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Abstract

The lifetime of an electronic Floquet state in a semiconductor Wannier-Stark ladder (WSL)

driven by an intense monochromatic THz wave is examined based on the R-matrix Floquet theory,

in which an excess density of state (DOS) corresponding to the lifetime is calculated. It is revealed

that the dynamic localization (DL) characteristic of this system is unstable against Fano resonance

(FR)-like inter-miniband decay mechanism caused by THz-mediated ac-Zener tunneling; in this

study, this is termed as dynamic Fano resonance (DFR). The DFR is considered to be a new FR

mechanism characterized by both tunable ac-ZT coupling and coexistence with shape resonance.

The result obtained here is in sharp contrast with the conventional understanding without the

introduction of DFR, in which the DL is very stable such that its lifetime is comparable to or

greater than that of the associated WSL. It is found that the DFR mechanism generally becomes

more dominant with an increase in the strength of the bias field. Further, we discuss the observation

that the spectral pattern of the excess DOS is more involved for a single-photon resonant transition,

namely, Ω = ω, than that for a two-photon resonant transition, namely, Ω = 2ω, where Ω and ω

represent a Bloch frequency and a THz frequency, respectively. In addition, the criterion for the

applicability of the DFR to the present system is also obtained.
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I. INTRODUCTION

The advent of inexpensive intense THz light sources such as molecular THz lasers and

free-electron lasers [1] has enabled innovative research in the areas of high-power THz ex-

citation of semiconductors and the relevant coherent control of quantum dynamics [2]. A

THz wave having a peak intensity of the order of hundreds of kV/cm has recently been

demonstrated using a pulsed laser [3, 4]. It has been found that the irradiation of a peri-

odically oscillating THz wave causes photon-mediated tunneling in quantum wells (QWs),

superlattices (SLs), and Wannier-Stark ladders (WSLs). In particular, the application of

an appropriately controlled periodic drive to these systems brings quantum transport and

diffusion to an almost complete stop [5]. In THz-driven SLs and WSLs, the latter of which

are also called as dynamic WSLs (DWSLs), such spatial localization, called as dynamic lo-

calization (DL), is characterized by the collapse of quasienergy minibands [6, 7]. It has been

found that DL in the DWSL leads to the formation of sharp peaks in the optical spectra,

and these are therefore more enhanced than or comparable to those in the corresponding

WSL (without THz driving) [8, 9]. In addition, it is well known that the DWSL problem

is analogous to the Hofstadter problem for the energy spectra of a Bloch electron under a

static magnetic field [10]. In asymmetric double QWs, the phenomenon termed coherent

destruction of tunneling has been discussed [11, 12], in which tunneling is destroyed in a

manner similar to that by DL, and further its relation with DL is understood from the view-

point of group theory and the Landau-Zener problem [13]. Further, DL has been discussed

in double-quantum-dot molecules [14] and one-dimensional lattices under the influence of ac

electric and magnetic fields [15].

In addition to semiconductor systems, DL has also been extensively studied from the

viewpoint of driven quantum tunneling and coherent control in systems such as optical SLs

[16], atomic hyperfine and Zeeman-level structures [17–19], spin systems [20], and quantum

chaos [21]. Further the concept of DL has recently been extended to trapped atoms in Bose-

Einstein condensates [22], Cooper pairs in Josephson qubits [23], and correlated electron

systems [24].

In this study, we focus on DL from the viewpoint of its stability in the intense region

of the THz field. To the best of our knowledge, there have been no studies on this issue

except for Ref. [21]. According to some existing theoretical studies based on the lowest
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two-miniband tight-binding model [25, 26], even if the strength of the THz wave (Fac)

increases, miniband collapse is still observed, although ac-Zener tunneling (ac-ZT) across

photon sidebands (PSBs) corresponding to different minibands becomes more significant,

and this results in pronounced anticrossings. Therefore, it is considered that DL would

retain a stable Floquet state and would be only minimally affected by ac-ZT. However,

as Fac is enhanced to the intense region of the order of hundreds of kV/cm, it can be

hypothesized that a large number of PSBs contribute to this coupling, invalidating the

conventional interpretation mentioned above. Further, state-of-the-art THz light sources

that can realize such intensities have already been produced [3, 4], as mentioned above.

Based on the ac-ZT-free Houston-Floquet picture [25, 26], quasienergies of a single-

electron DWSL form a manifold structure labeled as (b, j), where b and j represent the

indices of a miniband and a PSB, respectively. In particular, for the concerned DL, the

(b, j) level is usually considered to be discrete. In fact, because of dc-Zener tunneling (dc-

