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Introduction

In a previous paper [8] we have established that the shape category of topo-
logical spaces is category-equivalent to a full subcategory of the pro-category of
the homotopy category of CW complexes, and that such a category-equivalence
can be obtained by assigning to each topological space X an inverse system in the
homotopy category of CW complexes which is associated with X in the sense of
our paper [8]. As such an inverse system we have the Cech system of X; it
consists of the nerves of locally finite normal open covers of X.

On the other hand, in defining the notion of shape, inverse systems of ANR’s
for metric spaces are utilized by S. Mardesi¢ and J. Segal [3] for the case of
compact Hausdorff spaces and by R.H. Fox [2] for the case of metric spaces.
The inverse systems with X as their inverse limit, which are used by these
authors, induce the inverse systems in the homotopy category of spaces which
are associated with X.

In view of these results it is meaningful to find a condition under which an
inverse system of spaces with a given space X as its inverse limit induces an
inverse system associated with X in the homotopy category of spaces. As such a
condition we have introduced the notion of proper inverse systems in our previous
paper [8].

In this paper we shall establish that a Tychonoff space X admits a proper
inverse system of polyhedra with X as its inverse limit if and only if p(X)=X,
where (X)) is the completion of X with respect to the finest uniformity of X.
This result will be obtained by making use of a recent result of P. Bacon [1].

Finally, it will be shown that zero-dimensional spaces X and Y have the same
shape if and only if #(X) is homeomorphic to p(Y).

Throughout this paper we shall mean by a cover of a space a locally finite
normal open cover, and by a polyhedron a simplicial complex with the weak
topology.
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§ 1. Proper inverse systems

Let {X;, pu, 4} be an inverse system of topological spaces over a directed set
4, and let X be its inverse limit; let p,: X — X, be the projection for each 2e/.

DeriniTION 1.1. {X}, pw, 4} is said to Dbe proper if for every cover ® of X
and for every cover $ of X, with a given Ze/ there are pe/ and a cover U of X,
such that 1<y, U refines pp(9), p.'(0) refines @ and U is proper with respect to
the map p,.. Here a cover ¥ of a space Y is defined to be proper with respect to
a continuous map f:X— Y if f~' induces an isomorphism between the nerves of
B and FI(W).

In a previous paper [8] we have proved the following theorems.

TuroreM 1.2, If each X, is a compact Hausdorff space, then {X, pu, A} is
proper.

TrHrorEM 1.3, If X is a metric space which is contained in another metric
space P and if (X, pu, A} consists of all open neighborhoods of X in P and of the
wmclusion maps, then {X;, pu, A} is proper.

TuroreM 1.4.  Let {X, pu, A} be a proper inverse system. Then (i) for any
continuous map f from X to a polyhedron Q there are some ic/d and a continuous
map fr: X, > Q such that f=jf,p:; X—Q, and (i) for any fwo conlinuous map
g Xo— Q with @ a polyhedron such that fip, = g.p,: X — Q there is A’ >2 wilh
Tl = X — Q; that is, the inverse system { X, [pu], A} in the homiopy cate-
cory of spaces is associated with X in the sense of [8].

Theorem 1.3 will be generalized in §5.

§ 2. Level inverses ystems

Having read the first version of [8], P. Bacon kindly informed me that the
definition of proper inverse systems there had a defect which made the proof of
[8, Theorem 1.9] (=Theorem 1.4 above) invalid. In the second version of [8] I
modified the definition slightly (as in §1 above) so that the proof may be valid
without any alteration. After this I received a copy of [1], in which Bacon defined
level inverse systems and proved actually the assertion that a level inverse system
of paracompact Hausdorff spaces induces an inverse system in the homotopy
category of spaces which is associated with its inverse limit in the sense of [8]
(cf. Theorem 1.4 above); in particular, his proof for the property (i) of Theorem
1.4 above is carried out along the same line as our proof described in [8] by
showing essentially the assertion that a level inverse system of paracompact
Hausdorff spaces is proper (the defect mentioned above does not concern the proof
for the property (i) of Theorem 1.4 above). The latter assertion (and hence the
former by Theorem 1.4) holds without the assumption that a level inverse system
consists of paracompact Hausdorff spaces, as will be shown in Theorem 3.1 below.

