if the nonlinearity of the
system shares the same nature.

The outline of this paper is described briefly. In Sec. II,
first I describe experiments under consideration and experi-
mental requirement for the observation of relevant nonlinear
signals. Then framework of the theoretical treatment is out-
lined. Finally, fifth-order and seventh-order Raman 2D spec-
troscopies are reviewed in view of the correspondence with
and difference from second-order and third-order THz 2D
spectroscopy. Derivation of various expressions and numeri-
cal calculation results are presented for the second-order pro-
cesses in Sec. III, and for the third-order processes in Sec. IV.
Discussion on the results obtained and also on possible ex-
tension of the present theoretical treatment is given in Sec. V.
Finally, the paper is concluded in Sec. VI.

II. MODEL

A. Model experiment

The experiment under consideration is described here.
Two intense THz pulses, E1 and E2, are incident on a nonlin-
ear medium at times −T1 and 0. THz electric field generated
from nonlinear polarization induced by both of E1 and E2 is
observed at time t . The time sequence of the incident pulses
and the probe is schematically depicted in Fig. 1. The signal
field is obtained as a function of T1 and t , which composes
the two-dimensional time-domain signal. It is expected that
information that is not accessed by linear spectroscopy is ob-
tained from the nonlinear spectroscopy. When the nonlinear
media are noncentrosymmetric, the media have second-order
nonlinear optical effects. In this case, the second-order signal
is observed. When the system is centrosymmetric, the lowest-
order nonlinearity is the third-order one. We observe, in this
case, the electric field of the third order.

In either case of second-order or third-order nonlinear-
ity, it is assumed in the following analysis that only the non-
linear field influenced by both E1 and E2 is observed. The
electric field at time t contains contributions by linearly prop-
agated field of E1 and E2, nonlinear polarization generated
only by either E1 or E2, and that generated by both of E1

and E2. In nonlinear optical spectroscopy in the visible re-
gion, noncollinear configuration of the two pump beams is

T1 t

E2 probeE1 nonlinear 
field

time0

FIG. 1. Timing of the incident THz pulses, E1 and E2, and the probe in the
two-dimensional time-domain THz spectroscopy.
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usually adopted for the picking up of the last contribution. In
THz region, however, collinear geometry is usually preferred
because the f numbers of the pump waves are small. Tech-
niques, therefore, other than the noncollinear configuration
should be introduced for the separation. Photon echo signal in
the visible region has been observed in the collinear configu-
ration using a two-frequency modulation method,48–50 where
two pump beams are modulated at different frequencies and
sum-frequency component in the transmitted light intensity is
observed. This or similar technique will enable detection of
only the nonlinear field contributed by both E1 and E2.

B. Theoretical model

The linear equation of motion of a vibrational mode cou-
pled to the incident THz radiation is expressed in the Lorentz
model as

m

[
d2

dt2
x(t) + 2�

d

dt
x(t) + �2x(t)

]
= q0 E(t). (1)

Here, E(t) is the electric field of the incident THz radiation,
and x(t), m, �, �, and q0 are the coordinate, mass, damping
constant, resonance frequency, and effective charge of the vi-
brational mode. Polarization P(t) is expressed as

P(t) = N p(t) = Nq0x(t), (2)

where N is the density of the molecule, and p is the effec-
tive electric dipole moment of the mode. By solving Eq. (1),
the linear polarization can be expressed in terms of the linear
response function of polarization, r (t), as

P(t) =
∫ ∞

0
dt ′r (t ′)E(t − t ′), (3)

r (t) = Nq2
0

m
· 1

ζ
e−�t sin ζ t (t > 0), (4)

where

ζ = (
ω2

0 − �2
)1/2

. (5)

The response function r (t) is sometimes referred to the
Green’s function or the propagator.24 Underdamped oscilla-
tion condition (� < ω0) is assumed here although this model
can also be applied to critically damped or overdamped
oscillators.

The incident electric field E(t) is assumed to be a sum of
the first and second incident THz field:

E(t) = E1(t) + E2(t), (6)

and

E1(t) = E2(t + T1), (7)

where E2(t) is peaked at t = 0, and later in the numerical
evaluation, approximated by a delta function. Here, E1 and
E2 are assumed to have the same sign and amplitude. A case
with different signs is also considered in the discussion of
third-order nonlinearity since the third-order nonlinear field
is affected by the relative sign and amplitude of E1 and E2.

When there is nonlinearity of any type in the system, non-
linear electric field ENL is radiated from the nonlinear po-
larization PNL according to the one-dimensional propagation
equation:

∂2

∂z2
E(z, t) = εμ0

∂2

∂t2
E(z, t) + μ0

∂2

∂t2
PNL(z, t). (8)

By assuming slowly-varying envelope approximation, we
obtain

ENL(t) = − Z0L

2n

d

dt
PNL(t). (9)

Here, L is the interaction length, Z0 ≡ (μ0/ε0)1/2 = 377 �

the vacuum impedance, and n the refractive index of the
medium. In the derivation of this expression, it is assumed
that the refractive index does not depend on frequency, and
the deformation of field waveform due to linear absorption is
neglected.

We use the perturbation method, where x and P are ex-
panded in the order of E as

x = x (1) + x (2) + x (3), (10)

P = P (1) + P (2) + P (3), (11)

and

x (n), P (n) ∝ En (n = 1, 2, 3). (12)

In noncentrosymmetric media, only the second-order terms
are retained since the higher-order terms are smaller in the
perturbation regime. In centrosymmetric media, on the other
hand, the second-order terms vanish.

