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Introduction: The notion of shape was originally introduced by K. Borsuk [2]
for compact metric spaces. Since then shape theory has achieved a remarkable
development. In particular, the notion of shape is extended to the case of arbi-
trary topological spaces by S. Mardesic [6]. In the present paper we shall under-
stand the notion of shape in the sense of Mardesié [6].

In a previous paper [10] we gave a new approach to shape theory by means
of the Cech systems.

Let (X, A, %) be a pair of pointed topological spaces. Let {U,jieAd} be the
family of all locally finite normal open covers of X such that each 9/, has exactly
one member containing z,. Then we have an inverse system {(X;, A, %o1), [Pav], 4}
in the pro-category of the hemotopy category of pairs of pointed CW complexes by
taking the nerves of 9J, and. ¢/,NA, by ordering 4 by means of refinement of
covers, and by taking the homotopy classes of canonical projections. We call this
inverse system the Cech system of (X, A, z). The Cech system of (X, A) is defined
similarly by using all locally finite normal open covers of X.

According to our approach in [10], a shape morphism from (X, A, x,) to
(Y, B, yo), where (X, A, ) and (Y, B, y,) are pairs of pointed spaces, is defined to
be an equivalence class of system maps from the Cech system of (X, A, z,) to the
Cech system of (Y, B, ys). Shape morphisms between pairs of spaces are defined
similarly. Our approach enables us to discuss the notions of homotopy and homo-
logy pro-groups in shape theory.

The n-th (éech) homotopy pro-group =.(X, A, x,) is defined to be a pro-group
{ma(Xs Au @02), (P, A 0z2); m(X, A, zo)={m(X), As 302), 7:(par), 4} 1S con-
sidered as a pro-object in the category of pointed sets and base-point preserv-
ing maps.

“The n-th (éech) homology pro-group H,(X, A) with coefficients in the additive
group of integers is defined similarly by using the Cech system of (X, A). Since
{(U,)2e4} described above to define the Cech system of (X, A, xy) is cofinal in
the family of all locally finite normal open covers of X, the inverse system

1) Any locally finite normal open cover ¢J of X admits a locally finite cozero-set
cover {G.laeR} of X as its refinement. Let zy€G.. Then there is a zero-set /' of X
such that zge/’CG,. The locally finite cozero-set cover {Gay Go.—FlaeQ, asea,} of X is a
refinement of 9J, and G., is the sole member containing x,.
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{HW (X5, A, Hu(paw), 1) is isomorphic to H,(X, A) in the category of pro-groups.
Hence, the set of the Hurewicz homomorphisms @.(X,, As, 301): 7l X Ay, %01) —
H,(X,, A)) for Je/ determines a morphism @.(X, A, zo): 7 X, A, zo) —> H (X, A)
n the category of pro-groups, which we called the Hurewicz morphism in [11].

A subspace A of a space X is said to be P-embedded in X if every locally
finite normal open cover of A has a refinement which can be extended to a locally
finite normal open cover of X. If A is P-embedded in X, {(A,, ®o), [Paxl(As. 201)],
A}, which is obtained from the Cech system of (X, A, z,), is isomorphic to the
Cech system of (A, z).

A pro-group G={G,, ¢, A} is a zero-object, G=0 in notation, if G is iso-
morphic to a pro-group consisting of a single trivial group, or equivalently, if for
each Je.l there is some 2=z with ¢,,=0. In case (X, xy) is a pointed compact
metric space, mi(X, 2,)=0 is equivalent to saying that (X, x,) is approximatively
k-connected in the sense of Borsuk [3] (cf. Lemma 2.3 below).

Let (X, A, z,) and (Y, B, y,) be pairs of pointed topological spaces. Then a
shape morphism s from (X, A, x,) to (Y, B, yo) induces a morphism from (X, A, z)
to m(Y, B, y,) in the pro-category of groups for »=2 and in the pro-category of
pointed sets for n=1; this morphism is denoted by =,(f). Similarly a shape mor-
phism f between pairs of spaces (X, A) and (Y, B) induces a morphism between
H,(X, A) and H,(Y, B) in the pro-category of groups, which we denote by H,(f).

In the present paper we shall establish the following theorems as analogues in
shape theory of the classical Hurewicz theorem and the Whitehead theorems in
homotopy theory.

THaeorEM A. Let (X, A, xo) be a pair of pointed, connected, topological spaces
such that n (X, A, 0)=0 for k with 1=k=n n=1). Then H(X, A)=0 for 1=k=n.
If A is P-embedded in X and =.(A, x,)=0, then the Hurewicz morphism O(X, A, zy):
(X, A, zo)— H(X, A) is an isomorphism for k=n+1 and an epimorphism for
k=n+2.