Vol. 13, No. 355]
(67)



68 Kiiti Morira

Let {X, puy A} be an inverse system of spaces and let X be its inverse limit;
let p,: X — X, be the projection for ied.

DeriNiTiON 2.1. X, P, A} is said to be level if (a) for any cover & of X
there exist le4 and a cover 11 of X; such that p7'(ll) refines & and (b) for any
e/ and any open set V of X, with V2p,(X) there is 2’>2 such that p,(X,)c V.

Let X be a topological space. Let {U,Jac®?} be the set of all locally finite
cozero-set covers of X. Then we can associate with each U, a partition of unity
{¢a.jl7€]} such that U, consists of cozero-sets {zeX|¢a (2)>0} with je/,. Let I’
be the set of all non-empty finite subsets of Q. For y={a,, -, ay}€l’ let us put

"= /n\ll‘,i and define a canonical map ¢, from X into the nerve N(1,) of U, by
i=1
(/)7(27): Z ( Ul ¢“iy jg(:c) )U( (al’jl>1 ) (a'm jn) )

ki
where o((ay, 71), -+, {an, Ju) ) denotes the vertex of the nerve of AU, corresponding

i=1
to the set F){xeXk/)a (z)>0}, and 3, ranges over all such ((ai,71), -, (an Tn) )
=1
For y, y'el” we define y<y' by rCy/, and for y<y’ we shall define a simplicial
map ¢, from NU,.) to NU,) by assigning to each vertex o((ai,j1), =", (@m, Ju)) the
vertex v((a, Jr,)s = (@ky Jiy,) ), Where we assume that 7'={ay, -+, an} and y={a,,
oy} with 1=k <ke <o~ <Ry=m. Then we have

474

¢r:¢r7’¢r‘ for TST"

Now, let (y, U) be a pair such that U is an open set of N(II,) containing ¢.(X)
and let us define a partial order (y, U)<(;y’, U’) by requiring that y<y/, ¢,.(U)cU.
Let 4 bhe the set of all such pairs (y, U). For i=(y, U) let us put X;=U and
define p;: X— X; by pilx)=¢,(z) for zeX. For i=(, U)<2’=(;’, U’) let us define
Du s X — Xy by pule)=d,.(z), zeX;. Then it is easy to see that inverse system
(X, pay A} satisfies the conditions (a) and (b) in Definition 2.1. In the present
case X is not necessarily the inverse limit of {X, p.:v, 4} but for each ie/ there
is a continuous map p,: X — X, such that p,=p,. p. for <.

In such a case Bacon [1] say that the inverse system {X,, pi, A} has X as its
complement. Since an open subspace of a polyhedron is itself a polyhedron, Bacon
[1} proved the following theorem by the above construction.

TrEOREM 2.2. Any lopological space X admils an inverse sysiem of polyhedra
with X as is complement.

§3. Main theorems
We are now in a position to state our main theorems.

THEOREM 3.1. FEwvery level inverse system of topological spaces is proper.

Tueorem 3.2. A Tychonoff space X adwmits a proper inverse system of poly-
hedra with X as its inverse limit iff X is topologically complete.
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Since any polyhedron is paracompact Hausdorff®> and any paracompact Hausdorff
space is topologically complete, the inverse limit of an inverse system of polyhedra
is topologically complete. Hence, in view of Theorems 2.2 and 3.1, Theorem 3.2
is a direct consequence of Theorem 3.3 below which is proved by Bacon [1] for
the case of X being paracompact Hausdorff.

TrEOREM 3.3 If X is a Tychonoff space which is topologically complete and
12X, pun Ay is an inverse system of T.-spaces with X as ils complement, then X is
the inverse limit of {X, pu, A}

Proor. Let {g;: ¥ — X,|2ed} be a set of continuous maps such that

g:=pugs for A2
Let us put

Cy)={pr'gly)lre}.