Corresponding to three parameters, �, q0, and � in
Eq. (1), three types of nonlinearities are introduced into the
equations above. These three are anharmonicity (AH), non-
linear coupling (NC), and nonlinear damping (ND). Details
of them are described in Secs. III and IV.

For numerical evaluation, a single-mode system with
�/� = 0.1 is considered throughout this paper, and the dura-
tion of the incident THz pulses is assumed to be much shorter
than the vibrational period.

C. Fifth-order and seventh-order Raman scattering

Fifth-order and seventh-order Raman scattering pro-
cesses are briefly described here since second-order and
third-order two-dimensional THz spectroscopy have close
correspondence with the fifth-order and seventh-order two-
dimensional Raman spectroscopy.16

The linear equation of motion and the polarization for
a coordinate of an electronically off-resonance Raman active
vibrational mode are expressed as

m

[
d2

dt2
x(t) + 2�

d

dt
x(t) + �2x(t)

]
=

(
∂

∂x
α

)
[E(t)]2

(13)

and

P(t) = NαE(t). (14)
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Here, α is the molecular polarizability. We can see the exact
correspondence with the THz response by replacing α and
[E(t)]2 with p and E(t).

The experimental signal in the fifth-order Raman spec-
troscopy is expressed in terms of the three-time correlation
function

R(3)
α = 〈[[α(t), α(0)], α(−T1)]〉, (15)

in the quantum mechanical description, where α(t) is the
polarizability operator. This correlation function contains in-
formation on the polarizability response function. In the
second-order nonlinear THz spectroscopy, on the other hand,
the observed signal is expressed in terms of the three-time
correlation function

R(3)
μ = 〈[[μ(t), μ(0)], μ(−T1)]〉, (16)

where μ(t) is the electric dipole moment operator. The dy-
namics of polarization and polarizability are not necessarily
the same for a specific material system, but the equivalence
of the theoretical treatments of these two type of nonlinear
spectroscopies implies that a similar type of information is
obtained from them.

There are, however, some differences between these two
types of spectroscopies. When the excitation and probe opti-
cal pulses are sufficiently short, the signal field observed in
the nonlinear THz spectroscopy is proportional to the time
derivative of the nonlinear polarization, which is expressed by
Eq. (16), as described by Eq. (9). In the fifth-order Raman
spectroscopy, on the other hand, observed signals are pro-
portional to the nonlinear polarizability itself when optical
heterodyne detection is used,31, 34, 35 which is expressed by
the polarizability correlation function [Eq. (15)]. In homo-
dyne detection measurements, the observed signals are pro-
portional to the squared magnitude of the polarizability.

A difficulty in fifth-order nonlinear spectroscopy is
that the signals can be very easily contaminated by cas-
cades of third-order processes. Blank et al. pointed out
that all the earlier experimental results26–28 on fifth-order
Raman spectroscopy are dominated by cascaded third-
order processes and no information on the intrinsic fifth-
order response is included.30 Special techniques, such
as optical heterodyning,31, 34, 35 a special phase matching
configuration,32, 33 or a special polarization configuration,51, 52

were introduced to obtain purely fifth-order signals. The
second-order THz spectroscopy does not have this difficulty
since it is the lowest-order nonlinear process.

Although seventh-order Raman spectroscopy and third-
order THz spectroscopy have a relationship similar to that
of fifth-order Raman and second-order THz spectroscopy,
seventh-order Raman scattering signals suffer worse from in-
fluences of lower-order nonlinearities. Cho et al. pointed out
that it is hard to experimentally measure the pure seventh-
order Raman scattering signal without contamination from
cascaded contributions of lower-order responses.53 Further-
more, seventh-order responses, i.e., seventh-order susceptibil-
ities, themselves have contributions of lower order nonlinear-
ities in the system Hamiltonian. This is because interaction of
any order is allowed for Raman-active modes. In contrast, for
third-order THz spectroscopy, especially in centrosymmetric

media, the signal does not suffer from influences of cascaded
lower-order nonlinear processes or internal lower-order non-
linearities.

III. SECOND-ORDER PROCESSES

When parameters in the equation of motion of the sys-
tem, Eq. (1), and the polarization, Eq. (2), are all constants,
the response of the system to the incident field is linear, and
there are no nonlinear phenomena. Nonlinearity of the system
can arise from x dependence of the resonance frequency, �,
the charge, q0, or the damping constant, �. These three cases
correspond to three sources of nonlinearity, i.e., anharmonic-
ity (AH), nonlinear coupling (NC), and nonlinear damping
(ND), respectively. Each case is considered below.

In the first paper on fifth-order Raman spectroscopy,19

only NC was considered as a source of nonlinearity. Later
it was well understood that AH and NC can be the source
of nonlinearity.22 ND has not been studied before. Since the
damping constant can be regarded as the imaginary part of en-
ergy, it can be regarded as a generalization of the AH case. In
general, the three mechanisms coexist in the system, and the
nonlinear response is a sum of their contributions. Simulation
studies on fifth-order Raman response of liquid CS2 and CS2

dissolved in Xe showed that AH and NC mechanisms con-
tribute differently to the nonlinear response.42, 54

A. Anharmonicity

The lowest order anharmonicity is introduced by adding
a third-order term to the harmonic potential function of the
vibrational mode as

V (x) = m

(
1

2
�2x2 + D3

3
x3

)
. (17)

Then the last term in the left-hand side of Eq. (1) changes as

mω2
0x → ∂

∂x
V (x) = m

(
�2x + D3x2

)
. (18)

The procedure of the derivation of expressions in the per-
turbation method is briefly described below. First the vibra-
tional coordinate, x , is expanded in power series of E(t), as in
Eq. (10), up to the second order, and substituted into the equa-
tion of motion, Eq. (1), with a nonlinear term in the potential
expressed by Eq. (18). Then by picking up terms proportional
to the first or the second order of E(t), we obtain equations
for x (1)(t)

d2

dt2
x (1)(t) + 2�

d

dt
x (1)(t) + �2x (1)(t) = q0

m
E(t), (19)

and for x (2)(t)

d2

dt2
x (2)(t) + 2�

d

dt
x (2)(t) + �2x (2)(t) = −D3{x (1)(t)}2.