THEOREM B. Let f: (X, o) —> (Y, yo) be a shape morphism of pointed con-
nected topological spaces. For n=2, let us consider the following two conditions.

(a) 7)) =X, zo) — 7Y, o) ts an isomorphism for 1=k<n and an epi-
morphism for k=n.

o) Hlf): H(X)—> HJ{Y) is an isomorphism for 1=k<n and an epimor-
phism for k=mn. ' '

Then (a) tmplies (b), and conversely, in case =(X, z0)=0 and =(Y, yo)=0, (b)
implies (a).

TraeoreM C. Let f: (X, xo) —> (Y, yo) be a shape morphism of pointed con-
nected topological spaces of finite dimension and let n=max (1+dim X, dimY).
If the induced morphism =u(f): 7u(X, zo) — mu(Y, w0) of homotopy pro-groups
1S an isomorphism for 1=k<n and an epimovphism for k=mn, then f is a shape
equivalence.
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Theorem A was proved in our previous paper [11] except the assertion con-
cerning epimorphisms. Theorem B was proved in [12] for the case of f being
induced by a continuous map. Theorem C has been proved hitherto for the fol-
lowing cases.

(i) X and Y are compact metric spaces and m=max (1+dim X, dimY)+1
(M. Moszynska [13]).

(ii) X and Y are compact Hausdorff spaces with Y metrizable and = is the
same as in (i) (Mardesic [7]).

(iii) f is induced by a continuous map and 7 is the same as in (i) (Mar-
desi¢ [7]).

(iv) f is induced by a continuous map (Morita [12]).

In Mardesi¢ [7] the problem to prove or to disprove Theorem C remained
open. Our result settles this problem.

Here the covering dimension of a topological space X, dim X in notation, is
defined to be the least integer such that every locally finite normal open cover of
X admits a locally finite normal open cover of X of order =n+1 as its refinement
{cf. Morita [9]).

A homological version of Theorem C is obtained from Theorems B and C.

TuroreM D. Let f: (X, z0) —> (Y, yo) be « shape morphism of pointed con-
nected spaces and let n=max (1+dimX, dimY). If =X, z)=0 and =Y, yo)=0,
and if the induced movphism H(f): H(X) — H(Y) is an isomorphism for 1=k
<n and an epimorphism for k=mn, then f is a shape equivalence.

§1 is devoted to establishing some basic theorems on pro-categories which
have applications in shape theory of topological spaces; some of them may be of
interest in themselves.

§1. Some theorems on pro-categories

Let & be a category. Let X ={X,, p,., A} be an inverse system in & (i.e. 4 is
a directed set with a partial order <, X, is an object in & for each JeA, and p,;.:
X —> X, is a morphism in & such that p,=1, pupiw=pu for K2’ <2”). Let
Y={Y., qu., M} be another inverse system in & A map of inverse systems, or
simply a system map, from X to Y consists of a map ¢: M —> 4 and a collection
{(fu: Xy —> Y, |peM} of morphisms in & such that for every p, p/eM with p<p’
there exists some 2e/ for which ¢(y), ¢(x')<2 and fupeio:=quu fuDscurs. 1 g=
(&, gy NV Y —>Z={Z,, 7...,, N} is a system map, then the composite of the system
maps f and ¢ is defined to be a system map {¢¢, 4, N}: X — Z, where =g, s> :
Xowory —>Z,. The identity system map 1: X — X consists of the identity map
of 4 onto / and the collection of identity morphisms 1,=1: X, » X;. Two system
maps f={¢, f., M} and g={¢, g, M} both from X to Y, are called equivalent, if
for any peM there is some 2eA such that ¢(), ¢(p)<4i and fupsoi=¢uPocs. This
is an equivalence relation among all system maps from X to Y. The equivalence
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class containing f is denoted by [f]. Then [f]=[/’] and [¢g]=[¢'] imply [¢f]1=[¢"F"]
Thus we have a category whose objects are inverse systems in & and whose mor-
phisms are equivalence classes of system maps. This category is called the pro-
category of & and denoted by pro(f). The pro-category defined here is somewhat
less general than that of Grothendieck [4] or Artin-Mazur [1].