First, let us note that p'g.(y)+@ for each 1; because, otherwise we would have
DX )N g (y)=0 for some ped with A<y by virtue of condition (b) but this is
contradictory to the fact that p,.g.(y)=g¢:(y). Secondly, C(y) has the finite inter-
section property since we have prlg. (v)Cpilgly) for A<, Finally, for any
cover & of X there exist e and a cover W of X, such that p;'() refines &. If
g.(y)e Uell, then pilgy)cpri(U). Since pi(U)cG for some Ge® we have prig:(y)
cGe®. Thus, C(y) is a Cauchy family with respect to the finest uniformity of X.
Since X is complete with respect to this uniformity, N{p:'g.(y)|i€/} consists of a
single point, which shall be denoted by g(y).

Let G be any open set of X containing g(y). Then there are leA and a cover
$H of X such that St(p7'¢.y), 9)cG. From condition (a) we see that there are
pe/d with A< and a cover B of X, such that p;i(V) refines . Hence we have

(1) St (D2gu(w), p1B)CG.

On the other hand, by the continuity of ¢, we can find an open neighborhood W
of y such that

(2) g (W) St (g.(), B).
Since p7(St (g (1), B) ) =St (. '0.(%) 7 (B)), we have from (1) and (2)
(3) Pilg(W)HcG.

Since (3) shows that g{W)cG, the continuity of ¢ is proved hereby.

1) More generally, any CW complex is paracompact and Hausdorff. This result was
proved first by Morita [5] (a simpler proof can be found in {6, §3]). In [5] I wrote that
the result was proved earlier by H. Miyazaki, the paracompactness of CW complexes,
Tohoku Math. J. 4 (1952), 309-313. This quotation, however, was wrong. Because, as was
pointed out by topologists in Osaka, his proof was incorrect.
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On the other hand, we have
ga=pg  for  Jed,

since pg(y)C N{ PP g ly)ppe At Cp, pi'e{y)=g:(y). Moreover, if z: ¥ — X is another
continuous map such that ¢,=p,2 for each e/, then Aly)e N{p:'g.(y)|ie A} =g(y)
and hence we have i=g¢. This completes the proof of Theorem 3.3.

TweorEM 3.4. Let {X;, p, A} be an inverse system of topologically complete
Tychonoff spaces with a Tychonoff space X as its complement. Then the completion
of X with vespect to its finest uniformity, p(X) in notation, is the inverse limil of
{thki.') /1}'

Proor. For an open set G of X let us put
G¥*=pX—Clx(X-G).
Then for any open set U of pX we have
(4 Uc(UnX)y*cClx(UnX).

Let p be the covariant functor from the category of Tychonoff spaces and con-
tinuous maps to its full subcategory of topologically complete spaces which assigns
to each space X the completion of X with respect to the finest uniformity of X.
Then we have continuous maps p(p.): pX— X, for 2e/d and p(p)=puwp(p:) for
AL,

Let & be any cover of pX, and © a star-refinement of 8. By condition (a)
there are ie4 and a cover U of X; such that $NX is refined by p;7'(0). Let U
be any set belonging to U. Then there is some He® such that XN pu(p:)"(U)cC
XNH. Hence by (4) we have

(5) w(p) N U)cCl (XN H)YCSSt (H, D).

Since there is some Ge® such that St(H, )G, we have u(p,)"(U)cG. This
shows that u(p)~'(0) refines ®. Thus condition (a) is satisfied for {X;, pu, A}
and p(p,): pX — X, with 2e/.

If p(p)(pX)c U for an open set U in X, then p,(X)c U and hence p(X,)c U
for some ped with 2< .

Therefore, the inverse system {X;p.., 4} has u(X) as its complement. Since
#X is topologically complete, 4(X) is the inverse limit of {X}, p.:, 4} by Theorem 3.3.

§4. Proof of Theorem 3.1
Before proceeding to the proof of Theorem 3.1 we shall need two lemmas.

Lemma 4.1. (Morita and Hoshina [9)). Let X be a topological space. Let
{Fhl2ed} and {G:lAed} be locally finite collections of zero-sets and of cozero-sels in
X respectively such that F,cG, for each 2eA. Then U{F)|ie/} is a zero-set in X.
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Lemma 4.2, Let {F)led} and {G.lieA} be the same as in Lemma 4.1.
Then theve is a collection {V,|ieA} of cozero-sets in X such that (1) FicV,cCl V,
G, for each ieAd and (i) {Cl VilZieA} is similar to {F;|ie ).