(20)

From them, solutions for the first- and second-order polariza-
tion are obtained as

P (1)(t) =
∫ ∞

0
dt ′r (t ′)E(t − t ′), (21)

Downloaded 11 Jan 2011 to 130.158.56.102. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



204503-5 Two-dimensional terahertz spectroscopy J. Chem. Phys. 133, 204503 (2010)

P (2)(t) = − m D3

N 2q3
0

∫ ∞

0
dt ′r (t ′){P (1)(t − t ′)}2. (22)

Corresponding to the selective detection of the contribu-
tion of both E1 and E2 to the nonlinear field in the experi-
ments, only cross terms of E1 and E2 are picked up from the
righ-hand side of Eq. (22). Then we obtain the expression for
the second-order polarization as

P (2)(t) = −2m D3

N 2q3
0

∫ ∞

0
dt ′

∫ ∞

0
dt1

∫ ∞

0
dt2

× r (t ′)r (t1)r (t2)E2(t − t ′ − t1)E2(t − t ′ − t2 + T1).

(23)

When the incident electric field can be regarded as a delta
function

E2(t) = E0δ(t). (24)

Equation (23) is reduced to

P (2)
AH(T1, t) = −2m D3

N 2q3
0

E2
0

∫ t

0
dt ′r (t ′)r (t − t ′)r (t + T1 − t ′).

(25)

Because of the exact theoretical correspondence between the
second-order THz response and the fifth-order Raman re-
sponse, the fifth-order Raman response function, R(5)

AH(T1, t),
is expressed, under the current treatment, as

R(5)
AH(T1, t) ∝ −

∫ t

0
dt ′rR(t ′)rR(t − t ′)rR(t + T1 − t ′). (26)

Here rR(t) is the Raman response function of the relevant
mode. This expression agrees with Eq. (4.9) of Ref. 22, which
describes the fifth-order Raman response obtained using the
quantum mechanical theory. Its analytical expression has also
been given.22 According to Eq. (9), the second-order field is
emitted from the second-order polarization as

E (2)
AH(T1, t) = − Z0 L

2n

d

dt
P (2)

AH(T1, t)

∝ d

dt

∫ t

0
dt ′r (t ′)r (t − t ′)r (t + T1 − t ′). (27)

Numerical calculations for P (2)
AH(T1, t), which is equiva-

lent to R(5)
AH(T1, t), and E (2)

AH(T1, t) are shown in Figs. 2(a) and
2(b). The damping constant is set at �/� = 0.1 for the calcu-
lations throughout this paper.

B. Nonlinear coupling

Another source of nonlinearity is a nonlinear dependence
of the polarization, p, on the coordinate. This type of nonlin-
earity is referred to as “nonlinear coupling” since this is the
nonlinearity in the coupling between the vibrational mode and
the radiation field. In the fifth-order Raman response, nonlin-
ear coupling is caused by coordinate dependence of transition
dipole moment (non-Condon effect), which is important for

0 20
t

10
0

10

20

T 1

0 2010
0

10

20

0 2010
0

10

20

(a)

(c)

(b)

Ω

Ω
1− 1

tΩ

T 1
Ω

tΩ

FIG. 2. Two-dimensional profiles of second-order signals for a system with
an anharmonic potential and nonlinear damping. (a) Second-order polar-
ization for an anharmonic potential, which corresponds to the response
function for the fifth-order Raman scattering with an anharmonic potential.
(b) Second-order THz field for an anharmonic potential. (c) Second-order
THz field for nonlinear damping. Each image is normalized to its maximum
magnitude.

the description of ultrafast spectroscopic measurements.55, 56

A higher-order term is introduced to the dipole moment as

p = q0x + 1
2 q1x2. (28)

Then the right-hand side of Eq. (1) becomes as

q0 E →
(

∂

∂x
p

)
E = (q0 + q1x)E, (29)

and the polarization expressed by Eq. (2) also comes to con-
tain a second-order term accordingly.

By using the perturbational method as described above,
we obtain

x (1)(t) = 1

Nq0

∫ ∞

0
dt ′r (t ′)E(t − t ′), (30)

x (2)(t) = q1

Nq2
0

∫ ∞

0
dt ′r (t ′)x (1)(t − t ′)E(t − t ′), (31)

and

P (2)(t) = Nq0x (2)(t) + 1

2
Nq1[x (1)(t)]2

= q1

Nq2
0

∫ ∞

0
dt ′

∫ ∞

0
dt ′′r (t ′)r (t ′′)

× E(t − t ′)
[

E(t − t ′ − t ′′) + 1

2
E(t − t ′′)

]
. (32)
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The second-order polarization consists of two contributions.
The first and second terms in Eq. (32) correspond to the
effect of nonlinearity in the excitation process of the vibra-
tional mode and that in the emission process of THz waves,
respectively.