ZT) arising from an applied bias (with strength F0), these DL levels would more or less

incur shape resonance (SR) decay, although only the (1, j) level can still be approximately

considered to be discrete; the SR width broadens as b increases. Figure 1 shows the manifold

structure of the DL levels, where each level is shaded, indicating the SR continuum. Here,

it should be noted that because of ac-ZT coupling, the (approximately discrete) parent DL

band of (1, 0) with quasienergy E likely interacts with degenerate (SR-broadened) replicas

of (b > 1, j < 0), leading to instability. According to a simple perturbation picture, the

parent band with j = 0 is believed to be predominantly coupled with an adjacent PSB with

|j| = 1, and higher-order interactions with |j| ≥ 2 generally assume greater importance with

an increase in Fac. Here, this new mechanism is termed dynamic Fano resonance (DFR)

because it is similar to the conventional Fano effect [27] that arises from static couplings,

for instance, an electron-electron interaction in a helium atom [28] and an electron-phonon

coupling in a heavily doped p-type silicon crystal [29]. Unlike in the case of such static

couplings, the strength of the ac-ZT coupling for the DFR can be tuned by changing Fac

and the THz frequency; in the present DWSL problem, the Bloch frequency is set to be

equal to an integer multiple of the THz frequency. Therefore, it is believed that the DFR

will provide a new possibility for the coherent control of both the spectral intensity and

the profile in DWSL. In addition, the DFR effect is rather similar to the laser-induced con-

tinuum structure [30] that has recently been applied to strongly interacting Bose-Einstein
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condensates in an ultracold atomic system as an optical Feshbach effect [31–33].

Considering the DFR, the DWSL problem reduces to a multichannel scattering (MCS)

problem. In this study, the MCS states are numerically solved based on the R-matrix Floquet

theory (RFT) [34], and we attempt to find a complete solution, namely, a non-approximated

solution, for the single electron DWSL problem within numerical round-off inaccuracy. By

evaluating the excess density of state (DOS) [35–38] of DWSL, it is demonstrated that the

DL band (1, 0) is really unstable in a certain region of THz intensity, as shown later. The

excess DOS is an important physical quantity because it is associated with the lifetime of

the concerned resonance state, and further, it provides the initial characterization for under-

standing a more complicated problem, for instance, the problem of the transient interband

coherent dynamics of a THz-driven semiconductor DWSL. Obviously, the MCS problem in

relation to DFR has not been adequately studied within the framework of the conventional

tight-binding method.

Below, some recent investigations related to the present study are briefly described and

the differences among them are clarified. First, in Ref. [21], the MCS problem of a fractional

DWSL for modeled optical SLs, and not for semiconductor SLs, was analyzed by means of

the Floquet-Bloch method. Quasienergy resonance structures were examined by solving the

associated non-Hermitian eigenvalue problem with the Siegert boundary conditions, unlike

in the present RFT method. However, this study did not focus on the DFR of DL states.

Furthermore, the abovementioned Floquet-Bloch method is difficult to apply in its original

form to the DWSL problem beyond a single-particle approximation because a Bloch momen-

tum is no longer a good quantum number for more complicated problems, for example, of a

DWSL exciton. In contrast, recently, the RFT method has been straightforwardly applied

to the MCS problem of the THz-driven excitonic DWSL [39]. For the study of a DWSL ex-

citon, Ref. [40] used the terminology of DFR in a different sense in which the THz wave was

so weak that ac-ZT was of no importance, and hence, the Fano resonance (FR) was caused

simply by a Coulomb interaction. In addition, the nonlinear Fano effect was discussed in

semiconductor QWs and quantum dots in Refs. [41] and [42], respectively, where the FR

arising from static couplings was probed in an optically nonlinear regime at high power. This

is somewhat similar to laser-induced autoionization [43, 44], rather than to the abovemen-

tioned laser-induced continuum structure [30]. Finally, THz-driven excitonic spectra were

recently studied in multiple QWs [45]. According to this, the excitonic resonance redshifts
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and the absorption linewidth broadens because of the dynamic Franz-Keldysh effect that

resembles the DWSL concerned here. In this report, the polarization direction of the THz

wave is normal to the direction of crystal growth, and thus, the DL is not expected, unlike

in the present study, in which the polarization is along this direction.

The remainder of this article is organized as follows. Sec. II describes the framework

of the RFT. Sec. III presents the results and discussions. Finally, Sec. IV presents the

conclusions. Atomic units (a.u.) are used throughout unless otherwise stated. All acronyms

defined in this article are summarized in Tab. I.

II. THEORY

The RFT is introduced to the present DWSL problem in the following two subsections.

In Sec. II A, the Floquet expansion based on the Kramers-Henneberger (KH) transformation

[46] is presented, and the MCS equations to be solved are derived. In Sec. II B, the R-matrix

propagation technique [47] for numerically solving these equations is introduced.

A. Floquet Expansion

Let us begin with the DWSL Hamiltonian

H(z, t) =

[
pz +

1

c
A(t)

]
1

m(z)

[
pz +

1

c
A(t)

]
+ V (z), (1)

where V (z), m(z), and pz represent the SL confining potential, effective mass of an electron,

and momentum operator along the crystal growth direction z, respectively, and A(t) is a

vector potential at time t for an applied electric field F (t) = −Ȧ(t)/c, where c is the speed

of light. Based on the RFT [34], the application of a gauge transformation and the KH

transformation [46] to the DWSL wavefunction satisfying[
H(z, t) − i

∂

∂t

]
Ψ(z, t) = 0 (2)

yields the equation [
H(z, t) − i

∂

∂t

]
Φ(z, t) = 0, (3)

where

H(z, t) = pz

[
1

m(z + a(t))

]
pz + V (z + a(t)) + F0z + v(z, t), (4)
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and v(z, t) represents the residual part given by

v(z, t) =
A1(t)

c

[
1

m(z + a(t))
− 1

m∞

]
pz +

A1(t)

2c

{
pz

[
1

m(z + a(t))

]}
+

1

2

[
1

m(z + a(t))
− 1

m∞

](
A1(t)

c

)2

. (5)

The successive transformation from Eq. (2) into Eq. (3) is explicitly expressed as