Let X={X,, pir, A} and Y={Y,, gz, .[} be inverse systems in & over the same
directed set 1. If a collection of morphisms f,: X, —Y,, Je J, is such that f,p..
=q, v for i</, then {1, f,, A} defines a system map from X to Y. Such a system
map is called a special system map. Special system maps are important in view
of the fact that for every system map f/: X' —> Y’ there exist three system
maps i: X' — X, f: X— 7Y, j: Y/ > Y such that f is a special system map,
711/ 1=[17] and [7], [7] are isomorphisms in pro(®) (cf. {1, Corallary 3.2, p.
160}, [7]).

The following is a basic theorem on pro-categories.

TueoreMm 1.1, Let X={X,, pu, A} and Y={Y,, q., A} be inverse systems
in & over the same directed set A, and let f={1, f,, A} be « special system map
from X to Y. Then [f] is an isomorphism in pro (8) iff for amy i€/ there is
some ped such that i<y and there exists dn,: Y.—> X, for which (.f.=p:. and
f;g/u,,=q;,‘.

Proor. To prove the “if” part of Theorem 1.1, assume the condition of
Theorem 1.1 is satisfied. Let us first define a new relation —3 in A as follows:
2=3p iff A< and there is a morphism ¢;,: Y, — X, such that
( 1 ) fr/)ll!f# :pim _f;(/}w:q,ip-

Then 23px3v implies 23y, A< 3/ <p implies 734 and for any ie/ there is
ped with 1-3p.

If x323p¢3v, then
< 2 ) k}l):lq.l» :‘/)wg#» =Peii1uG s
SINCE DepGus =DPer Pislw =PeiP1uluw=0c:G2.4m. Moreover, if 3’33y and £ <213
2’ 3p—3v, then by (1) and (2) we have

GeeQenn =D ey =i Qo =Pevhinlu
=paaPirhinlpm =P Gs

that is,
( 3 ) ‘7/)::'(1x‘v:prl¢1ii‘qi‘w

Now, for each le/ let us choose an element «a(2) of 4 so that 23a«(2), and
define ¢;: Yoon — X by ¢2=¢.cn. Then by (3) g=la, g;, 4} defines a system

map from Y to X. Now, it is easy to see that [f][¢l=1 and [¢g][f]=1. Hence [f]
is an isomorphism.

Vol. 12, No. 346)
(139)



250 Kiiti MoriTa
The proof of the “only if” part is straightforward and is omitted.

A morphism f in a category with a zero-object is called a quasi-monomor-
phism (quasi-epimorphism) if fg=0 (resp. ¢f =0) for another morphism g implies
g=0. In abelian categories a quasi-monomorphism (resp. quasi-epimorphism) is a
monomorphism (resp. epimorphism).

TurorREM 1.2. Let f: X — Y be a special system map «as in Theorem 1.1.
Let & be a category with a zero-object, kernels and cokernels. Then [f] is a quasi-
monomorphism (resp. quasi-epimorphism) in pro (R) iff for any A€ theve is some
ped such that i<y and p,, Ker f.=0 (resp. (Coker f)q,,=0). In particular, in
case 8 is the category & of groups, (S is a monomorphism (resp. epimorphism) in
pro (®) iff for any i€ there is some pe/d such that i<p and p,, Ker f.=0 (resp.
Imq,,CImf,).

Proor. Let f: X — Y be an epimorphism in pro(®). For ie., let us put
B;=Imf,. Suppose that B, #Y,. Then there are two homomorphisms ¢, ¢ from
Y, to some group G such that ¢f,=¢f; and ¢(y)=d(y) iff yeB;; this is obvious in
case B, is normal, and is proved in [8, p.38] in case B, is not normal. Since
[91{f1=1¢11f], we have [¢]=([¢], where ¢ and ¢ are considered as system maps
from Y to the inverse system {G} which consists only of G. Hence there is some
ped such that i<y and ¢g.,=¢qg,.. Hence Img,,cB,=Im f,. In case B, =Y, we
have Im ¢;,cIm f, for any p with 2<p. The proof for the other parts of Theo-
rem 1.2 is straightforward and is omitted.

TueoreM 1.3, In the pro-category of groups any bimorphism is an iso-
morplism.

Proor. Let f: X —Y be a special system map such as described in Theo-
rem 1.1 where §=® in the present case. Assume [f] is a bimorphism. Then, by
Theorem 1.2, for any Ze€/ there are p, ve/d such that 2<u<v, p,, Ker f,=0 and
Img,cImf, Let yeY, Then there is zeX, with flzx)=q.(y). I f.o")=q¢.(v)
for another x’€ X, then p,.(x)=p..(z"). Hence we have a map ¢, Y, — X, by
putting ¢, (¥)=p,{x). Then ¢, is a homomorphism and ¢.f,=pu, fi)r=0qu.
Hence by Theorem 1.1 [f] is an isomorphism.

