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Introduction 

In a previous paper [8] we have established that the shape category of topo­
logical spaces is category-equivalent to a full subcategory of the pro-category of 
the homotopy category of CW complexes, and that such a category-equivalence 
can be obtained by assigning to each topological space ~X an inverse system in the 
homotopy category of CW complexes which is associated with )( in the sense of 
our paper [8]. As such an inverse system we have the Cech system of X; it 
consists of the nerves of locally finite normal open covers of X. 

On the other hand, in defining the notion of shape, inverse systems of ANR's 
for metric spaces are utilized by S. Mardesic and J. Segal [3] for the case of 
compact Hausdorff spaces and by R. H. Fox [2] for the case of metric spaces. 
The inverse systems with ~X as their inverse limit, which are used by these 
authors, induce the inverse systems in the homotopy category of spaces which 
are associated with X. 

In view of these results it is meaningful to find a condition under which an 
inverse system of spaces with a given space X as its inverse limit induces an 
inverse system associated with X in the homotopy category of spaces. As such a 
condition we have introduced the notion of proper inverse systems in our previous 
paper [8]. 

In this paper we shall establish that a Tychonoff space X admits a proper 
inverse system of polyhedra with X as its inverse limit if and only if f1(X) =X, 
where f1(X) is the completion of X with respect to the finest uniformity of X. 
This result will be obtained by making use of a recent result of P. Bacon [1]. 

Finally, it will be shown that zero-dimensional spaces X and Y have the same 
shape if and only if f1(X) is homeomorphic to f1( Y). 

Throughout this paper we shall mean by a cover of a space a locally finite 
normal open cover, and by a polyhedron a simplicial complex with the weak 
topology. 
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§ 1. Proper inverse systems 

Let {_X;, PJ.J." /1} be an inverse system of topological spaces over a directed set 
11, and let X be its inverse limit; let PJ. : _X -)- X, be the projection for each AE /1. 

DEFINITION 1.1. {_Xi.> P;,;.' , /1) is said to be proper if for every cover G$ of )( 
and for every cover .s) of .Xl with a given AE /1 there are pE /1 and a cover 11 of _XI' 
such that J..:; p, U refines P~}(f), P;l(11) refines G$ and 11 is proper with respect to 
the map PI" Here a cover ~ of a space Y is defined to be proper with respect to 
a continuous map f: X -+ Y if f- 1 induces an isomorphism bet\veen the nerves of 
~ and f-l(~). 

In a previous paper [8] we have proved the following theorems. 

THEOREM 1.2. If each .L'I{, is a c01npact I-Iausdorff space, then {X),PJ.J.".li} is 
proper. 

THEOREM 1.3. If.X is a metric space which is contained in a1'wthel' 1netric 
space P and if {.X" PJ.J.' , .lJ} consists of all open neighborhoods of X in P and of the 
inclusion maps, then {.X;., Pi;.".l1} is proper. 

TI-IEOEEM 1. 4. Let {){h Pi.J.,,!1} be a proper inverse system. Then (i) fo1' any 
continuous map f from X to a polyhedron Q there are some AE/I and a continuous 
nwp fl. : Xl -)- Q such that fc::::.f;.P;,: X -)- Q, and (ii) for any two continuous maj} 
fl, g2: )(2 -+ Q with Q a polyhedron such that f,P, c::::. gJP1: X -)- Q there is A'~A with 
fJ.P;;.,c::::.g;.PJ.l' : X}., -)- Q; that is, the inverse syste'lJ7, {X"' [PJ.;"], /t} in the h01ntopy c{tie­
gOYy of spaces is associated with X in the sense of [8]. 

Theorem 1.3 will be generalized in § 5. 

§ 2. Level inverses ystems 

Having read the first version of [8], P. Bacon kindly informed me that the 
definition of proper inverse systems there had a defect which made the proof of 
[8, Theorem 1. 9] (=Theorem 1.4 above) invalid. In the second version of [8] I 
modified the definition slightly (as in § 1 above) so that the proof may be valid 
without any alteration. After this I received a copy of [1], in which Bacon defined 
level inverse systems and proved actually the assertion that a level inverse system 
of paracompact Hausdorff spaces induces an inverse system in the homotopy 
category of spaces which is associated with its inverse limit in the sense of [8] 
(d. Theorem 1.4 above); in particular, his proof for the property (i) of Theorem 
1.4 above is carried out along the same line as our proof described in [8] by 
showing essentially the assertion that a level inverse system of paracompact 
Hausdorff spaces is proper (the defect mentioned above does not concern the proof 
for the property (i) of Theorem 1.4 above). The latter assertion (and hence the 
former by Theorem 1.4) holds without the assumption that a level inverse system 
consists of paracompact Hausdorff spaces, as will be shown in Theorem 3.1 below. 
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Let {X"Pn', /1} be an inverse system of spaces and let X be its inverse limit; 
let P;. : )( ---+ Xl be the projection for )E /1. 