Ψ(z, t) = exp [−if(z, t)] exp [−ia(t)pz]Φ(z, t). (6)

In Eq. (6), f(z, t) for the gauge transformation and a(t) for the KH transformation are

given by

f(z, t) =
A0(t)

c
(z + a(t)) +

1

2m∞

∫ t (A1(t)

c

)2

dt (7)

and

a(t) =
1

m∞

∫ t A1(t)

c
dt, (8)

respectively. Here, A(t) = A0(t) + A1(t), and a dc-electric field and a THz field are defined

as F0 = −Ȧ0(t)/c and F1(t) = −Ȧ1(t)/c, respectively. It should be noted that the KH

transformation is considered to be a gauge transformation that is closely related to the

acceleration form of an optical dipole interaction [48]. Further, it should be noted that

H(z, t) becomes

Has(z) =
p2

z

2m∞
+ F0z + V∞, (9)

and v(z, t) vanishes in the asymptotic region of |z+ a(t)| >> 1, where it has been assumed

that V (z + a(t)) and m(z + a(t)) become the constant values of V∞ and m∞, respectively.

H(z, t) ensures the Floquet theorem, because we are concerned with monochromatic THz

driving with F1(t) = Fac cosωt, where ω is a frequency. Therefore, Φ(z, t) is expressed as

Φ(z, t) = exp (−iEt)
Nph∑

ν=−Nph

exp (iνωt)ψν(z), (10)

and Eq. (3) is recast into the coupled equations

Nph∑
ν=−Nph

[Lµν(z) − Eδµν ]ψν(z) = 0, (11)

where Lµν(z) is given by

Lµν(z) = Hµν(z) + µωδµν (12)
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with E representing a quasienergy and Nph >> 1. Hereafter, it is understood that the time

average of an arbitrary function X(z, t) has been defined as

Xµν(z) =
1

T

∫ T

0

exp [−i(µ− ν)ωt]X(z, t), (13)

where T = 2π/ω. It should be noted that Lµν(z) becomes L
(as)
µ (z)δµν , where

L(as)
µ (z) = Has(z) + µω (14)

in the region of |z + α| >> 1. Here, α, defined as

α =
Fac

m∞ω2
, (15)

is called the ponderomotive radius corresponding to the excursion amplitude of a classical

electron traveling under F1(t).

For any E, open boundary conditions are imposed on {ψν(z)} at z = zas < 0 with

|zas| >> 1 because of F0zas + V∞ + νω → −∞. Hence, Eq. (11) is regarded as the coupled

equations for the MCS problem, where an asymptotic scattering channel is provided by field-

free solutions for Eq. (14), and this is designated by a photon index ν with −Nph ≤ ν ≤ Nph.

There exist Mph-independent solutions composed of a set of the components {ψν(z)} with

Mph = 2Nph + 1, because all channels are open. Thus, ψν(z) is hereafter written as ψνβ(z)

with −Nph ≤ β ≤ Nph in order to specify the βth solution.

B. MCS Problem

In what follows, Eq. (11) is solved by employing the R-matrix propagation technique

[47]. First, the scattering coordinate z is divided into N sectors, where the nth sector Sn is

given as [zn, zn+1] (n = 1 ∼ N) with z1 = zas and zN+1 = |zas|. Rewriting Lµν(z) as

Lµν(z) = Lµν(z) −Bµν(z), (16)

Eq. (11) for z ∈ Sn is read as

Nph∑
ν=−Nph

[Lµν(z) − Eδµν ]ψνβ(z) =

Nph∑
ν=−Nph

Bµν(z)ψνβ(z), (17)

where Lµν(z) is determined so as to be Hermitian in Sn, and thus, the Bloch operator Bµν(z)

is given by

Bµν(z) = [δ(z − zn+1) − δ(z − zn)]bµν(z), (18)
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where

bµν(z) =

[
1

2m(z + a(t))

]
µν

∂

∂z
+ i

[
A1(t)

2c

(
1

m(z + a(t))
− 1

m∞

)]
µν

. (19)

Next, the coupled equations

Nph∑
ν=−Nph

[Lµν(z) − εkδµν ]ϕνk(z) = 0 (20)

are solved within Sn. In the practical numerical calculations for solving the eigenvalue

problem of Eq. (20), the Legendre-type discrete variable representation [49] is employed as

a piecewise basis set for the z-coordinate. Here, {ϕνk(z)} is the set of components of the kth

eigenfunction with εk as the associated eigenvalue, and these functions are orthonormalized

in Sn, namely, ∑
ν

(ϕνk|ϕνk′) = δkk′ , (21)

where (ϕνk|ϕνk′) implies an integration over Sn.