In a category with a zero-object and Kkernels a sequence of two morphisms

X-'I-+Y ’ » Z is called exact at Y if ¢gf=0 and s’ in the unique factorization
f=Kerg)f’ of f is an epimorphism ({14, p. 123}). For a category with a zero-
object and cokernels the notion of coexact is defined dually. In the categery of
groups exactness implies coexactness but not vice versa. In abelian categories
exactness is equivalent to coexactness (cf. [14, Lemma 13.1.4]).

THEOREM 1.4. Let 8 be a calegory with a zero-object, kernels and coker-
nels. Let
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N U1 Jos o
- Y, Z P 3
D q» Yoy Say tay
X, S - B . /1, P, 1N 0.
Pae Qs Vo Sy tys

,X.’:-, _fv Yo gs Z B /l : I‘)g 9) i Q 8

be a commulative diagvam in 8 in which each row is exact al P, and Z, and co-
exact at Y, and Y.

(@) If sa(Ker ¢,)=0 and (Coker fi)q..=0 then ryr,=0.
(o) If 1) =0, then su(Ker ¢,)=0 and (Coker f.)g.=0.

Proor. Let by : K, —— P, be a kernel of ¢, and m;:Y; — M; a cokernel of
fi i=2, 3. Then there are an epimorphism /7y : 2, » K, and monomorphisms
gl My — Z;, i=2, 3, such that &,=k/k] and g¢;=g¢/m,. Assume that s,k =0 and
maqs2=0. Then /Ay, =0 and gsge.=0. Let /o : L, »Z, be a kernel of A, Then
there is an epimorphism ¢y : Y, —— L, such that g.=/lg). Since #sgs=gsqs2=0,
we have rylogy=0. Hence 74/,=0. On the other hand, since /7y7:,=0, there is

¥4, . Zy— L, such that 7.,=0475. Therefore 7y, =0. This proves (a).

To prove (b), assume that 7,,=0. Then s.k,/4;=0. Since /] is an epimor-
phism, we have s,,k,=0. On the other hand, g¢7:¢21=¢s¢s=7s0,=0. Since g¢; is
a monomorphism, we have #.g.;=0. This proves (b).

REmMarK. In case =@ and the middle row is exact at Y, 7.,=0 implies
Im g,y Im fo.

§2. Some lemmas on CW complexes and a lemma on approximative k-con-
nectedness

LeMMmA 2.1. Let pi.l,i . (Xi, Af,, .I‘i) _— (X,;;x, A'L;ly $i+x), 0§i<7l, be continuous
maps of pairs of pointed connected CW complexes such that

7’-‘&+1(P1.:.v1.1a)=0 D e (X, Ar, Ty) —> 71 (Xpar, Ager,y Tre1)

Jor 0=k<n. Then there is a continuous map ¢ (Xo, Xy U Ao, 20) — (X, Any 20)
such that $( X)) =z, and
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(‘bj::j)n,nfl“'])m : (‘XD; Abr 32‘0) I (}(ﬂl An’ xn)?

where XF is the k-skeleton of X, and j: (X, Ao, x0) — (X, X' U Ag, x0) s the
inclusion map.

Moreover, if =(pisl(Ao, 26))=0 and =,(p:o|(Xe, z0))=0, then ¢ can be chosen so
that (X)) =wy.

Proor. In what follows, maps are continuous. Assume that =,(p,0](Ay, ) =0
and z,(p1ol(Xo, z0))=0. Putting Lo=X5x7TU Xy X0 and L,=(XFU As)x I U X,x0 for
1=k=n, where [=[0,1], let us construct maps %, :L,— X;, £=0,1, -, n with
the following properties.

(4) Yolz, Oy=2 for 2eX,, Lo(AYX [T Ay
(5) 1z, =2, for zeXi  L(AXI)CA;
(6) Ll Limy =pr. i—ti—n  for k=1,
(7) Yz, eA, for zeX§, k=0.