DEFINITION 2.1. {Xi.) Pi-i.', II} is said to be level if (a) for any cover @ of X 
there exist }.E11 and a cover 11 of )(;. such that P;-l(ll) refines @ and (b) for any 
)Ell and any open set V of Xl with V=:JP;.(X) there is }.'2}. such that P;'i.,(X;.,)e V. 

Let )( be a topological space. Let {ltlacO} be the set of all locally finite 
cozero-set covers of)(. Then we can associate with each U" a partition of unity 
{¢Ja,jljE]a} such that Ua consists of cozero-sets {xLKI¢",j(x»O} with jE]a. Let j' 

be the set of all non-empty finite subsets of Q. For J = {al, "', an} E r let us put 
1'1 

llr = ll"i and define a canonical map ¢, from X into the nerve N(U,) of UI by 
1 

n 

¢lr;) = L: ( n ¢"i' j/x) )v( (allj]), ... , (an, jn») 
i=l 

11 

where v( (al,j]), "', (an,jn) denotes the vertex of the nerve of !\lLi corresponding 
i=l 

to the set n {xEXI¢"i . .ii(X»O}, and L: ranges over all such ((a],jl), ... , (an,jrJ). 
i=l 

For J' r/ET' we define rsr' by rer', and for rs!' we shall define a simplicial 
map 0rr' from N(ll,.) to N(ll,) by assigning to each vertex v( (a], jl), "', (am, jm») the 
vertex v((akpj,,), "', (akn,jk n», where we assume that r'={ah "',am } and r={ak

1
, 

. ", aJcn } with l~h] <k2< ... <kll ~m. Then we have 

for rsr'· 

Now, let (r, U) be a pair such that U is an open set of N(ll,) containing ¢,(X) 
and let us define a partial order (r, U)s(r', U') by requiring that rSt', 0r,'(U')cU. 
Let /1 be the set of all such pairs (r, U). For }.=(r, U) let us put X;. = U and 
define P;.: ~K ---+ ~K). by p;.(x)=¢r(x) for XEX. For )=(1', U)s)'=(!', U') let us define 
PJ1' : Xl' -)- Xl by P21'(x) =¢)rr'(x), XE){).'. Then it is easy to see that inverse system 
{Xl, P;';'" /I} satisfies the conditions (a) and (b) in Definition 2.l. In the present 
case X is not necessarily the inverse limit of {X;., P;';'" Il} but for each AE II there 
is a continuous map P;.: X -)- Xl such that P;.=PwP;., for AS}.'. 

In sllch a case Bacon [1] say that the inverse system {_K;., PAl.,.l1} has _K as its 
complement. Since an open subspace of a polyhedron is itself a polyhedron, Bacon 
[1] proved the following theorem by the above construction. 

THEOREM 2.2. Any topological space X admits an inverse system of polyhedra 
with X as is complement. 

§ 3. Main theor~ms 

We are now in a position to state our main theorems. 

THEOREM 3.1. Every level inverse system of topological spaces is proper. 

THEOREM 3.2. A Tychonoff space X admits a proper inverse system of poly­
hedrra with X as its inverse limit iff X is topologically cOlnpleie. 
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Since any polyhedron is paracompact Hausdorff l
) and any paracompact Hausdorff 

space is topologically complete, the inverse limit of an inverse system of polyhedra 
is topologically complete. Hence, in view of Theorems 2.2 and 3.1, Theorem 3.2 
is a direct consequence of Theorem 3.3 below which is proved by Bacon [1] for 
the case of )( being paracompact Hausdorff. 

THEOREM 3.3 If){ is a Tychonoff space which is topologically complete and 
{X;., PI.2" .,;J} is an inverse system of T]-spaces z.uith .X as its complement, then X is 
the inverse lim,it of {Xl, PV" A}. 