When picking up only the cross term of E1 and E2, we
obtain

P (2)(t) = q1

Nq2
0

∫ ∞

0
dt ′

∫ ∞

0
dt ′′r (t ′)r (t ′′)

× [E2(t − t ′)E2(t + T1 − t ′ − t ′′)

+ E2(t + T1 − t ′)E2(t − t ′ − t ′′)

+ E2(t − t ′)E2(t + T1 − t ′′)]. (33)

When the incident electric field is regarded as a delta function,
as expressed in Eq. (24), we obtain

P (2)
NC(T1, t) = q1

Nq2
0

E2
0 r (t) [r (T1) + r (t + T1)] . (34)

This corresponds to the fifth-order Raman response function
for nonlinear coupling

R(5)
NC(T1, t) ∝ rR(t) [rR(T1) + rR(t + T1)] . (35)

This expression agrees with that obtained based on a quantum
mechanical treatment, which appears in Eq. (4.10) of Ref. 22
and in the first term of Eq. (3.16) of Ref. 19. The second-order
THz field emitted is expressed as

E (2)
NC(T1, t) ∝ − d

dt
{r (t) [r (T1) + r (t + T1)]} . (36)

Numerical calculations for P (2)
NC(T1, t) and E (2)

NC(T1, t) are
shown in Fig. 3.

C. Nonlinear damping

A third source of nonlinearity is a dependence of the
damping constant on the coordinate, as expressed by

� → � + �1x . (37)
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20

0 2010
0
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20

(a) (b)

1− 1

tΩ

T 1
Ω

tΩ

FIG. 3. Second-order two-dimensional signals for systems with nonlinear
coupling. (a) Second-order polarization for nonlinear coupling, which cor-
responds to the response function for the fifth-order Raman scattering with
nonlinear coupling. (b) Second-order THz field for the nonlinear coupling
case. Each image is normalized to its maximum magnitude.

Using the perturbation method, we obtain

P (1)(t) =
∫ ∞

0
dt ′r (t ′)E(t − t ′) (38)

and

P (2)(t) = − m�1

N 2q3
0

d

dt

∫ ∞

0
dt ′r (t ′){P (1)(t − t ′)}2. (39)

This expression shows that the second-order polarization of
ND case is proportional to the time derivative of the second-
order polarization of the AH case. By picking up only the
cross term of E1 and E2, we obtain

P (2)(t) = −2m�1

N 2q3
0

d

dt

∫ ∞

0
dt ′

∫ ∞

0
dt1

∫ ∞

0
dt2

× r (t ′)r (t1)r (t2)E2(t − t ′ − t1)E2(t − t ′ − t2 + T1).

(40)

When delta function incident THz pulses are assumed,
this equation becomes

P (2)
ND(T1, t) = −2m�1

N 2q3
0

E2
0

d

dt

×
∫ t

0
dt ′r (t ′)r (t − t ′)r (t + T1 − t ′). (41)

This is proportional to E (2)
AH(T1, t). The emitted nonlinear field

is expressed as

E (2)
ND(T1, t) ∝ d2

dt2

∫ t

0
dt ′r (t ′)r (t − t ′)r (t + T1 − t ′). (42)

A numerical result for E (2)
ND(T1, t) is shown in Fig. 2(c).

IV. THIRD-ORDER PROCESSES

In this section, two-dimensional signal profiles of third-
order nonlinear spectroscopy in centrosymmetric media are
described. Third-order nonlinear field is proportional to the
third power of incident THz field. Three incident pulses
can be used in general for third-order time-resolved mea-
surements. Then the signals are observed as a function of
three temporal intervals among the incident THz pulses and
the probe, leading to three-dimensional spectroscopy. In this
study, however, we limit discussions to measurements with
two incident THz pulses for simplicity. With two incident
pulses, the third-order signals consist of two contributions in
collinear geometry. One is proportional to the first incident
field and to the square of the second incident field. This cor-
responds to a sequence of three pulses at times −T1, 0, and 0,
which is referred to as (T1, 0, t) sequence in the following by
using time intervals between pulses. The other contribution is
that proportional to the second incident field and to the square
of the first incident field, which is referred to as (0, T1, t) se-
quence. These pulse timings are depicted in Fig. 4. Separation
of these two contributions in experiments is, in principle, pos-
sible since the dependence of the signal on the two incident
fields are different. When, for example, the sign of the field of
the second incident pulse is inverted, the sign of the (0, T1, t)
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T1 t

probenonlinear 
field

E1 E2 E2

T1 t

probenonlinear 
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E1 E1
E2

(a)

(b)

FIG. 4. Two contributions for third-order two-dimensional signals in
collinear geometry. (a) (T1, 0, t) sequence. (b) (0, T1, t) sequence.

contribution is inverted, but that of the (T1, 0, t) contribution
does not.

In the following three sources of third-order nonlinear-
ity, AH, NC, and that of two-level systems, are considered.
In either case, the nonlinearity order that is introduced in the
second-order nonlinearity case is not allowed because of the
inversion symmetry of the system. This is markedly differ-
ent from the case of seventh-order Raman spectroscopy. In
third-order THz spectroscopy, the signals exhibit only the fea-
tures of the lowest-order allowed nonlinearity, whereas in the
seventh-order Raman spectroscopy, the signals are inevitably
contaminated by influences of lower-order nonlinearities of
the system.