Expanding ψνβ(z) with respect to {ϕνk(z)} as

ψνβ(z) =
∑

k

ϕνk(z)ckβ, (22)

and putting it into Eq. (17), a set of the expansion coefficients is obtained as

ckβ =
∑
µν

(ϕµk|Bµνψνβ)

εk − E
. (23)

Then, ψµβ(z) becomes of the form

ψµβ(z) =
∑
νν′

[Gµν(z, zn+1)bνν′(zn+1)ψν′β(zn+1) −Gµν(z, zn)bνν′(zn)ψν′β(zn)] , (24)

where the R-matrix Green function Gµν(z, z
′) is defined as

Gµν(z, z
′) =

∑
k

ϕµk(z)ϕ
∗
νk(z

′)

E − εk

. (25)

Further, defining the R-matrix as

Rµν(zi) =
∑

β

ψµβ(zi) [b(zi)ψ(zi)]
−1
βν , (26)

one obtains the relation between R(zn) and R(zn+1) by employing Eq. (24) with the z set

equal to zn and zn+1, as follows:

R(zn) = G(zn, zn) −G(zn, zn+1)
1

G(zn+1, zn+1) +R(zn+1)
G(zn+1, zn), (27)
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where matrix notations have been used for the sake of simplicity. This expression enables

one to calculate R(zn) by means of the propagators G(zi, zj), once R(zn+1) is known in

advance. The successive application of this relation to every sector from SN to S1 provides

R(z1), where the initial value of R(zN+1) is given by the boundary condition imposed at

z = zN+1.

The scattering boundary condition

ψµβ(z1) = χ(+)
µ (z1)δµβ − χ(−)

µ (z1)Sµβ(E) (28)

is imposed on ψµβ(z1), where χ
(±)
µ (z) is the energy-normalized progressive wave in the di-

rection of ±z, satisfying

[L(as)
µ (z) − E]χ(±)

µ (z) = 0 : (29)

χ
(±)
µ (z) is associated with the Airy function. The scattering matrix S(E) is provided by

matching the asymptotic boundary condition, given by

R(as)
µν (z1) =

∑
β

ψµβ(z1) [b(z1)ψ(zi)]
−1
βν , (30)

with R(z1) obtained by the R-matrix propagation procedure. In terms of a time-delay matrix

provided by S(E), namely,

τ(E) = −i[S(E)]−1dS(E)

dE
, (31)

an excess DOS is defined by

ρ(ex)(E) = Tr[τ(E)], (32)

and the lifetime of the concerned state with E is given by

T (E) =
Tr[τ(E)]

No

, (33)

where No is the number of open channels [35–38]. The excess DOS is also expressed as

ρ(ex)(E) = ρ(E) − ρ(as)(E), (34)

where ρ(E) and ρ(as)(E) represent the DOS of the concerned DWSL and that of a field-

free asymptotic state corresponding to χ
(±)
µ (z), respectively. Because ρ(as)(E) exhibits only

structureless continuum, the DFR structure observed in ρ(ex)(E) is considered to be almost

similar to that in ρ(E). There exists the periodicity

ρ(ex)(E) = ρ(ex)(E + kω), (35)
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where k is an integer, because of the relation

Sµ,β(E) = Sµ+k,β+k(E + kω). (36)

III. RESULTS AND DISCUSSION

Beginning with the presentation of the setup parameters used in the actual calculations

in Secs. III A, the basic understanding of ponderomotive interactions is shown along with

the calculated results in Sec. III B. The excess DOSs with n = 2 and n = 1 are discussed in

Secs. III C and III D, respectively. Further, the criteria for the applicability of the present

DFR mechanism are discussed in Sec. III E.

A. Setup Parameters

The actual calculations are implemented for the SL of 35/11 ML GaAs/Ga0.75Al0.25As

(1 ML = 2.83 Å) with a lattice constant d = 246, where the effective masses of electrons

in the well and barrier regions of the QW are mw = 0.0665 and mb = 0.0772, respectively,

and the height of the confining QW potential is Vb = 7.8 × 10−3. The concerned SLs are

designed to be composed of ten QWs in the range of −5.5d ≤ z ≤ 4.5d that are surrounded

by Ga0.75Al0.25As in the regions beyond z ≤ −5.5d and z ≥ 4.5d. Hence, m∞ and V∞ are

identical to mb and Vb, respectively. In addition, zas = −2500, N = 1842, and Nph = 20 are

adopted for the convergence of all of the calculated results.

Hereafter, we consider the case of Ω = nω, where n is a positive integer and Ω is the

Bloch frequency, given by Ω = F0d. In Sec. III C, n is set to 2 and Ω = 5 × 10−3 with

F0 = 104.5 kV/cm. Further, α is changed from 1 (Fac = 2.5 kV/cm) to 108.2 (Fac = 268.4

kV/cm). On the other hand, in Sec. III D, n is set equal to 1 and Ω = 2.5 × 10−3 with

F0 = 52.3 kV/cm. It is well known that DL occurs when Fac and ω satisfy the following

relation that the matching ratio, given by

x
(n)
k =

Facd

ω
, (37)

is equal to the kth zero of the nth-order Bessel function of the first kind (n ̸= 0) [7]. We

have x
(1)
1 = 3.832, x

(1)
2 = 7.016, x

(2)
1 = 5.136, and x

(2)
2 = 8.417. Hereafter, it is understood

that α corresponding to DL at x
(n)
k is expressed as α

(n,k)
DL .