PROOF. Let {gJ.: Y -)- X 1 j;{EIJ} be a set of continuous maps such that 

for 

Let us put 

First, let us note that P;'g.(y)*0 for each ;(; because, otherwise we would have 
PJ./1(X,,)ng;.(y)=0 for some flE/J with J-::;,p by virtue of condition (b) but this is 
contradictory to the fact that PJ."g,,(?J)=g;.(y). Secondly, C(?/) has the finite inter­
section property since we have P;,'gA' (y)cP;'gly) for ;(-::;';{/. Finally, for any 
cover ® of )( there exist JEll and a cover 11 of XJ. such that j);'(11) refines @. 1£ 
gJ.(y)E VEU, then P;'g;.(y)cP;'(U). Since P;'(U)cG for some GE® we have P;'g;.(y) 
CGE®. Thus, C(y) is a Cauchy family with respect to the finest uniformity of X. 
Since X is complete with respect to this uniformity, n {P;'gJ.(?J)jJE/l} consists of a 
single point, which shall be denoted by g(y). 

Let G be any open set of X containing g(y). Then there are JEA and a cover 
,S) of X such that St (P;'gJ.(Y), ,p)cG. From condition (a) we see that there are 
pE 11 with J-::;' p and a cover ~ of )(" such that P;;l(~) refines,S). Hence we have 

( 1 ) 

On the other hand, by the continuity of g/1 we can find an open neighborhood W 
of y such that 

( 2) gi W)cSt (g,,(y), ~). 

( 3 ) 

Since (3) shows that g(W)cG, the continuity of 9 is proved hereby. 

1) More generally, any CW complex is paracompact and Hausdorff. This result was 
proved first by Morita [5J (a simpler proof can be found in [6, § 3]). In [5J I wrote that 
the result was proved earlier by H. Miyazaki, the paracompactness of CW complexes, 
Tohoku Math. ]. 4 (1952), 309-313. This quotation, however, was wrong. Because, as was 
pointed out by topologists in Osaka, his proof was incorrect. 
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On the other hand, we have 

for 

since p;,g(y)c n {P;,(PI7
Ig,,(y) )lfl E/I} CP;,P-;Ig;,(y) =glY). Moreover, if h: Y -+ Xis another 

continuous map such that g;,=PJl for each JE/l, then h(1/)E n {p;.-lg;,(y)IJEI1}=g(?/) 
and hence we have h=g. This completes the proof of Theorem 3.3. 

THEOREM 3.4. Let {X;" Pn', A} be an inverse system of topologically complete 
Tychonoft sjJaces with a Tychonofl space X as its com-plement. Then the comjJletion 
of X with respect to its finest uniformity, fleX) in notation, is the inverse limit of 

{X;"PJ.i." iI}. 

PI~OOF. For an open set G of )( let us put 

Then for any open set U of fiX we have 

( 4 ) Uc( Un X)*cCl11x ( Un X). 

Let fl be the covariant functor from the category of Tychonoff spaces and con­
tinuous maps to its full subcategory of topologically complete spaces which assigns 
to each space X the completion of )( with respect to the finest uniformity of _3(. 

Then we have continuous maps fi(P;,): fiX -+ XJ. for J.Eil and fl(P;,)=P"'fi(PJ.') for 
JsJ.'. 

Let @ be any cover of /.1-3(, and &) a star-refinement of @. By condition (a) 
there are J E Jl and a cover U of LY;' such that &) n X is refined by P-;I(U). Let U 
be any set belonging to U. Then there is some FIE&) such that Xnp.(p;,)-l(U)c 
Xn II. Hence by (4) we have 

( 5 ) 

Since there is some GE® such that St (H, &)cG, we have f1(PJ.)-l(U)cG. This 
shows that f1(PJ.)-l(U) refines ®. Thus condition (a) is satisfied for {X;" Pv', II} 

and f1(P,): f1X -)- .X, with JEil. 
If f1(P;,)(pX)c U for an open set U in -3(;" then P;,(X)c U and hence P,p(X,,)c U 

for some pEA with J.Sf1. 
Therefore, the inverse system {X;, PJ.i." Ii} has pCX) as its complement. Since 

/L3( is topologically complete, p(X) is the inverse limit of {X;" Pv', II} by Theorem 3.3. 

§ 4. Proof of Theorem 3. 1 

Before proceeding to the proof of Theorem 3.1 we shall need two lemmas. 