A. Anharmonicity

In centrosymmetric media, the lowest-order anharmonic-
ity is expressed by a fourth-order term in the potential of the
vibrational mode as

V (x) = m

(
1

2
�2x2 + D4

4
x4

)
. (43)

Then the last term in the left-hand side of Eq. (1) changes as

mω2
0x → ∂

∂x
V (x) = m

(
�2x + D4x3) . (44)

The equation for x (1)(t) is the same as Eq. (19). For x (3)(t) we
obtain

d2

dt2
x (3)(t) + 2�

d

dt
x (3)(t) + �2x (3)(t) = −D4{x (1)(t)}3.

(45)

Solutions for the first- and third-order polarization are ob-
tained as

P (1)(t) =
∫ ∞

0
dt ′r (t ′)E(t − t ′), (46)

P (3)(t) = − m D4

N 3q4
0

∫ ∞

0
dt ′r (t ′){P (1)(t − t ′)}3. (47)

By assuming delta-function incident THz pulses, the con-
tributions of (T1, 0, t) and (0, T1, t) sequences to the third-
order polarization are obtained as

P (3)
AH(T1, 0, t) = −3m D4

N 3q4
0

E3
0

×
∫ t

0
dt ′r (t ′)[r (t − t ′)]2r (t + T1 − t ′) (48)

and

P (3)
AH(0, T1, t) = −3m D4

N 3q4
0

E3
0

×
∫ t

0
dt ′r (t ′)r (t − t ′)[r (t + T1 − t ′)]2,

(49)

respectively.
Contributions of the (T1, 0, t) and (0, T1, t) sequences to

the third-order THz field are expressed as

E (3)
AH(T1, 0, t) ∝ d

dt

∫ t

0
dt ′r (t ′)[r (t − t ′)]2r (t + T1 − t ′)

(50)

and

E (3)
AH(0, T1, t) ∝ d

dt

∫ t

0
dt ′r (t ′)r (t − t ′)[r (t + T1 − t ′)]2.

(51)

Numerical calculation results for the third-order THz field are
shown in Fig. 5. Panels (a) and (b) show the contributions
of (T1, 0, t) and (0, T1, t) sequences, respectively. Panel (c)
shows the sum of (a) and (b), which is achieved when the
two incident THz pulses have the same sign and amplitude.
Panel (d) shows the (T1, 0, t) contribution subtracted by the
(0, T1, t) contribution, which should be observed when the
field of the second incident THz pulse is inverted.

B. Nonlinear coupling

Third-order nonlinearity in the coupling between radia-
tion and the vibrational mode is expressed by

p = q0x + 1
3 q2x3. (52)

Then the right-hand side of Eq. (1) becomes

q0 E →
(

∂

∂x
p

)
E = (q0 + q2x2)E . (53)

The third-order polarization in this case is obtained as

P (3)(t) = q2

N 2q3
0

∫ ∞

0
dt1

∫ ∞

0
dt2

∫ ∞

0
dt3r (t1)r (t2)r (t3)

× E(t − t1)

[
E(t − t1 − t2)E(t − t1 − t3)

+ 1

3
E(t − t2)E(t − t3)

]
. (54)
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FIG. 5. Third-order THz field for a system with anharmonicity. (a) Contri-
bution of (T1, 0, t) sequence. (b) Contribution of (0, T1, t) sequence. (c) Sum
of (a) and (b). (d) Difference of (a) and (b).

By assuming delta-function excitation, the contributions
of (T1, 0, t) and (0, T1, t) sequences to the third-order polar-
ization are given by

P (3)
NC(T1, 0, t) = q2

N 2q3
0

E3
0 r (t + T1) [r (t)]2 (55)

and

P (3)
NC(0, T1, t) = q2

N 2q3
0

E3
0 r (t){[r (T1)]2 + [r (t + T1)]2},

(56)

respectively.
Third-order THz field is, accordingly, expressed as

E (3)
NC(T1, 0, t) ∝ − d

dt
r (t + T1) [r (t)]2 (57)

and

E (3)
NC(0, T1, t) ∝ − d

dt
r (t){[r (T1)]2 + [r (t + T1)]2}. (58)

Numerical results for the third-order THz field are shown in
Fig. 6.

C. Two-level systems

The results for a two-level (TL) system are briefly de-
scribed here for comparison. In the discussion of photon
echoes,57 which is a third-order nonlinear optical process, and

0 2010
0

10

20

0 2010
0

10

20

0 2010
0

10

20

0 2010
0

10

20

(a) (b)

0.45− 0.45 0.84− 0.84

(c) (d)

1− 1 0.75− 0.75

T 1
Ω

T 1
Ω

tΩ tΩ

tΩtΩ

FIG. 6. Third-order THz field for a system with nonlinear coupling. (a)
Contribution of (T1, 0, t) sequence. (b) Contribution of (0, T1, t) sequence.
(c) Sum of (a) and (b). (d) Difference of (a) and (b).

Raman echoes,58 which is a seventh-order Raman process,
the nonlinearity is usually assumed to originate from the two-
level nature of the systems. Two level systems have a purely
quantum mechanical nature, which is in contrast to the present
study, where weak nonlinearities are introduced into a classi-
cal oscillator.

Expressions for third-order polarization in two-level sys-
tems can be easily derived based on the optical Bloch equa-
tions of the system.59 For delta-function excitations, the con-
tributions of (T1, 0, t) and (0, T1, t) sequences are expressed
as

P (3)
TL (T1, 0, t)

= −8Nμ

(
μE0

¯

)3

exp [−�(T1 + t)] cos �T1 sin � t (59)

and

P (3)
TL (0, T1, t) = −8Nμ

(
μE0

¯

)3

exp (−T1/τ − �t) sin �t.