10



B. Ponderomotive Interactions

Defining as

Uµ−ν(z) ≡ Vµν(z) + F0zδµν (38)

the ponderomotive interaction arising from the renormalization of the THz field to V (z),

Lµν(z) is rewritten as

Lµν(z) = pz

[
1

m(z + a(t))

]
µν

pz + Uµ−ν(z) + vµν(z) + µωδµν . (39)

In the diagonal term of Lµµ(z), the first term plays the role of a kinetic energy operator, and

the remaining terms represent effective interactions. Here, Uη=0(z) is generally considered

to dominate vµµ(z) = v00(z) because the magnitude of the latter interaction is determined

only by a relatively small variation in the effective mass of an electron over z. However, for

a large value of Fac, this would not always be the case. The last term of µω with µ ̸= 0

contributes to PSB formation. Further, the off-diagonal term of Lµν (̸=µ)(z) is governed by

Uη ̸=0(z) for the same reason as the diagonal one. Figure 2 shows the change in the diagonal

term, U0(z), for α =1, 50, and α
(2,1)
DL = 108.2. Here, the erosion of the potential barrier

from V (z) appears pronounced for larger values of α; U0(z) for α = 1 is indistinguishable

from V (z). In particular, it is seen that the height of U0(z) at α = α
(2,1)
DL is greater in the

well region of V (z) than that in the associated barrier region, unlike the height of U0(z) at

α = 50. Figure 3 shows the change in the off-diagonal term, Uη ̸=0(z), for α = 50 and α
(2,1)
DL

within the range of a single QW site. As α increases, Uη ̸=0(z) contributes more significantly

to interactions between different channels even if |η| is large, whereas Uη ̸=0(z) for α = 1

almost vanishes; this is not shown here.

Based on the conventional Houston-Floquet picture, the photon-assisted tunneling (PAT)

within the same miniband and ac-ZT across different minibands are responsible for diagonal

and off-diagonal contributions of a dipole interaction of F1(t)z, respectively. As shown in

Fig. 1, it is understood that the DFR coupling is considered as a special case of ac-ZT

intersubband coupling incorporating an approximately discrete DL state of (1,0) at α
(n,k)
DL .

On the other hand, in the RFT, the dominant interaction Uη(z) of Eq. (38) incorporates the

effects of both PAT and ac-ZT without any distinction between the two. Thus, it appears

difficult to extract the effect of only ac-ZT from Uη(z). The ac-ZT is partially induced by

the ponderomotive potential Uη=0(z) because this potential corresponds to the self-energy

11



of a DWSL electron that renormalizes the abovementioned off-diagonal dipole interaction.

In fact, the contribution of a decay caused by ac-ZT can be identified by examining

the change in ρ(ex)(E) with respect to α. Without this coupling, the lifetime of a DWSL

reflecting on ρ(ex)(E) would be responsible for the SR decay; it is considered that PAT

would not affect the lifetime. In this case, the lifetime would be similar to that of a WSL,

where SR is caused by dc-ZT because of a combined potential, V (z) + F0z, independently

of α. Therefore, it is believed that the reduction in the lifetime of a DWSL relative to that

of the associated WSL is attributable to ac-ZT. In the following, an interaction caused by

the ponderomotive interaction Uη ̸=0(z) is termed as interchannel coupling. Further, aside

from the strict difference mentioned above between the ponderomotive interaction and ac-

ZT, it is understood that this terminology is considered to have the same meaning as the

intersubband coupling due to ac-ZT, unless otherwise stated.

C. Excess DOS with n = 2

Figure 4 shows the calculated results of ρ(ex)(E) for α = 1 ∼ α
(2,1)
DL . ρ(ex)(E) for α = 1

is almost identical to that of the WSL for α = 0, where there exist four discernible peaks

labeled as (1,−1), (2,−2), (3,−3), and (1, 0); the levels of b = 1 and 2 and the levels of b ≥ 3

originate from the original QW levels below and above Vb, respectively. Here, the peaks for

b = 1 are still stable [T (E) ≈ 4.3 ps] despite the dc-ZT caused by the relatively large F0,

differing from the other two peaks for b =2 and 3 that appear blurred. This observation

of the sharp peak for b = 1 is attributed to the fact that a potential drop in a well region

of the QW (equal to Fodw/2 = 1.9 × 10−3, where dw is the well width) is still smaller than

Vb, and therefore, a tilted SL confining potential is capable of supporting the b = 1 level as

an almost discrete one, namely, a sharp SR one. Moreover, because of this fact, it is also

ensured that the DL level of (1, j ̸= 0) is assumed to be almost discrete because of the PSB

of (1, 0), as mentioned in Sec. I.

The variance of the peak positions for each b with respect to α is shown by connecting

these positions by green solid lines. The pronounced anticrossing behavior between adjacent

b’s is seen around the specific α’s, as indicated by the blue dotted ovals. Without the

ponderomotive coupling, Uη ̸=0(z), differing from the spectra in Fig. 4, no anticrossings

manifest themselves, and the obtained peak positions appear only weakly dependent on α;
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this is not shown here. However, the peak values of the (1,−1) and (1, 0) levels without

Uη ̸=0(z) appear to be similar to those shown in Fig. 4. In addition to the anticrossings, a

spike structures emerges at α = 30, as indicated by the downward arrows. These structures

are considered to be van Hove singularities that are common to conventional DWSL spectra.

Here, the interchannel coupling due to ac-ZT would not yet be sufficiently strong to smear

such detailed structures. As shown above, it is believed that the present RFT can reproduce

anticrossings and the van Hove singularity in ρ(ex)(E) for relatively small α’s, both of which

feature the conventional model resorting to the two-miniband ac-ZT picture [50].

With a further increase in α from around α = 30, ρ(ex)(E) is found to decrease rapidly,

and the discernible peaks are overlapped and entangled with each other because of strong

interchannel interactions; this leads to a difficulty in assigning each peak to an approximate

quantum number (b, j). This tendency is pronounced at α = α
(2,1)
DL , and therefore, the

associated T (E)’s of the blurred peaks decrease to a decay lifetime of approximately 120 fs.