Proor. Let us well-order the index set . and assume that 4={a|0=a <%} for
some ordinal . Let /" be the set of all finite sets y={a,, -+, an} with a;<§, i=1,2,

-+, 7, such that n Fa,#0 but Fom(n Fe)=10.
Then N{F, Iae/} is a zero-set f01 each ye/". On the other hand, ﬂG lyel’}
locally finite and each member of this collection is a cozero-set. Let us put

Se=U{NF.jrel}.
a€y
Then S, is a zero-set of X by Lemma 4.1. Since
F() ﬂ (S(b U (~X_ GO) )=@v
there is a continuous map ¢,: X — [0, 1] such that
0, for =zekF,
éo(b):{
1, for ze(X—GyUS.
Let us put

V(): {.$€X1¢D(.w><'%"}y

Ko=lxeX1¢o(x)g%}.

Then V, is a cozero-set, K, is a zero-set and Fyc V,cCl VycK,cG,. Since
Kin(SoU(X—Gy))=0, {F.|0<a <} and {K,, Fl0<a <&} are similar.

By transfinite induction we can construct cozero-sets V,, zero-sets K, for each
a<£& such that

(&)« F.cV,.cClV,cK.cG.,,
(b (G, U B<a, a=y<£} is similar to {K;, Fi|8=a, a<ly<g}.

This construction is carried out by the same argument as in the case a=0. (Cf.
the argument in the proof of [4, Theorem 1.3]).

Then {Cl V.la<&} is similar to {F,|Ja<¢}. This proves Lemma 4.2.

Now we are able to prove Theorem 3.1.

Proor or Turorem 3.1. Let {X), p.u, 4} be an inverse system with X as its
complement. Then, for each 2e€/ there is a continuous map p,: X — X, such that

p):p;;'p;' fOl A§A .
Let & be any cover of X and $ any cover of X, with 2¢4. Then by condition
(a) in Definition 2.1 there are ve/ with 2<v and a cover W of X, such that U
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refines p}(9) and p7(W) refines ©.

Here we may assume that U={U,|ec?} is a locally finite cozero-set cover of
X,. Then there is a locally finite zero-set cover §F={F,|aeQ} such that F,c U, for
each aefl.

Let 77 be the set of all finite subsets y of @ such that

N{Faer}#0, [N{FJaerInp(X)=0.

Since {NF,|rel’} is locally finite, the union £ of all the sets in this collection is
ag
closed.” Hence by condition (b) in Definition 2.1 there exists pe.1 with v<u such
that p.,(X,)N F=0, that is, p;}(F)=0.
Let us put

Ko=p(F), Le=pzXU.) for acl.
Then for any fnite subset y of 2
(6) MK Jaert#0 = N{p(K)|aer}#0.

Because, if N{p;"(K)laer}=0, then p(X)N[N{K.|aey}]=0 and hence p,(X)N [N {Fa]
weyt]=0, and hence we would have ye/", but this is a contradiction since N {X,]
aey}=0 for ye/.

Now let us observe that {K,} and {L,} are locally finite collections of zero-sets
and of cozero-sets in X, respectively such that K,cL. for each «. Hence by
Lemma 4.2 there is a locally finite collection B={V,|lac?} of cozero-sets in X,
such that B is similar to 8={K,|ae®?}. This collection ¥ is a cover of X, which
refines p;}(0). Since 1 refines pz(9) and py'(W) refines &, B refines p;(H) and
271 (W) refines ©.

Suppose that N{U.laey}#0 for a finite subset y of Q. Then N{K.|aer}=0
and hence N{p;"(Kolaeyr}#8 by (6). Therefore, we have N{p:(V.)laey}#9. On
the other hand, N{p:(V.)|aey}=+0 implies N{V.|aey}+0@ for a finite subset y of Q.

Therefore B is a proper cover of X, with respect to the map p,. This
completes the proof of Theorem 3.1.