First, let %, be defined over Xy x0 by 4). For zeX! let 7., &) be a path
from x to x, so that it lies in A, if z€ Al Next, let el be a 1-cell in X, (resp. A),
and let A, : ' — & c X, be its characteristic map. Define a map «;: (£'x0U
E'x 1, EYX 1) — (X, o) (resp. (Ao, 1)) bY as(s, =Zo(ti(s), 2).  Since m,(p1ol(Xo, 20))
=0 and =, (p1l{Ay, 20))=0, precr, 1S homotopic in X, (resp. A,) relative to E'x1 to
a constant map to x,. This homotopy yields an extension 5, of pua; over E'x/
such that 5(E'X )=z, and S (E'XI)cA, if eieA, Define first a map %, : LU
(Xix Iy — X, by (6), put %(z, )=p5(A"(z), t) for zeel, tel and then extend ¥, over
LoU(XixT)U(AgxI) by the homotopy extension theorem so that X,(AyXI)CA,.
Then 7, satisfies (5), (6) and (7).

For k=2, suppose that 7;., has been constructed. Let ¢f be a k-cell in X,— A,
and /2, : E*® > g'C X, its characteristic map. Define a map a;: (E*x0UE*x I, E*
X1, $oX1) — (Xpoy, Apoyy ziey) by au(s, O)=7%..,(h,(s), £) where s, is a point of
E* such that hai(seye XL Since wi(pr s-1)=0, pir-1; 18 homotopic relative to Erx1
to a map from E*X0UE*xT to A, This homotopy yields an extension 8, of
Dix—ay over EFX T such that 8,(E%x1)c A, Define a map %y : Ly, U(XFXT) by
(6) and by Zu(z, t)= (7 (x), 1) for week, tel. Then 7, satisfies (7). Therefore by
induction on k& we can find 7%, satisfying (6) and (7) for all & with 2=k=<n. Here
we note that %,(z, 1)=a, for zxeX..

Finally, by the homotopy extension theorem there is a map 0:X,xJ — X,
such that 0|L,=7,. Let us put ¢(z)=0(z,1) for zeX,, Then ¢ has the desired
properties. This proves the second part of Lemma 2.1.

The first part is proved similarly.
Lemma 2.1 was proved in [11] for the case of simplical complexes.
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Let
pzn; 2n—1
0w 2w (o) 22 (Xan, 520)
fO fl fzn
¥ q1o ' g2 Gon, 2n—1
(Yo, %0) —> (Y4, 91) — -+ {(Yon, yon)

be a commutative diagram in the homotopy category of pointed connected CW
complexes. Let 71 (XiXx 1, z;xI) » (Yii1, yi-1) De a homotopy between fi.ipisi:
and i, iofi 2 9, 0)= finpien @), 0w, D=q;. 1. filx) for zeX; Let Z; be the re-
duced mapping cylinder of f; which is obtained from the disjoint union (X;XxI)
UY; by identifying (z, 1) with fi(z) for xeX; and by shrinking (x;}XI)U{y:} to a
point which is denoted also by z;; the images of (z, #) and y under this identi-
fication are denoted by [z, #] and [y] respectively. Let us define embeddings a;: X;
— 2y Bt Yy — Z; by putting a,(z) =[xz, 0], gly)=[y] and a map y;: Z; —> Y; by
vilz, 1=[f(x)] and ri{yl=y. Then fi=pray, 7:8:=1 and Biyi=l. Let g;: (Y3, v, ¥i)
—> (Z;, Xs, x;) be the composite of 5; and the inclusion map. Following [13], let
us define a map %iei4 . (Z;',, JC{,) —'—*(Zi,v 1y .937;»,1) by

[her ), 20), we X, Ogtg%,
Yill.i(['lrl th= 1
[z, 2=, we X, <<l

7o (D =1gsr1. ()], yeY

-

Then 7;,,.; defines a map of (Z;, X, ;) into (Z;.y, Xi:1, zs.1) which is denoted also
by the same letter 7;.,... Then we have the following commutative diagram in
which each row is exact (the description of base-points being omitted).

Tre1 () 71 (g0) 0 =i (f3)
w1 (X3) Trer (YY) ——> wes1 (Ziy X)) —> w (X)) —> 7 (Y))
mpet (Dicts i) Tre1 (Gisis 1) Trer (Tis1, 1)

Tk+1 (Xi+l) — 7fk§~1(Y'i+l) Tkl (Zirly Xi+l>"—> Tk (XiH) . ka(Yiu)
Lemma 2.2, If il Dok 1. 2k) Ker ap( for) =0 and Im Tc/e»-rl(éhkm,zrcﬂ)clﬂ’l Tier(fonez)

Jor 0=k<n, then there exists a continuous map ¢ : (Zy, Zd&'U KXo, 2) — (Lo, Xom,

Zom) SUCH that Vey an—¥0o=dj, where j:(Zo, Xo, x0) —> (Zo, Z&U Xo, o) 15 the inclu-
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ston map and Z7 is the n-skelelon of Z,.