(60)

Here, μ is the transition dipole moment and τ is the lifetime of
the upper level population. The lifetime satisfies the condition

1

τ
≤ 2�. (61)
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FIG. 7. Third-order THz field for a two-level system. (a) Contribution of
(T1, 0, t) sequence. (b) Contribution of (0, T1, t) sequence. (c) Sum of (a)
and (b). (d) Difference of (a) and (b).

Expressions for the third-order THz field are obtained by dif-
ferentiating Eqs. (59) and (60) by t . Numerical results of the
THz field are shown in Fig. 7, where the population lifetime
is assumed as 1/τ = 2�.

V. DISCUSSION

From the results described above, it is seen that the
second-order and third-order 2D THz signals have specific
features depending on the order and the source of nonlinear-
ity. The second-order 2D signals shown in Fig. 2(b) for the
AH case, Fig. 2(c) for the ND case, and Fig. 3(b) for the NC
case exhibit characteristic features of these three origins of
nonlinearity. Even when the whole 2D signal is not obtained,
differences can be seen from a small subset of data. For ex-
ample, on the t = 0 line, sinusoidal oscillations are seen in
the NC signal, whereas the signals vanish for the AH and ND
cases. The traces on the T1 = 0 line also show marked differ-
ences among them.

The third-order 2D signals depicted in Figs. 5–7 show
more diverse features depending on the origin of nonlin-
earity and incident THz pulse sequence. It is seen that
signals expected based on the present classical model differ
significantly from those of the quantum mechanical two-level
model. Consideration on the origin of nonlinearity should
be important especially for the understanding of third-order

signals in actual systems. There are some similarities seen be-
tween the third-order 2D profiles of the AH case and those of
TL systems. This is understood by regarding the TL systems
as those with an extremely large anharmonicity.

The present study is focused on discussion of the gen-
eral theoretical framework for the analysis of 2D THz
spectroscopy, and expressions and numerical calculations are
limited to a single mode system described by a Lorentzian
model. Extensions, however, of the present model in several
directions are necessary for understanding of experimental re-
sults obtained from a variety of actual systems. Some of them
are easy and straightforward. Characterization of the inhomo-
geneity, i.e., the distribution of resonance frequency among
molecules, has been a major concern of nonlinear spec-
troscopy, and it has been shown that fifth-order 2D Raman
spectroscopy can clarify it, which is not accessible by linear
spectroscopic measurements.19, 20 Echo phenomena in third-
order nonlinear processes in inhomogeneous systems are also
of interest.58 Study of nonlinear coupling between different
vibrational modes is another important topic, which has also
been reported using fifth-order Raman spectroscopy.21, 29 For
this purpose Fourier transform analysis of the time-domain
two-dimensional signals will be useful.29 Incorporating inho-
mogeneity and mode-coupling effects in multimode systems
into the present model should clarify the ability of 2D THz
spectroscopy on these subjects.

Numerical calculations have been presented only for the
response for delta-function incident THz pulses in this study.
For the analysis of actual experiments, it is required to take ac-
count of a finite pulse duration since currently available THz
pulses are usually not much shorter than the oscillation pe-
riod of relevant vibrations. The line shape of the vibrational
mode is Lorentzian in the present study, while those of ac-
tual modes can be different from a pure Lorentzian function.
All the nonlinear responses, however, in the present study are
expressed in terms of the linear response function of polar-
ization, which is the Fourier transform of the electric sus-
ceptibility. Thus systems with any line shapes can be ana-
lyzed in the current theoretical framework. It is also possi-
ble to include nonLorentzian effects by introducing the gen-
eralized Langevin equation,25 or other type of equation of
motion. Finally, molecular dynamics simulations38–45 will be
necessary and powerful for understanding of dynamics in
complex systems, such as liquids, in relation to the nonlin-
ear response. Recently, Yagasaki and Saito60, 61 have reported
simulations on 2D infrared response of water. They simu-
lated conventional three-pulse experiments, where the non-
linear polarization is not time-resolved. Although main fea-
tures in the observed response lie in the midinfrared region,
responses in the THz region are also included in the cal-
culation. Comparison between 2D response described in the
present paper and that of the conventional type of measure-
ments will be helpful in understanding the dynamics of the
system.

Jansen and Mukamel have shown that multitime nonlin-
ear response functions can be expanded in terms of products
of lower-order correlation functions.47 It can easily be seen
that the present study is consistent with their results in the
classical limit.
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VI. CONCLUSION

A general theoretical framework of two-dimensional
time-domain second-order and third-order terahertz spec-
troscopy has been described. The model is a classical and phe-
nomenological one with weak nonlinearities. Three types of
nonlinearity sources, anharmonicity, nonlinear coupling, and
nonlinear damping, were considered. The second-order THz
spectroscopy has an exact correspondence to fifth-order off-
resonance Raman spectroscopy, and it has been shown that
the present treatment gives exactly the same results as of
the quantum mechanical theory described by Tanimura and
Mukamel19 and Okumura and Tanimura.22 General expres-
sions for the nonlinear signal have been obtained for a single-
mode system, and numerical calculations for delta-function
incident terahertz pulses were shown. For the third-order sig-
nal, two-level systems were also considered for comparison.
Contributions of two types of incident pulse sequences have
been studied separately in the third-order signals. Profiles of
the two-dimensional THz signals were found to depend on
the origin and order of the nonlinearity and also on the pulse
sequence. The results show that the second-order and third-
order two-dimensional signal features can clarify the nature of
the system which is not accessible using linear spectroscopy.