LEMMA 4.1. (Morita and Hoshina [9]). Let X be a topological space. Let 
{F,I}EA} and {G,IJ.E/i} be locally finite collections of zero-sets and of cozero-sets in 
X respectively such that FlcG;, for each JEll. Then U{F;,I)Eil} is a zero-set in _3(. 
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LEMMA 4.2. Let {FlIJE/l} and {G 2 1)E,1} be the smne as m Lemma 4.1. 
Then there is a collection {V1IAE 11} oj cozero-sets in X such that (i) F2 c 172 cCl 172 
cG 2 Jar each AE.1 and (ii) {Cl V2 1J.E/1} is similar to {FlI2E/J}. 

PROOF. Let us well-order the index set // and assume that /l={aIO~a<~} for 
some ordinal ;. Let j' be the set of all finite sets r={a

l
, "', an} with ai<;, i=1, 2, 

"',n, such that n r'a.=/=0 but r~n(n Fcr.)=0. 
i=l 1 i==l 1 

Then n {FcrlaEr} is a zero-set for each rE f'. On the other hand, {n G"lrET'} is 
aET 

locally finite and each member of this collection is a cozero-set. Let us put 

So= U {n FalrEll 
aEr 

Then So is a zero-set of X by Lemma 4.l. Since 

there is a continuous map <po : X -)- [0, 1] such that 

Let us put 

1 
0 for xEFo 

<po(:C) = ' 
1, for .rE(X-Go) US. 

170= {.rEX l<Po(x)< ~ }, 

Then 170 is a cozero-set, Ko is a zero-set and Foc VocCI VocKocGo• Since 
!{on(SoU(X-Go»=0, {FaIO~a<~} and {Ko,FaIO<a<~} are similar. 

By transfinite induction we can construct cozero-sets Va, zero-sets K" for each 
a <; such that 

(b)" {l\3, Frip<a, a~r<:;:} is similar to {!{p, Frl(3~a, a<r<~}. 

This construction is carried out by the same argument as in the case a = O. (Cf. 
the argument in the proof of [4, Theorem 1.3]). 

Then {el Vala<~} is similar to {F"la<:;:}. This proves Lemma 4.2. 
Now we are able to prove Theorem 3 .1. 

PROOF OF THEOl~EM 3.1. Let {)C, , P"l" /l} be an inverse system with )( as its 
complement. Then, for each AE!l there is a continuous map Pi : )( -+ ~>{2 such that 
P2=Pn'P'" for ?~?I. 

Let @ be any cover of _>( and S) any cover of ->(2 with AE/l. Then by condition 
(a) in Definition 2.1 there are ).)EJ1 with J~).) and a cover U of Xv such that U 
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refines jJ;,l(Sj) and p;:-l(U) refines @. 

Here we may assume that U = {Ua laED} is a locally finite cozero-set cover of 

Xc' Then there is a locally finite zero-set cover lr.={FalaED} such that F"c Ua for 
each aEQ. 

Let r be the set of all fmite subsets r of Q such that 

Since {n F" IrE J'} is locally finite, the union ]-7' of all the sets in this collection is 
{JEr 

closed. I-renee by condition (b) in Definition 2.1 there exists f-1E.'1 with '.):{,p such 
that A/X/1)n F=0, that is, p:;}(F) =0. 

Let us put 

Then for any finite subset r of .0 

( 6 ) 

Because, if n{p;J(Ka)laEr}=0, then Pfl(){)n[n{I(,laEr}]=0and hencepv(X)n[n{Fal 
aEr}]=0, and hence we would have rEl', but this is a contradiction since n {Kal 
aEr}=0 for rEF'. 

Now let us observe that {I-(,} and {L,} are locally finite collections of zero-sets 
and of cozero-sets in Xp respectively such that K.a cL" for each a. Hence by 
Lemma 4.2 there is a locally finite collection \B={ValaE!J} of cozero-sets in ~){Il 

such that \B is similar to ~1= \Ie laED}. This collection \B is a cover of XI' which 
refines P~}(U). Since U refines P;,l(Sj) and p;:-l(U) refines @, \B refines P~l(,p) and 
P-;l(\B) refines @. 

Suppose that n {U"laq'}=i=0 for a finite subset r of D. Then n {KalaEr}=i=0 
and hence n {P-;\K.)laEr}=i=0 by (6). Therefore, we have n {P;I(Va)!aEr}=i=0. On 
the other hand, n {jJ-;J(Va)laEr}=i=0 implies n {Va IIXEr}=i=0 for a finite subset r of fi. 

Therefore \B is a proper cover of X/! with respect to the map PI" This 
completes the proof of Theorem 3.1. 