If, in addition, =.{p.)=0 and =z(q.)=0, then ¢ can be chosen so that
I 23 =Z2u-

This lemma follows readily from Theorem 1.4 and Lemma 2.1, since in the
category of groups exactness implies coexactness.

In concluding this section, we shall prove the following lemma.

LemMma 2.3, Let (X, wy) be a pointed metric space. Let P be an ANR for
metric spaces such that X cP. Then =X, xo)=0 iff for any open neighborhood
U of X in P there is an open mneighborhood V of X in P such that VC U and
7e(ipy) =0 m (V) z0) r (U, zo), wheve iyy : V — U is the inclusion map.

Proor. Let WX, P) be an inverse system which consists of open neighbor-
hoods U of X in P and which has the inclusion maps iyr : V —— U as bonding maps.
By [10, Theorem 1.4] U(X, P) induces an inverse system in 98, which is associated
with (X, xo) in the sense of Morita [10], where 28, is the homotopy category of
pointed spaces having the homotopy type of a pointed CW complex. If two
inverse systems in 98, are associated with the same pointed space, then they are
isomorphic in the pro-category of 28,; this is seen from [10, Theorem 2.4]. Hence
we have Lemma 2. 3.

Thus, for the case of a pointed compact metric space (X, z,), #x(X, x0)=0 iff
(X, xo) is approximatively k-connected in the sense of Borsuk [3].

§3. Proof of Theorem A

Assume m,(A, xs)=0 and =,(X, A, z,)=0. Then by the exactness of the
sequence of homotopy pro-groups (cf. [7], {13)) we have =,(X, 2,)=0. Hence for
each Ze/ there is pe.l which admits a sequence {Z, 4i, ---, 2} in /4 such that i1<2,
<L <y and Pyt (X, Asy Zosy) — (Xop, s Asy s Fosg, ), =0, 1, -, m—1 satisfy
the conditions in Lemma 2.1 (with the subscripts ¢ there replaced by 4;). In such
a case we write A3 . Then for 2, pe/d with 23 there exists a map ¢, : (X,, X"
UA,, zo,) — (X, A, ze:) such that

(8> pl/t:¢2yj;l : (Xpa Am xoy) - (XZJ Ah -’»COZ)
( 9 ) ¢Ay<X;1“ U A,JCA;, ¢1y<X/}):xOX»

where 7 : (X, A,, zo,) —> (X, X" UA,, xo,) is the inclusion map. Let us now con-
struct the quotient space Y,=X,/X,) and put B,=(X?UA,)/X}; let ¢g,.: (X, X?U
Aps @0p) —> (Y, By yo,) be the quotient map. Then there is a map ¢,,: (Y, B,
You) —> (X, Ay, 02) such that ¢,,=d¢,g,. It is to be noted that (Y, B, %6, =0
for 1=sk=n, =(B,, y,.)=0, and that (Y,, B,) is a pair of connected CW complexes.
Thus, by the usual Hurewicz theorem (cf. [5, p. 103]) the Hurewicz homomorphism
O Yy, Buy vou) 1 7 Yoy By You) — H(Y,, B,) is an isomorphism for k=n+1 and
an epimorphism for k=n+2. If we put
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01;;:7571»1(9’)111)(])11—1(Ypa B/u ?/0")41[11:1 l(g;lj[l) .

Hyi(X,, A) — ma (X Al 200,
then we have
//’m(l)wzﬂ(~Xp; A,u wo,;):fvzvx(pl,.),

D1 (X, Ay 2000 =Ha o i(Pan).

Therefore, by Theorem 1.1, {1, ©,.,(X,, A, ), A} defines an isomorphism from
{mn (X5, AL on)y T Pan)y A) to {Hnii(X;, AL, Huoi(P2:), -1}, On the other hand,
Dyio(Y,, B,, wo,) 1s an epimorphism, and hence Im Hy.o(p..) CIm H,oo(ds) C
Im @, (X;, A;, xe:). Hence by Theorem 1.2 @,..(X, 4, x,) is an epimorphism.
Thus the second part of Theorem A is proved.

Let us prove the first part. In this case for each 2 there is some pe/ with
2<p for which there is a map ¢, 1 (X,, XU A,, xo,) — (X, A;, xo;) such that (8)
is satisfied. Since Hi(X,, X7 UA,)=0 for 1=k=n, we have Hi(p,.)=0. Hence Hy(X,
A)=0.

