Countably-compactifiable spaces®

By
Kiiti Morrra
(Received September 1, 1972)

1. Throughout this paper by a space we shall mean a completely regular 7\-
space, and by N the set of positive integers.

For a space X we shall call a space S a countably-compactification of X if

1) S is countably compact and contains X as a dense subset,

2) every countably compact closed subset of X is closed also in S.

In case X has a countably-compactification we shall say that X is countably-
compactifiable.

Countably compact spaces and paracompact spaces, or more generally, isocom-
pact spaces in the sense of Bacon [1] (that is, every countably compact closed subset
is compact) are trivial examples of countably-compactifiable spaces. As a non-trivial
example we can mention an M-space which admits a quasi-perfect map onto a
locally compact metric space. Moreover, the product of a countably-compactifiable
space with a product of paracompact spaces is countably-compactifiable. However,
it is to be noted that a locally compact space is not always countably-compactifiable.

In this paper we shall establish a number of basic results concerning countably-
compactifiable spaces.

As an application, we shall prove that a space X is a countably-compactifiable
M-space if and only if X is homeomorphic to a closed subspace of the product
Cx T of a countably compact space C with a metric space 7. Thus Nagata’s pro-
blem concerning embeddability of M-spaces is reduced to the problem: “Is every
M-space countably-compactifiable ?” Our result above shows that an M-space which
is either paracompact or carried onto a locally compact metric space by a quasi-
perfect map is countably-compactifiable.

2. Generalizing the notion of weak normality in the sense of Dugundji [2], we
shall say that a space is weakly normal if each pair of disjoint closed subsets, one
of which is countable and discrete, have disjoint neighborhoods. Weak normality
is actually weaker than normality.

ProPOSITION 2.1. A countably paracompact space is weakly normal.

This proposition was observed already by Isiwata [6]. Indeed, let A={a@,|ne N}
and B be disjoint closed sets in a countably paracompact space X. Then for each

1) Some of the results of this paper were announced in [11].
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n of N there is an open set U, such that «,eU,, Cl U,NB=¢. Since {X—A,
U.neNY is a countable open covering of X, there is a locally finite open covering
{ Vo, VimeN} such that Vic X—A and V,c U,. Let us put V=U{V,[neN}. Then
AcV and Cl VN B=¢. This proves Proposition 2.1.

In discussing the properties of weakly normal spaces the following lemma is
useful.

Lemma 2.2, Let D=l{d,\neN} be a countable discrete set in a space X. Then
the following conditions are equivalent.

(a) D and any disjoint closed set have disjoint neighborhoods.

(b) D and any disjoint closed set arve completely separvaited.

(c) D is C-embedded in X.

(d) There is feC(X) such that lim f{d,)=co.

(e) There is « locally finile col;e_():o;i(m {UneN} of open sets in X such that
d,eU, Jjor neN.

(£) There is a discrete collection {U,\neN} of open sets in X such that d,eU,
Jor neN.

The equivalence of (a), (b) and (c) is observed in Gillman and Jerison (4, p. 51},
and the equivalence of (¢), (d), (e) and (f) is easy to see.

Recently Hansard [5] has called a space X well-separated if every countably
infinite discrete closed subset [ satisfies condition (e) of Lemma 2.2, and hence
well-separatedness is equivalent to weak normality. However, in this paper we
shall say, more generally, that a space X is well-separated, if every infinite discrete
closed set is not relatively pseudocompact. Indeed, in view of Lemma 2.3 below
weakly normal spaces are well-separated and the theorems 10 to 14 except 11 in
[5] remain true for well-separated spaces in our sense.

LemMAa 2.3. A discrete closed set A of a space X is not relatively pseudocom-
pact if and only if A contains a countably infinite discrete closed set D satisfying
any one of conditions stated in Lemma 2.2.

After having read the first draft of the. present paper, T. Isiwata introduced
originally the notion of ss-discrete property: a space X has the ss-discrete property
if for every discrete closed subset {d,|zeN} of X and for every collection {U,} of
open sets of X with d,eU, for neN there are a subsequence {#|ie N} of N and a
IOcaHy finite collection {V,,] of open sets of X such that z,eV,,C U, for each
jeN. From Lemma 2.3 above it follows that well-separated spaces are precisely
the spaces having the ss-discrete property. Our definition of well-separatedness,
however, has a merit that it leads naturally to the following characterization.

PropOSITION 2.4. A space X 1s well-sepmfc}ted if and only if the closure of
every relatively pseudocompact subset of X is countably compact.

As in our previous paper [9], let’ us denote by p(X) the completion of X Wi‘ch
respect to its finest uniformity. Then XCp(X)cu(X)Ch(X) where u(X) is the
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Hewitt realcompactification of X. In case p(X)=X, X is said to be topologically
complete. The following lemma is useful.