1J. Hebling, G. Almási, and I. Z. Kozma, Opt. Express 10, 1161 (2002).
2K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, Appl. Phys.
Lett. 90, 171121 (2007).

3M. Jewariya, M. Nagai, and K. Tanaka, J. Opt. Soc. Am. B 26, A101
(2009).

4C. Luo, K. Reimann, M. Woerner, and T. Elsaesser, Appl. Phys. A 78, 435
(2004).

5P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog,
Phys. Rev. Lett. 96, 187402 (2006).

6H. Wen, M. Wiczer, and A. M. Lindenberg, Phys. Rev. B 78, 125203
(2008).

7M. C. Hoffmann, J. Hebling, H. Y. H. amd K.-L. Yeh, and K. A. Nelson,
Phys. Rev. B 79, 161201 (2009).

8M. C. Hoffmann, J. Hebling, H. Y. H. amd K.-L. Yeh, and K. A. Nelson, J.
Opt. Soc. Am. B 26, A29 (2009).

9M. C. Hoffmann and D. Turchinovich, Appl. Phys. Lett. 96, 151110 (2010).
10M. Jewariya, M. Nagai, and K. Tanaka, “Ladder climbing on the anhar-

monic intermolecular potential in amino acids microcrystal with intense
monocycle THz pulse,” Phys. Rev. Lett. (in press).

11I. Katayama, H. Aoki, J. Takeda, H. Shimosato, M. Ashida, R. Kinjo,
I. Kawayama, M. Tonouchi, M. Nagai, and K. Tanaka, Proceedings of the
CLEO/QELS2010, San Jose, CA, 16–22 May 2010 (IEEE, Los Alamos,
2010), Paper No. CTuBB1.

12M. D. Levenson and S. Kano, Introduction to Nonlinear Laser Spec-
troscopy (Academic, New York, 1989).

13S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford
University Press, New York, 1999).

14P. Hamm, M. Lim, and R. M. Hochstrasser, J. Phys. Chem. B 102, 6123
(1998).

15M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, London,
2009).

16K. Okumura and Y. Tanimura, Chem. Phys. Lett. 295, 298 (1998).

17Y. Suzuki and Y. Tanimura, J. Chem. Phys. 128, 164501 (2008).
18K. J. Kubarych, C. J. Milne, and R. J. D. Miller, Int. Rev. Phys. Chem. 22,

497 (2003).
19Y. Tanimura and S. Mukamel, J. Chem. Phys. 99, 9496 (1993).
20K. Okumura and Y. Tanimura, Chem. Phys. Lett. 277, 159 (1997).
21K. Okumura and Y. Tanimura, Chem. Phys. Lett. 278, 175 (1997).
22K. Okumura and Y. Tanimura, J. Chem. Phys. 107, 2267 (1997).
23V. Chernyak and S. Mukamel, J. Chem. Phys. 108, 5812 (1998).
24K. Okumura, A. Tokmakoff, and Y. Tanimura, J. Chem. Phys. 111, 492

(1999).
25J. Kim and T. Keyes, Phys. Rev. E 65, 061102 (2002).
26K. Tominaga and K. Yoshihara, J. Chem. Phys. 104, 1159 (1996).
27K. Tominaga and K. Yoshihara, J. Chem. Phys. 104, 4419 (1996).
28A. Tokmakoff and G. R. Fleming, J. Chem. Phys. 106, 2569 (1997).
29A. Tokmakoff, M. J. Lang, D. S. Larsen, G. R. Fleming, V. Chernyak, and

S. Mukamel, Phys. Rev. Lett. 79, 2702 (1997).
30D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 111, 3105

(1999).
31O. Golonzka, N. Demirdöven, M. Khalil, and A. Tokmakoff, J. Chem.

Phys. 113, 9893 (2000).
32D. A. Blank, L. J. Kaufman, and G. R. Fleming, J. Chem. Phys. 113, 771

(2000).
33L. J. Kaufman, D. A. Blank, and G. R. Fleming, J. Chem. Phys. 114, 2312

(2000).
34K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, J. Chem.

Phys. 116, 2016 (2002).
35L. J. Kaufman, J. Heo, L. D. Ziegler, and G. R. Fleming, Phys. Rev. Lett.

88, 207402 (2002).
36C. J. Milne, Y. L. Li, T. l. C. Jansen, L. Huang, and R. J. D. Miller, J. Phys.

Chem. B 110, 19867 (2006).
37Y. L. Li, L. Huang, R. J. D. Miller, T. Hasegawa, and Y. Tanimura, J. Chem.