Thus, Theorem A is completely proved.

§4. Proof of Theorem B

For any system map f : X — Y of inverse systems in a category & there are
system maps i X — X', [ X' —Y', j: Y —>Y’ such that [J1[/]1=[/"1], /'
is a special system map and [i],[7] are isomorphisms in pro (). In this case each
object appearing in X'’ (resp. Y’) can be taken from those objects appearing in
X (resp. Y).

Hence without loss of generality we may assume that {(X,, %), [22:], A} and
(Y, vor), [qun], A} are inverse systems in the homotopy category of pointed CW
complexes which are isomorphic to the Cech systems of (X, xy) and of (Y, o)
respectively and that f={1, /i, A} : {(X,, x0))} —> (Y, ve1)} 1S a special system map
(cf. §1,[10]). Now, assume (a). Let i2e/4. Then by Theorem 1.2 there are ele-
ments e/, i=0,1, -, 2n, such that 2=An.<- <A <A such that zu(pPay,., s 1)
Ker zx(f1,,)=0 and Im m.:(Gaypos . 20p. ) CIM mies(foy,,,,) for 0=k<n. Hence, if we
put pg=2 and 7;,=734,, ;%1 DY Lemma 2.1 there is a map ¢ :(Z,, Z7 U X,, 2.,)
»(Z,, Xi, xox) such that 7, =¢7, where 7:(Z,, X, Zou.) > (Z,, Z2U X, 20,) 1S the
inclusion map and Z, is the mapping cylinder of .. Then we have a commutative
diagram :

]{,{;+1(.X;,> _—> H};+}(Yp) —> }:Ikil(Z/u Xy) — HRT(—X#) s [‘{lx( Yp)

| VHos@o | Heatn) [ Bp) |
[—Ik—i-l(Xk) — H (Y3) — Hiei 2, X)) — H(X3) > Hi(Y3)

in which each row is exact and Hj.i(7:,)=0 for 0=k<n. Hence by Theorem 1.4
we have Im Hy,i(q.,)Clm H,.(f2) and Hy(p.,.) Ker Hi(f,)=0 for 1=k<n. Hence by
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Theorems 1.2 and 1.3 Hy(f) is an isomorphism for 1=k<n and an epimorphism
for k=n. This proves (a)—> (b).

Now suppose that =,{X, z,)=0 and =,(Y, %,)=0. Let us prove the implication
(b)=—> (2) by induction on ». Assume that the implication is true for z=2 and
that Hy(f) is an isomorphism for 1=k<wun-+1 and an epimorphism for k=n+1.
Then by the induction hypothesis z,(f) is an isomorphism for 1=k<w% and an
epimorphism for k=n. For xe/A, by Lemma 2.2 there are ied with £<2 and
continuous maps ¢ :(Z,, X, ze1) — (£, Q, So), ¢ 1 (P, @, s0) — (Z., X,, x¢.) such that
D=7, where P=Z,/Z) Q=(Z'UX)/Z! and 7., is defined as the composite of
several maps similarly as in the proof of the first part. Then we have a com-
mutative diagram (the description of base-points being omitted).

Tu ((,)) Tl ((4"\)

Tl (Z,z, —Yi} ———— a1 (P> Q)

muer (Zo Xi)
l

(/)/l o1 ([), Q)

[{n 1 (01) Ii;L 1 (S‘r’)

]—[n o1 (Z,;, AY;> [{IH 1 (Pa Q) e Ii;l%-l (Zn < x)r

Since (P, @) =0 for 1=k=» and =,(Q)=0 the Hurewicz homomorphism @,..,(P, @)
is an isomorphism by the usual Hurewicz isomorphism theorem. If we choose
w,oved so that 2<p<y and Im H,,(q.)cIm H,..(f), HJ(p,.) Ker H,(f.)=0, then
we have H,. (r,7.)=0. Since myi(rai? ) =m0 (0)00 (P, Q) Hyo () Huir (72,7 0)
Duii(Z,, X)), we have m,. (ra77.)=0. Hence by Theorem 1.4 Imm,.(g.)C
Im 7,0 (fe) and =.(p,,) Ker 7o(f,)=0. Therefore, z(f) is an epimorphism for k=n+1
and a monomorphism for k=#. Thus, by Theorem 1.3 (b)=—> (a) holds for n+1.