LevMa 2.5, Let A be a subset of a space X. Then the following conditions
are equivalent.

(a) A is relatively pseudocompact,

(b) ClaxryAc (X)),

(¢) ClswmAcu(X).

Proof. Since (b)=(c)=>(a) is obvious, we have only (o prove the implication
(a)=(b). For this purpose, suppose that (a) holds. f: X—7 be any continuous map
of X into a metric space 7. Then f(A) is relatively pseudocompact and hence
Clf(A) is compact. Therefore we have Clyxr, ACA(f)(Cl fLA)CBF) (T), where
BU): B(X)—B(T) is the extension of f. By Morita [9, Theorem 2.2} this shows
that (b) holds.

An application of Lemma 2.5 is the following proposition due to Dykes [3].

ProrosiTion 2.6. If a space X is topologically complete, then the closure of a
relatively pseudocompact subset of X is compuact.

Proof. Let A be a relatively pseudocompact set. Then by Lemma 2.5 we have
Cl;;(x)’AC }l(X):*X

Hence ClyA=ClyxyA and so ClyA is compact.
The following proposition is a direct consequence of Proposition 2.4.

ProrosITION 2.7. A space X is isocompact and well-separated i and only if
the closure of every relatively pseudocompact subsei of X is compact.

3. In this section we shall give a sufficient condition for.a space to be coun-
tably-compactifiable.

Trueorem 3.1. Let X be a well-separated space. Then the following statemenis
are valid. '

a) If pX)—u(X) is countably compact then XU (BX)—uw(X)) is countably
compact.

b) If XcScXUBX)—u(X))y and S is countably compact, then S is a coun-
tably-compactification of X.

Proof. Suppose that D is a countably infinite discrete closed set in X. Then
D is not relatively pseudocompact and hence by Lemma 2.5 we have Cl;x,DN
(B(X)—u(X))#¢. Therefore XU (B(X)— (X)) is countably compact if (X )— pu(X)
is countably compact.

On the other hand, let C be any countably compact closed subset of X. Then
by Lemma 2.5 ClsxryCap(X). Hence ClsCc X. This shows that S is a countably-
compactification of X.
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Remark. If X is well-separated and

w(X)=U{ClsxrC|C ranges over all countably

compact closed subsets of X},

in particular, if X is an M-space, then X is countably-compactifiable if and only
if there is a countably compact space S such that XcSc XU (B(X)—pu(X)).

COROLLARY 3.2. Let X be an M-space such that there is a quasi-perfect
map from X onto a locally compact metric space. Then X is countably-compac-
tifiable.

Proof. In this case p(X) is locally compact by [9, Theorem 3.5]. Since X is
an M-space, X is countably paracompact and hence it is weakly normal by Pro-
position 2.1. Thus Theorem 3.1 is applicable to the present case.

Theorem 3.1 fails to be valid if we drop the assumption that X is well-separated.

ExamMmPLE 3.3. Let w, be the first infinite ordinal and w, the first uncountable
ordinal. Let us put

X=Wlwi+1) X Wlw,+1)— (s, w1)

where W{(a)={8|f<a} has the order topology for an ordinal a. Then X is a locally
compact, pseudocompact space which is not countably compact and (X )=u(X)=
W(we+1)X Wilw,+1). Let A={(wo, a)la<w,}. Then A is a countably compact closed
subset of X but {we, w1)€ClsryA. This shows that §(X) is not a countably-com-
pactification of X in our sense. Hence X is not countably-compactifiable, as will
be seen from the following proposition.

ProrosiTioN 3.4. If a space X is countably-compactifiable, then therve is «
countably-compactification S of X such that XcScCp(X).

Proof. Let R be a countably compactification of X. Let f:X—R be the in-
clusion map and B(f): B(X)—B(R) the extension of f. Let us put S=p(/)""(R).
Then XcSc(X). Since B(S)=5(X), ¢=p(f)|S:S—>R is a perfect map and hence
S is countably compact. Let A be a countably compact closed subset of X. Then
A is closed in R and hence ¢ '(A) is closed in S. On the other hand, ¢ '(A)=A4,
since B(R) is a compactification of X, and hence (/) AX)—X)=pR)—X. Thus S
is a countably-compactification of X,

4. In this section we shall discuss a number of operations under which the
property of being countably-compactifiable is preserved.

ProrositioN 4.1, If a space X is countably-compactifiable, so is every closed
subspace of X.

ProrosiTION 4.2. Let f: X—Y be a perfect map. If Y is countably-compac-
lifiable, so is X.

[Sc Rep. T.K.D. Sect. A
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Proof. By Proposition 3.4 there is a countably-compactification R of Y such
that Yo Rca(Y). Let us put

S=3UR), 9=5)iS:S — R
where 5(/): S(X)—>8(Y) is the extension of f. Then ¢ is a perfect map, and hence
S is countably compact.