Further, a vestige of the collapse of the quasienergy miniband is no longer seen in the profile

of ρ(ex)(E). This result is in sharp contrast to that of WSL at α = 1. It is understood that

such instability of DL is attributed to the DFR mechanism shown in Fig. 1; this is caused by

ac-ZT-mediated interchannel coupling Uη(z) between the energetically degenerate DL states,

where one is the relatively stable state of (1, 0) and the other is the unstable continuum-like

one of (b > 1, j < 0).

It should be noted that the DFR differs from the conventional Fano effect in that sharp

and blurred SR states are coupled via a dynamic interaction (namely, ac-ZT) in the former

and discrete and continuum states are coupled via a static interaction (such as electron

correlation) in the latter. Strictly speaking, FR is usually considered to be resonance caused

by an interaction between closed and open channels, unlike the present DFR, in which there

exists no closed channel, as mentioned in Sec. II A. The sharp SR state for DL is considered

to be a quasi-closed channel. In the study of the autoionization of a negative hydrogen ion

(H−), it is known that FR is caused by an interchannel coupling similar to that of DFR,

where the lowest doubly excited state of (2s)(2p) 1P o embedded in an SR continuum plays

the role of this quasi-closed channel [51]. Therefore, it is considered that the DFR presented

here is a new effect having both the tunable dynamic interaction and the SR-mediated FR

as key roles, unlike conventional FR.
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D. Excess DOS with n = 1

In order to deepen our understanding of the DFR mechanism, the F0- and Fac-dependence

is examined by comparing the following three ρ(ex)(E)’s for DL at x
(2)
1 , x

(1)
1 , and x

(1)
2 , the

traces of which are shown in Figs. 5, 6, and 7, respectively. ρ(ex)(E) in Fig. 5 is identical

to that shown in Fig. 4 at α
(2,1)
DL = 108.2 with Fac = 268.4 kV/cm, F0 = 104.5 kV/cm, and

ω = 2.5× 10−3. With regard to ρ(ex)(E)’s in Figs. 6 and 7 for n = 1, F0 = 52.3 kV/cm, and

hence, ω = 2.5× 10−3 are used in both cases, whereas α
(1,k)
DL (k = 1, 2) values of α

(1,1)
DL = 80.7

with Fac = 200.3 kV/cm and α
(1,2)
DL = 147.8 with Fac = 366.6 kV/cm are adopted in the

former and the latter, respectively. In these two ρ(ex)(E)’s, it is assumed that the dominant

peaks are ascribed to the DFR associated with the stable state of (1, 0), in a manner similar

to ρ(ex)(E) in Fig. 5. In fact, it would be necessary to confirm this speculation by tracking

the peak positions corresponding to this DL state from α ≈ 0 to α = α
(1,k)
DL , as shown in Fig.

4.

In addition, the following two points should be noted with regard to Figs. 6 and 7. First,

in Figs. 6 and 7, the peak height of ρ(ex)(ω) at ω ≈ −1.8 × 10−3 does not appear to be

identical to that at ω ≈ 0.7 × 10−3, contrary to the periodic relation given in Eq. (35).

This is simply because of numerical errors. This periodic relation is of great importance

in the evaluation of the accuracy of the calculations. One of the main causes of errors is

presumably the difficulty in evaluating the ponderomotive interactions shown in Figs. 2 and

3 for a larger α with sufficient accuracy. In addition, the sector size of N adopted in actual

calculations would be somewhat too sparse to satisfy this periodicity, although an increase

in N from the adopted value would lead to a further increase in the calculations required.

Next, in Fig. 7, the alternative mechanism of electron avalanche ionization (AI) [52, 53],

described in Sec. III E, might become more important than the DFR at Fac = 366.6 kV/cm.

However, this is irrelevant here, because the purpose of analyzing Figs. 5–7 is to examine

the dependence of ρ(ex)(ω) on F0 and Fac, as shown below, and not to describe the criterion

for the applicability of the DFR mechanism; this criterion is discussed in Sec. III E.

First, let the peak values in Figs. 6 and 7 be compared with that in Fig. 5, where F0 in

the former is only half that in the latter. The peak value in Fig. 6 (of the order of 7 × 104

a.u.) is greater than that in Fig. 5 (of the order of 3× 104 a.u.). In particular, it should be

noted that the peak value in Fig. 7 (of the order of 9× 104 a.u.) is still greater than that in
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Fig. 5 despite the much larger Fac in the former. This observation appears to be compatible

with the understanding based on Fig. 1 in that the width of the SR continuum arising from

dc-ZT is reduced to a greater extent for smaller F0, and therefore, the degeneracy with a

quasienergy level of (1,0) is partially lifted, affording longevity to this DL state.