§ 5. Applications

A subset A of a space X is called P-embedded (resp. P"-embedded) in X if
every cover of A (resp. every cover of A of cardinality =m) has a refinement
which can be extended to a cover of X (cf. the convention for cover at the end
of the introduction). Then as an immediate consequence of Theorem 3.1 we have
the following theorem.

THrEOREM 5.1. Let A be a subset of a topological space X. Let WA, X) be the
inverse system which consists of open neighborhoods of A in X and which has the
inclusion maps belween them as bonding maps. Suppose that either A is P-embedded
in X or X 1s hereditarily paracompact Hausdovff. Then WA, X) is proper.
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As a corollary to Theorem 5.1 we have the following theorem by virtue of
Theorem 1.4 and [8, Theorem 3.2].

TureoreM 5.2.  Under the same assumplion as in Theorem 5.1, we have an
1Somovphism

H™A: G)=lim (HU; G)|Uel(A; X))

where H"(S; G) denotes the n-th Cech cohomology group of a space S with coeffi-
cients in an abelian group G which is defined by using locally finite normal open
covers of S.

The proof of Theorem 5.1 yields also the following theorem, which may be
regarded as a substitute for [2, Lemma, 5.5].

THeorEM 5.3, Let A be a subset of a topological space X. Let m be an
wnfinite cardinal number. If either A is P"-embedded in X or every subspace of X
is m-paracompact and normal, then for any normal open cover & of A of cardinality
=m theve exist an open neighborhood U of A in X and a locally finite normal
open cover B of U of cardinality =m such that BN A refines & and B is a proper
cover of U with respect to the inclusion map from A lo U.

§ 6. The shape of zero-dimensional spaces

Let X be a Tychonoff space such that dim X=0 in the sense of [7]. Then
the set {ll;}2e4} of all locally finite normal open covers of X of order 1 is cofinal
(with respect to the partial order by refinement) in the set of all locally finite
normal open covers of X. Let X, be the nerve of 1,; let p,: X — X, be a
canonical map and p;.: X, — X, a canonical projection for A</, where by i<X
we mean that ;. is a refinement of U,. If 2<p<y, then p.p..=p: and pu. pu=pu,
but, since each X, is discrete, we have actually p,=p,.p,. and pi.pi.=p;.. Thus,
{X:, puey A} is an inverse system of discrete spaces with X as its complement; in
the present case each p; is surjective. Hence by Theorem 3.4 we have

‘LL(X) =lim {Xl,p;,zr, /1}.
—

Let Y be another Tychonoff space with dim Y=0, and let us construct an
inverse system {Y,, ¢,,., M} of discrete spaces for ¥, which corresponds to {X;, p., 4}
above. Then {Y,, p.., M} has p(Y) as its inverse limit and {Y, [g..}, M} is
isomorphic to the Cech system of Y in the homotopy category 28 of polyhedra.

According to our approach to shape theory in {8], a shape morphism from X
to ¥ is an equivalence class of system maps from the Cech system of X to the
Cech system of Y. In the present case, any system map from {X;, [pw] 4} to
{Y.,[g.1, M} is obtained from a system map from {X;, pu, A} to {¥,, qu., M}.
Thus, any shape morphism from X to Y is induced by a continuous map from
w(X) to p(Y). Therefore if X and Y are of the shape, then p(X) and (YY) are
homeomorphic. Conversely, if x(X) and (YY) are homeomorphic, then ux(X) and
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#m(Y') are of the same shape, and hence by [8, Theorem 5.2]1 X and Y are of the
same shape. Thus, we have by [8, Theorem 5.1]

THeorREM 6.1. Let X and Y be topological spaces such that dim X=0 and
dim Y=0 in the sense of (7). Then X and Y are of the same shape if and only
if po(X) is homeomorphic to pz(Y), where ¢ is the Tychonoff functor which is a
reflector from the category of topological spaces to its full subcategory of Tychonoff
spaces (cf. [7, §11).

For the special case of X and Y being paracompact Hausdorff, Theorem 6.1
reduces to a theorem proved by Kozlowski and Segal [10].
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