Let A be a countably compact closed subset of X, and let us put B=f(A).
Then B is a countably compact closed subset of Y. Hence B is closed in R, and
so ¢~'(B) is closed also in S. Since f is a perfect map, (/) ({8 Y)— ¥Y)=pX)~X,
we have ¢ '(B)=7""(f(A)). Since A is closed in f'(f(A)), we see that A is closed
in S. Thus S is a countably-compactification of X.

ProrosiTION 4.3. Let X and Y be well-separated spaces which have countably-
compactifications R and S wespectively. If RXS is countadly-compactifiable, so is
XXY.

Proof. Let us denote by ¢ and % the projections from Xx Y onto X and Y
respectively. Let A be a countably compact closed subset of Xx Y. Then Clrg(A)
and Clyh(A) are countably compact by Proposition 2.4 and hence Clyg{A)xClyA(A)
is closed in RxS. Thus A is closed in RxS. Hencz if T i3 a countably-compac-
tification of RxS then A is closed also in T and so 7 is a countably compactilica-
tion of Xx Y.

PrROPOSITION 4.4. Let Y, be a well-separated isocompact space for 2e4. 1If a
space X is countably-compactifiable, so is Xx//Y,.

Proof. Let R be a countably-compactification of X and S; a compactification
of Y,. Then S; is a countably-compactification of Y,. Let A be a countably com-
pact closed subset of Xx /7Y, and let ¢ and /%, be projections from Xx// Y, onto
X and Y, respectively. Then Cl /,(A) is compact by Proposition 2.6. On the other
hand, g(A) is closed in X since the projection from Xx /7 Cl 4,(A) onto X is a
closed map. Therefore g(A)x /I Cl 2;(A) is closed in Rx /IS, and consequently A
is closed in Rx/1S,. Since Rx /IS, is countably compact, Rx /IS, is a countably-
compactification of Xx/7Y,.

5. As is well-known, for a locally countably compact space X which is not
countably compact we can construct a countably compact space S by adding a new
point p,, to X; as neighborhoods of p., we take the sets of the form p.,U(X—C)
with a countably compact closed subset C of X. The space S, however, is not
necessarily a countably-compactification of X because S is not necessarily comple-
tely regular. In case S is a countably-compactification, we shall call S a one-point
countably-compactification of X.

THEOREM 5.1. A space X admits a one-point countably-compactification if and
only if for any cowntably compact closed subset A of X theve is a real-valued con
tinuwous function f over X such that
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F=0o0n A and /=1 on X—B
Jor some countably compact closed subset B of X.

Proof. The “only if ” part is obvious. To prove the “if ” part assume that
the condition in the theorem is satisfied. In this case, if we put G={x|f(x)<1/2}
for f satisfying the condition of the theorem, then ACGcClGC B. - Thus every
countably compact closed subset of X is contained in an open set whose closure is
countably compact. In particular, X is locally countably compact. Let us put S
=p.UX where the topology of S is that described at the beginning of this section.
Let U(p.)=p.U(X~A) be any neighkorhood of p.. where A is a countably compact
closed set of X. Then there are feC(X) and a countably compact closed subset B
of X such that /=0 on A and /=1 on X—B. If we put f(p..)=1, then s is coun-
tinuous over X as well as over p..U(X—B) and hence J is continuous over S.

Next, let Ulxz,) be any neighborhood of a point z, of X. Then there is an
open set G of X such that z,e¢G, ClGc Ulw,) and Cl1 G is countably compact. Then
there is jeC(X) such that f{xz)=1 and /=0 on X—G. If we put f(p.)=0, then j
is continuous over X and over p,U(X—ClG). Thus S is completely regular.

CoROLLARY 5.2. Let S be a one-point couniably-compactijication of a space X.
Iy X is normal, so is S.

It is pointed out by M. Atsuji that if X is a normal space such that every
countahbly compact closed set of X is contained in an open set with a countably
compact closure, then X admits a one-point countably-compactification which is
normal. This, combined with Theorem 5.1, yields Corollary 5.2. The following
is a direct proof of Corollary 5.2. Let A and B be disjoint closed subset of S. Let
us consider first the case that AUEcCX. Then there is an open set G of X such
that AUBCG and ClG is countably compact. Then there is jeC(X) such that
f=0on A, f=1on B, /=2 on X—G. If we put f(p..)=2, then J is continuous over
S. In case p.€B then there is an open set G of X such that AcG, ClGN(B—po)=¢
and Cl G is countably compact. If we put H=p.,U(X—ClG), then BCH, GNH=4.
Thus S is normal. '

As for M-spaces we have

Tueorem 5.3, An M-space X admits a one-poini countably-compactification if
and only if there is a quasi-perfect map from X onto a locally compact melric space.