Next, the fact that the spectral patterns shown in Figs. 6 and 7 appear more involved than

that shown in Fig. 5 is discussed. Before hypothesizing the reason for the difference between

the resonant transitions with n = 1 and 2, it should be noted that the DL-quasienergy εbj,

given by εbj = ϵ
(c)
b + jω, is rewritten as

εbj = ϵbNwsl
+ λω (40)

within a single-miniband nearest-neighbor-tight-binding approximation, where ϵ
(c)
b is the

center of the energy of the bth SL-miniband and ϵbNwsl
is a WSL energy level corresponding

to the bth miniband with a WSL index Nwsl = 0,±1,±2, · · · , namely, ϵbNwsl
= ϵ

(c)
b +NwslΩ,

and hence, λ = j− nNwsl is defined. This relation implies that the DL state with the quan-

tum number (b, j) introduced in Sec. I consists of energetically degenerate WSL components

labeled as (b, [j,Nwsl]). Such degeneracy results from the effect of PAT, because the WSL

state with Nwsl = 0 is resonantly coupled with other states with Nwsl ̸= 0 by successive

n-photon emission/absorption. Strictly speaking, the WSL state with the (b, [j,Nwsl]) com-

ponent is supported by a potential of V
(wsl)
j ≡ V (z) + F0z + jω. Hereafter, it is understood

that this component is denoted as [j,Nwsl] for the sake of simplicity, unless some ambiguity

arises. Because of the PAT, the jth PSB is expressed as a linear combination of a set of

bases with different [j,Nwsl]’s. For instance, for the PSBs of (b, j = −1), there exists a

degeneracy among the following components:

[j,Nwsl] = · · · , [−1,−2], [−1,−1], [−1, 0], [−1, 1], · · · . (41)

With a decrease in Fac, PAT is affected to a lesser extent, and therefore, it is considered

that the PSB is governed by only a single component of [j, 0] at the weak Fac limit, because

εbj = ϵb,Nwsl=0 + jω.

The first-order ac-ZT coupling primarily causes a transition between PSBs with (b, j) and

(b′ ̸= b, j ′ = j ± 1), where |j − j′| = 1. With regard to a transition with |j − j′| ≥ 2, such a

higher-order coupling is negligibly small in a relatively weak Fac region, whereas it becomes

significant with an increase in Fac, as mentioned in Sec. I. The DL state of (1, 0), to which
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the component of [0, 0] has a leading contribution, is likely coupled with another DL state

of (b ≥ 2,−1) via ac-ZT. Here, it is believed that the dominant ac-ZT effect arises from the

interaction between the two components of (1, [0, 0]) and (b ≥ 2, [−1, 0]), because the overlap

between these two with the same index as Nwsl = 0 usually has a large contribution. In the

relatively weak Fac region, it is evident that the PAT mediated by a single-photon resonant

transition (n = 1) is more effective than that mediated by a two-photon one (n = 2). This

results in stronger mixing among the WSL components of Eq. (41) for n = 1 as compared to

that for n = 2. Therefore, it is theorized that for n = 1, the mixing of (1, [0, 0]) with a great

number of components of (b ≥ 2, [−1, Nwsl]) by ac-ZT could give rise to the manifestation

of various DL peaks in an entangled manner. On the other hand, for n = 2, it is believed

that such an effect of ac-ZT is less pronounced, leading to the less involved structure of the

spectra. Such a speculation could still be applied for interpreting the difference between

the spectra shown in Figs. 6 and 7 and that shown in Fig. 5 for the region with a higher

value of Fac. With a further increase in Fac, the spectral pattern could likely become more

complicated irrespective of n, as long as many DL states are still discerned for relatively

small F0 without being blurred by the DFR.

In addition, as shown in Figs. 6 and 7, the lifetimes of both the dominant DL states

appear comparable to each other despite the different Fac applied. Moreover, both of the

spectral patterns are similar. The reasons for the same are not yet evident, and hence, it

would be necessary to track the peak positions of spectra from α ≈ 0 to α = α
(1,k)
DL .

E. Criteria for Applicability of DFR

Finally, two additional points are noted with regard to the present DFR mechanism.

First, it is noted that the WSL resonance, namely, the dc-Zener resonance arising from

the energy matching of WSL levels pertaining to different b’s across some QW sites, has a

pronounced effect on the width of the SR continuum at a particular value of F0, represented

here by F ∗
0 [54], because this gives rises to delocalization of a WSL electron. Therefore, the

WSL resonance would cause irregular changes in the DFR lifetimes with respect to F0 as

an exception to the abovementioned observation of Figs. 5–7. In other words, it is likely

that the DL state relevant to the WSL resonance at F ∗
0 decays more rapidly as compared to

another DL state caused at F0 that is greater than F ∗
0 , where Fac is unchanged. In addition,
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it is reported that the lifetimes of excitonic-WSL FR states exhibit such irregularity with

respect to F0 because of the WSL resonance [55].

Next, aside from the present DFR mechanism pertinent to a multiphoton process, it

should be noted that there exists another mechanism for tunneling ionization (TI) [56] that

possibly makes the DL unstable in the low-ω (low-F0) region. TI is believed to be dominant

in the region where γ < 1, where the Keldysh parameter γ is defined as

γ =

√
Vb

2Up

, (42)

with the ponderomotive energy Up equal to F 2
as/4mbω

2. Equation (42) is rewritten as

F̄0 = γFac, (43)

where F̄0 is a scaled bias given by F̄0 = F0/[(2mbVb)
1/2d/n] and ω = F0d/n has been used.