Phys. 128, 234507 (2008).
38S. Saito and I. Ohmine, J. Chem. Phys. 108, 240 (1998).
39T. l. C. Jansen and J. G. Snijders, J. Chem. Phys. 113, 307 (2000).
40R. A. Denny and D. R. Reichman, Phys. Rev. Lett. 63, 065101 (2001).
41S. Saito and I. Ohmine, Phys. Rev. Lett. 88, 207401 (2002).
42S. Saito and I. Ohmine, J. Chem. Phys. 119, 9073 (2003).
43T. Hasegawa and Y. Tanimura, J. Chem. Phys. 125, 074512 (2006).
44S. Saito and I. Ohmine, J. Chem. Phys. 125, 084506 (2003).
45R. DeVane, B. Space, T. l. C. Jansen, and T. Keyes, J. Chem. Phys. 125,

234501 (2006).
46C. Dellago and S. Mukamel, Phys. Rev. E 67, 035205 (2003).
47T. l. C. Jansen and S. Mukamel, J. Chem. Phys. 119, 7979 (2003).
48S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka, Phys. Rev. A 29,

2286 (1984).
49H. Nakatsuka, A. Wakamiya, K. M. Abedin, and T. Hattori, Opt. Lett. 18,

832 (1993).
50T. Fuji, C. Jordan, T. Yoda, K. Kondo, T. Hattori, and H. Nakatsuka, Jpn. J.

Appl. Phys. 39, 3429 (2000).
51T. l. C. Jansen, J. G. Snijders, and K. Duppen, J. Phys. Chem. B 110, 19867

(2006).
52K. J. Kubarych, C. J. Milne, and R. J. D. Miller, Chem. Phys. Lett. 369,

635 (2003).
53M. Cho, D. A. Blank, J. Sung, K. Park, S. Hahn, and G. R. Fleming, J.

Chem. Phys. 112, 2082 (2000).
54A. Ma and R. Stratt, J. Chem. Phys. 119, 8500 (2003).
55Y. Tanimura and S. Mukamel, J. Opt. Soc. Am. B 10, 2263 (1993).
56K. Ishii, S. Takeuchi, and T. Tahei, J. Phys. Chem. 112, 2219 (2008).
57A. Tokmakoff and M. D. Fayer, Acc. Chem. Res. 28, 437 (1995).
58R. F. Loring and S. Mukamel, J. Chem. Phys. 83, 2116 (1985).
59Y. R. Shen, The Principle of Nonlinear Optics (Wiley, New York, 1984).
60T. Yagasaki and S. Saito, J. Chem. Phys. 128, 154521 (2008).
61T. Yagasaki and S. Saito, Acc. Chem. Res. 42, 1250 (2009).

Downloaded 11 Jan 2011 to 130.158.56.102. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2734374
http://dx.doi.org/10.1063/1.2734374
http://dx.doi.org/10.1364/JOSAB.26.00A101
http://dx.doi.org/10.1007/s00339-003-2400-5
http://dx.doi.org/10.1103/PhysRevLett.96.187402
http://dx.doi.org/10.1103/PhysRevB.78.125203
http://dx.doi.org/10.1103/PhysRevB.79.161201
http://dx.doi.org/10.1364/JOSAB.26.000A29
http://dx.doi.org/10.1364/JOSAB.26.000A29
http://dx.doi.org/10.1063/1.3386542
http://dx.doi.org/10.1021/jp9813286
http://dx.doi.org/10.1016/S0009-2614(98)00968-3
http://dx.doi.org/10.1063/1.2897982
http://dx.doi.org/10.1080/0144235031000121544
http://dx.doi.org/10.1063/1.465484
http://dx.doi.org/10.1016/S0009-2614(97)00832-4
http://dx.doi.org/10.1016/S0009-2614(97)00942-1
http://dx.doi.org/10.1063/1.474604
http://dx.doi.org/10.1063/1.475992
http://dx.doi.org/10.1063/1.479383
http://dx.doi.org/10.1103/PhysRevE.65.061102
http://dx.doi.org/10.1063/1.470773
http://dx.doi.org/10.1063/1.471194
http://dx.doi.org/10.1063/1.473361
http://dx.doi.org/10.1103/PhysRevLett.79.2702
http://dx.doi.org/10.1063/1.479591
http://dx.doi.org/10.1063/1.1330236
http://dx.doi.org/10.1063/1.1330236
http://dx.doi.org/10.1063/1.481851
http://dx.doi.org/10.1063/1.1337042
http://dx.doi.org/10.1063/1.1429961
http://dx.doi.org/10.1063/1.1429961
http://dx.doi.org/10.1103/PhysRevLett.88.207402
http://dx.doi.org/10.1021/jp062063v
http://dx.doi.org/10.1021/jp062063v
http://dx.doi.org/10.1063/1.2927311
http://dx.doi.org/10.1063/1.2927311
http://dx.doi.org/10.1063/1.475375
http://dx.doi.org/10.1063/1.481795
http://dx.doi.org/10.1103/PhysRevLett.88.207401
http://dx.doi.org/10.1063/1.1609984
http://dx.doi.org/10.1063/1.2217947
http://dx.doi.org/10.1063/1.2232254
http://dx.doi.org/10.1063/1.2403129
http://dx.doi.org/10.1103/PhysRevE.67.035205
http://dx.doi.org/10.1063/1.1610437
http://dx.doi.org/10.1103/PhysRevA.29.2286
http://dx.doi.org/10.1364/OL.18.000832
http://dx.doi.org/10.1143/JJAP.39.3429
http://dx.doi.org/10.1143/JJAP.39.3429
http://dx.doi.org/10.1021/jp064795t
http://dx.doi.org/10.1016/S0009-2614(03)00039-3
http://dx.doi.org/10.1063/1.480777
http://dx.doi.org/10.1063/1.480777
http://dx.doi.org/10.1063/1.1611873
http://dx.doi.org/10.1364/JOSAB.10.002263
http://dx.doi.org/10.1021/ar00059a001
http://dx.doi.org/10.1063/1.449302
http://dx.doi.org/10.1063/1.2903470
http://dx.doi.org/10.1021/ar900007s