Proof. Let ¢: X—T be a quasi-perfect map from X onto a metric space T.
Then it follows from Theorem 5.1 that X admits a one-point countably-compac-
tification if and only if T is locally compact.

It should be noted that a locally compact space does not not necessarily admit
a one-point countably-compactification even if it is countably-compactifable.

ExampLE 5.4. Let w, (resp. w,) be the first infinite (resp. uncountable) ordinal
and let us put

[Sc. Rep. T.K.D. Sect. A.
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P=Wwe+1) X Wlw,+1) X Wiw, +1)
In P we consider the following closed subsets:
C={0t, w1, w)in = wy,
Alm, w, ) ={2m, «, my), Cm+1, a, w)},
B, wy, 5)={2n+1, wy, 3), @n+2, w, 8}

where m<awo, n<wy, a<w, S<w.

By contracting each of these sets into a single point we have a quotient space
and a quotient map ¢: P— Q. Then @ is a compact Hausdorff space. Let us put

Go=o(C),
K=(CU (wy X Wlw +1) X Ww,+1))),
Y=Q-K.

Then K is compact and K—go= W(w,+1)x W{(w +1)—(w,, w,). The space V is the
same as constructed in our previous paper [8] and (Y )= Y Ug, Thus Y is locally
compact, weakly normal and 3(Y)—pu(¥Y) is countably compact; Y is dense in @
and S(Y)—p(Y) is the preimage of K—g, under the perfect map gl¢) where ¢
#(Y)—Q is the inclusion map. Therefore Y is countably-compactifiable by Theorem
3.1, but Y does not admit a one-point countably-compactification.

6. Now we are in a position to prove the following theorem.

Treorem 6.1, A space X is a countably-compactifiable M-space if and only
if X is homeomorphic lo a closed subspace of the product space CXT for a coun-
tably compact space C and a metric space T.

Proof of Theorem 6.1. We first note that CxX T in this theorem is an A-space;
this is seen from the fact that the projection from Cx T onto T is quasi-perfect.
Since a metric space is paracompact, the “if” part follows immediately from Pro-
positions 4.1 and 4. 4. '

To prove the “only if * part, suppose that X is an AM-space with a countably-
compactification S. Since X is an M-space, there is a quasi-perfect map / from X
onto a metric space 7. Let us put

A={(z, f(Z))eSx Tjxe X}.

Then A is a closed subset of Sx 7.

To see this, let (sy, f)eSXxT—A. Then su&/ '(4). Since f'{¢,) is a countably
compact closed subset of X, f~'(¢,) is closed also in S since S is a countably-com-
pactification of X. Since S is regular, there is an open neighborhood W({s,) of s,
Vol. 12, No. 314]
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such that ClsWi(s,)Nf{t)=¢. Hence it follows that f~'(¢,)c X—ClsW(s,). Since
J is a closed map, there is an open neighborhood V(¢) of 7, in T such that
S U V))c X—=Cls W(sy).

If there were a point

(s, 1)l Wiso) X V()N A,
we would have
sef i (Vi) X— W(sy),

which contradicts the assumption se W(s,). Hence [ W{(so) X V(to)INA=¢. This shows
that A is closed in Sx T.
Since X is homeomorphic to A, the proof of Theorem 6.1 is completed.

CoroLLARY 6.2. A space X is a paracompact M-space if and only if X is
homeomorphic to a closed subspace of the product of a compact space with a metric
space.

Proof. Let X be a paracompact M-space such that f: X—7T is a perfect map
and that 7 is a metric space. Then any compactification S of X is a countably-
compactification of X and the above proof of Theorem 6.1 shows that X is homeo-
morphic to a closed subspace of Sx7T. Thus the “only if ” part is proved. The
“if 7 part is obvious.

CoroLLARY 6.3. A space X is mapped onto a locally compact melric space by
@ quast-perfect map if and only if X is homeomorplic to a closed subset of the
product of a locally compact melric space with a countably compact space.

Proof. In view of our proof of Theorem 6.1, the “only if ” part is a direct
consequence of Corollary 3.2. The “if ” part is obvious.

Corollary 6.2 is due to J. Nagata {12].

Nagata’s problem concerning embeddability of A-spaces is now reduced to the
following problem by Theorem 6. 1.

ProBLEM 6.4. Is every M-space countably-compactifiable?

For countably-compactifiable spaces there are many unsolved problems. For
example, we have

ProBLEM 6.5. Is every normal space countably-compactifiable?

A. K. Steiner [13] proved that there is a product of two countably compact
spaces which is an M-space but not countably compact. This product space is
countably-compactifiable by Corollary 3. 2.

ProsLEM 6.6. Is the product of two countably compact (or countably-compac-
tifiable) spaces countably-compactifiable?

[Sc. Rep. T.K.D. Sect. A.
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