Figure 8 shows a scheme indicating the dominant regions of DFR and TI delimited by

γ = 1, where the perturbation region denoted as P (Fac << 1 and F̄0 << 1) and the

multiple ionization region because of AI [52, 53] denoted as AI ((F0 >> 1 or Fac >> 1) are

also shown. γ corresponding to the DL at x
(n)
k is given by

γ
(n)
k =

(2mbVb)
1/2d

x
(n)
k

. (44)

Therefore, in the present system, the DL at x
(n)
k > (2mbVb)

1/2d = 8.537 would be considered

unstable against TI, even if this DL is not affected by DFR. Following Fig. 8, it is found

that for decays of DL states located at such higher x
(n)
k ’s, the DFR mechanism presented

here cannot be applied. For n = 2 in the case of Fig. 4, the first DL corresponding to

x
(2)
1 , namely, γ

(2)
1 = 1.662, remains stable against TI, whereas the second DL is situated at

around the boundary between DFR and TI because of γ
(2)
2 = 1.014. Further, for n = 1 in the

case of Figs. 6 and 7, both the first and the second DLs are considered to be stable against

TI because of γ
(1)
1 = 2.223 and γ

(1)
2 = 1.217, respectively. These γ’s are also indicated in

Fig. 8. Generally, as Fac increases with F0 remaining unchanged, DL tends to become more

unstable because of the TI mechanism rather than the DFR mechanism. In addition, it

should be noted that for still larger F0 and Fac, AI is considered to dominate both DFR and

TI, as shown in Fig. 8.
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IV. CONCLUSION

It is revealed that the DL manifested in the DWSL is unstable against THz-mediated

DFR coupling between the (1, 0) level and the quasienergetically degenerate levels of (b >

1, j < 0). This result is in sharp contrast to the conventional understanding of DL. Both

the dynamic interaction and the SR-mediated FR play key roles in the DFR presented here,

unlike conventional FR. The instability would be somewhat remedied by the reduction in

F0, aside from the TI mechanism. Therefore, it is speculated that in the dc-ZT-free system

of the THz-driven SLs [57], the DL would not become unstable because of the DFR. Here, a

continuum, into which a DL state is brought to decay, is no longer formed by the dc-ZT. On

the other hand, the present DFR mechanism changes into another problem of a THz-driven

SL-exciton, where an exciton level pertaining to one PSB is coupled with other PSBs as

degenerated continua by both ac-ZT and an electron-hole Coulomb interaction, leading to

FR decay [39]. Without ac-ZT, such excitonic DFR would not be caused. This differs from

conventional SL and WSL excitons in that the concomitant FR decay exclusively arises from

the Coulomb interaction [55]. The novel problem of excitonic DFR is now being investigated.
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TABLE I: Summary of acronyms used in text in alphabetical order and corresponding meanings.

acronyms meanings

AI avalanche ionization

DFR dynamic Fano resonance

DL dynamic localization

DOS density of state

DWSL dynamic WSL

FR Fano resonance

KH Kramers-Henneberger

MCS multichannel scattering

PAT photon-assisted tunneling

PSB photon sideband

QW quantum well

RFT R-matrix Floquet theory

SL superlattice

SR shape resonance

TI tunneling ionization

WSL Wannier-Stark ladder

ZT Zener tunneling

FIG. 1: Schematic diagram showing DL manifold and DFR mechanism between DL levels. Each

level is shaded depending on degree of magnitude of SR. For more detail, consult text.

FIG. 3: Ponderomotive couplings Uη(z) (η = 1 ∼ 5) as a function of z-coordinate (a.u.) within a

single QW site for α = 50 [in panel (a)] and 108.2(= α
(2,1)
DL ) [in panel (b)]. Here, Uη(z) with η =

1, 2, 3, 4, and 5 are indicated by red, green, blue , purple, and black solid lines, respectively.

FIG. 2: Ponderomotive potential U0(z) as a function of z-coordinate for α = 1, 50, and 108.2(=

α
(2,1)
DL ) indicated by black, blue, and red solid lines, respectively. Here, F0 = 104.5 kV/cm.
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FIG. 4: Excess DOS, ρ(ex)(E), as a function of quasienergy E in range of α = 1 ∼ 108.2(= α
(2,1)
DL ).

Curves are shifted for clarity. Four discernible peaks are assigned to approximate quantum numbers

(b, j); each peak attributable to the same (b, j) is connected by solid green lines and some prominent

anticrossings are indicated by blue chain ovals. Further, at α = 30, spike structures corresponding

to van Hove singularities for the (1,0) peak are indicated by downward arrows. Here, F0 = 104.5

kV/cm and ω = 2.5 × 10−3.

FIG. 5: Excess DOS, ρ(ex)(E), as a function of quasienergy E at α
(2,1)
DL = 108.2 with Fac = 268.4

kV/cm, F0 = 104.5 kV/cm, and ω = 2.5 × 10−3.

FIG. 6: Same as Fig. 5 but at α
(1,1)
DL = 80.7 with Fac = 200.3 kV/cm, F0 = 52.3 kV/cm, and

ω = 2.5 × 10−3.

FIG. 7: Same as Fig. 5 but at α
(1,2)
DL = 147.8 with Fac = 366.6 kV/cm, F0 = 52.3 kV/cm, and

ω = 2.5 × 10−3.

FIG. 8: Traces of F̄0 as a function of Fac following the relation of Eq. (43) for γ = γ
(1)
1 (red line),

γ
(2)
1 (blue line), γ

(1)
2 (green line), and γ

(2)
2 (purple line). Two regions governed by DFR and TI

are delimited by γ = 1 (black line). Perturbation region, denoted as P, and avalanche ionization

region, denoted as AI, are also shown.
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