§ 5. Applications 

A subset A of a space ~)( is called P-embedded Crespo p1l1-embedded) in )( if 
every cover of A (resp. every cover of A of cardinality ~ m) has a refinement 
which can be extended to a cover of _X (d. the convention for cover at the end 
of the introduction). Then as an immediate consequence of Theorem 3.1 we have 
the following theorem. 

THEOREM 5.1. Let A be a subset of a topological space X. Let U(A, X) be the 
inve7'se system which consists of open neighborhoods of A in X and which has the 
inclusion maps between them as bonding maps. Suppose that either A is P-embedded 
in X or )( is hereditarily paracompact Hausdorff. Then U(A, X) is proper. 
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As a corollary to Theorem 5.1 \ve have the following theorem by virtue of 
Theorem 1.4 and [8, Theorem 3.2]. 

THEOREM 5.2. Under the same assumption as zn Theorem 5. 1, we have an 
iSOJnorphism : 

-) 

where /-{'I(S; G) denotes the n-th Cech cohomology group of a space S with coeffi­
cients in an abelian group G which is defined by using locally finite normal ojJen 
covers of S. 

The proof of Theorem 5.1 yields also the following theorem, which rnay be 
regarded as a substitute for [2, Lemma, 5.5]. 

THEOREM 5.3. Let A be a subset of a topological space X. Let 1ll be an 
infinite cardinal number. If either A is Pm-embedded in X or every subspace of LY 
is m-paracompact and normal, then for any normal open cover (S) of A of cardinality 
~ 111 there exist an open neighborhood U of A in X and a locally finite normal 
open cover ~ of U of cardinality ~111 such that ~ n A refines (5) and 'is is a jJroper 
cover of U with respect to the inclusion nwp fron'! A to U. 

§ 6. The shape of zero-dimensional spaces 

Let )( be a Tychonoff space such that dim X = 0 in the sense of [7]. Then 
the set {UlIAE/l} of all locally finite normal open covers of X of order 1 is cofinal 
(with respect to the partial order by refinement) in the set of all locally finite 
normal open covers of )(. Let Xl be the nerve of U,; let Pl:)( -} Xl be a 
canonical map and PJ.1': X" -} _){, a canonical projection for ASA', where by ASA' 
we mean that U.l' is a refinement of 112 • If J..sPS)), then P).I'PI'~==-PJ.v and P1t,PI'==-Pl, 
but, since each ~){J. is discrete, we have actually P;'=P'I'PP and h.uP",=PJ.,' Thus, 
{-){"Pw, III is an inverse system of discrete spaces with X as its complement; in 
the present case each Pl is surjective. Hence by Theorem 3.4 we have 

p(X)=lim {X)',P;'l" Il}. 
<'--

Let Y be another Tychonoff space with dim Y = 0, and let us construct an 
inverse system {Yp , qt'P" M} of discrete spaces for Y, which corresponds to {Xl, PJ.J.' , /1} 
above. Then {Yt"jJ"""A1} has p(Y) as its inverse limit and {}l~lJ' [q,.p,],J1I} is 
isomorphic to the Cech system of Y in the homotopy category ffi5 of polyhedra. 

According to our approach to shape theory in [8], a shape morphism from X 
to Y is an equivalence class of system maps from the Cech system of _){ to the 
Cech system of Y. In the present case, any system map from {.X;., [Pv,], Il} to 
{YP) [ql'I"]' l\1} is obtained from. a system map from {X;,Pll" /J} to {Yu) q,.I'" ~Ml 
Thus, any shape morphism from X to Y is induced by a continuous map from 
p(_){) to p( Y). Therefore if _){ and Yare of the shape, then p(_){) and p( Y) are 
homeomorphic. Conversely, if F(-){) and p( Y) are homeomorphic, then p(X) and 
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p( Y) are of the same shape, and hence by [8, Theorern 5.2] X and Yare of the 
same shape. Thus, we have by [8, Theorem 5.1] 

THEOREM 6.1. Let){ and Y be tOjJological spaces such that dim){ = 0 and 
dim Y = 0 in the sense of [7]. Then X and Yare of the same shape if and only 
if P7:(X) is hmneom01'phic to p.7:( Y), where 7: is the Tychonoff functor which is a 
reflector frmJl the category of topological spaces to its full subcategory of Tychonoff 
spaces (cf. [7, § 1]). 

For the special case of X and Y being paracompact Hausdorff, Theorem 6.1 
reduces to a theorem proved by Kozlowski and Segal [10]. 
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