As for the case n=2, for xe/ there exist ie/ with £#<2 and two continuous
maps ¢ : (Zi Xy o) — (P, @, so) and ¢ : (P, Q, s¢) —> (Z,, X, o) With ¢gp=r,;
where P=2,/Z}, Q=(Z1UX)/Z) Since @(P, @, s,) is an isomorphism by the usual
Hurewicz isomorphism theorem, the proof may be carried out along the same line
as above.

Thus, Theorem B is completely proved.

The following is a supplement to Theorem B.

THEOREM 4.1. Let f: (X, xo) —> (Y, yo) be a shape morphism of connected
pointed spaces. If z.(f):m(X, zo) —> 7Y, yo) is an isomovphism (vesp. an epimor-
phism), so is H\(f)  H(X) — H,(Y).

Proor. Let f be a special system map as in the first paragraph of this
section. Assume m;(f) is an isomorphism. Then, by Theorem 1.1, for any i€/
there are pe/ with 2<yp and a homomorphism ¢,, : 7,(Y,, 90,.) — 7:(X,, %) such
that = (pr)=¢.7(f) and =i(q.)=m(f)ds.. Since the kernel of the Hurewicz
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homomorphism for the first homotopy group of a connected space is its commu-
tator subgroup, by the functorial property of the Hurewicz homomorphism we see
that there is a homomorphism ¢,,: H.(Y,) > H,(X;) such that Hi(p..)=¢:,.H.(f,)
and Hq,)=H,(f)¢,,.- Hence H,(f) is an isomorphism by Theorem 1.1. The
theorem for the case of epimorphisms can be proved similarly by using Theorem
1.2, although it follows also from the proof of the first part of Theorem B.

§5. Proof of Theorem C

As in §4, without loss of generality we _may assume that {(X}, zor), [P2ir], A}
and {(Y5, vou), [gu:], 4} are isomorphic to the Cech systems of (X, x,) and of (Y, %)
respectively in the pro-category of the homotopy category of pointed connected
CW complexes, and that f={L, /3, 4} : {{(Xs, 2o, [Par], A} —— UV3 w2, [qa2), A1) is a
special system map. Moreover, by [9] we can assume that dim X,=dim X, dimY,
=dimY for each Ze/.

Let 2e4. Then by Theorem 1.2 it follows from the assumption of the theo-
rem that there is a sequence {2, -+, A2} 0f elements of 4 such that

(10) A= 2on Ko < K4 < Ao
(1D Tl Pinisro10p) KT me( F1,) =0, 1=k<n,
(12) Im 7pid(@agy s A‘z).-,.‘.l)CIm Tei1([agpen)y 0=k,

Let us put g=2. By Lemma 2.2 there is a continuous map ¢ :(Z,, Z*U X,, x,)
—> (Z;, X3, ®0;) such that

13 Vau= P,

where j : (Z,, X, @0) — (Zu ZFUX,, w,) is the inclusion map, Z, and Z; are the

mapping cylinders of f, and f, respectively, and 7:, =71, 20, ¥2120-

As is well known, we have dim Z,=max (1+dim X, dimY,)=#n. Hence ZU
X,=Z, Therefore we have a commutative diagram below in the homotopy cate-
gory of pointed CW complexes:

Da
(Xy: :‘COp) - (-Xl: xﬂl)
oy ¢
a;
S (Zm Zou) —_— (2, z0) £
¥iu
Bu .
Gap .
(Y y0,) ’ (Y3 v01)
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Since $, and p; are homotopy equivalences, there exists a continuous map ¢, :
(Y., ya,) — (X, %,) such that

(14) [q,)ln][fu]:[ply]) [f;][ﬁlj)xy]:{é?x,z]-

Therefore, by Theorem 1.1 we see that a special system map f induces an
isomorphism in the pro-categopy of the homotopy category of pointed CW com-
plexes. Consequently [f] is a shape equivalence. This completes the proof of
Theorem C.

Addendum (August 6, 1974). Corresponding to another form of the classical
Whitehead theorem we can prove also Theorem C/ and D’ below.

TuaeoreMm C/. Let f: (X, m)——(Y, yo) be a shape morphism of pointed con-
nected topological spaces of finite dimension and let n=max(dim X, dim Y). If
the induced morphism m( f): m(X, zo)——m(Y, wo) of homotopy pro-groups is an iso-
morphism for 1L=k=n, then f is a shape equivalence.

TuroreM D' Let [ and n be the same as in Theorem C'. If =(X, xo)=0 and
(Y, vo) =0 and if the induced movphism HJ{f): H(X)——H(Y) of homology pro-
groups is an isomorphism for 2=k=n, then f is a Shape equivalence.
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