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Throughout this paper by a space we shall mean a completely regular Hausdorff
space unless otherwise specified. A space is called topologically complete if it is
complete with respect to its finest uniformity, whereas a space is called an absolute
G if it is a G, in its Stone-Cech compactification. The completion of a space X
with respect to its finest uniformity is called the topological completion of X and
will be denoted by u(X).

The purpose of this paper is to discuss some basic properties of (X)) and to
apply them to the case of Ad-spaces.

In §1, for any space X with a uniformity @ we shall construct a space p,(X)
which is the weak completion of X with respect to @ in the sense defined in §1.

In §2, we shall consider y,(X) incase @ is the finest uniformity of X. In this
case p,(X) is shown to coincide with the completion of X with respect to @ and
hence we write p(X) instead of p,(X). The space p(X) is characterized as a space
Y with properties (a) and (b):

(a) Y is a topologically complete space containing X as a dense subspace,

(by every continuous map from X into a metric space 7" can be extended to
a continuous map from Y into 7.

For any continuous map f: X—Y there corresponds a continuous map p(f):
w(X)—(Y). Thus p defines a covariant functor from the category of all spaces
into the category of all topologically complete spaces (morphisms in both categories
being continuous maps).

For M-spaces which are introduced in our previous paper [11] the functor p
possesses the following remarkable properties:

(1) (X)) is a paracompact M-space for any M-space X.

(2) If f: X—Y is a quasi-perfect map where X and Y are M-spaces, then
u(f): p(X)—p(Y) is a perfect map.

Thus for an M-space X p(X) may be called the paracompactification of X.
Several spaces are characterized by the property of u(X). For example, an M-space
X admits a quasi-perfect map from X onto a separable (resp. locally compact or
complete) metric space if and only if (X)) is Lindelof (resp. locally compact or an
absolute G,). §4 is devoted to characterizing a space X with a paracompact M-
space as p(X).

In §5 we are concerned with the product formula wWXXY)=pXXpY which,
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however, does not hold in general. The first case for which we shall assure the
validity of this formula is this: X is an arbitrary space and Y is a locally compact
paracompact space. If we restrict ourselves to the case of XX Y being an M-space,
we can prove a more precise result that p(XxX¥)=pXxpuY if and only if there
are quasi-perfect maps o: X--S, ¢: Y—T with S and 7 metrizable such that
pX¢: XX Y—SXT is also quasi-perfect.

As an application of the last result, we shall establish that

dim (XX Y)=dim X+dim Y

if X is an M-space and Y is a metric space or a locally compact paracompact space.
Here it should be noted that X is not necessarily normal, and hence we understand
dim X in the sense of M. Katetov (that is, dim X is the covering dimension of
B(X)). It seems that this is the first result which assures the validity of the
product theorem in dimension theory for the case where XX Y is not assumed to
be normal.

Finally a number of problems will be raised in §7.

1. Definition of z,(X)

For any space X, let @ be a uniformity of X agreeing with the topology of
X; that is, let @ Dbe a family of open coverings of X satisfying conditions (a) to
(c) below, where for coverings ¢J and ¢V of X we mean by U <C{7 that €IV is a
refinement of J.

(a) If 9J,Cre®, then there exists ge® such that U < and <G,

(b) If QUe®, there is CVe® which is a star-refinement of 9J (that is,
(St (V, ey Vecyy>ag).

(¢) {St{x, V)| U e®} is a basis of neighborhoods at each point = of X.

Now, let {®,]| €4} be the totality of those normal sequences which consist of
open coverings of X contained in ¢. Let @,={U,,|i=1,2, -}, where 9J;,€® and
U, is a star-refinement of J,,_, for i=2,3,.--. As in [11], we denote by (X, ®;)
the topological space obtained from X by taking {St(z, U, |i=1,2,---} as a basis
of neighborhoods at each point xz of X. For any subset A of X we set

Int (A; @) ={xe X|St (z, U,)T A for some i} .

Then Int (A;®,) is open in (X, ®,). Let X/®, be the quotient space obtained from

(X, ®;) by defining those two points z and y equivalent for which yeSt (z, U ,,) for

i=1,2,---. Let us denote by 7, the identity map of X viewed as a map from X

onto (X, @) and by @, the quotient map from (X, ®,) onto X/®,. Let us set
Q1:¢;°i; . ‘X—>X/(])z .

Since @7 (@(Int (A;@)))=Int (A;®,), ¢, is an open continuous map and hence g,
is a continuous map.
Let us set

Vu=Int(U; 9| UeU ;) -
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Then <1/, is an open covering of (X, ®,), since for any point x of X there exists
UeqJ,, such that St (z, U, ) U. v

We shall prove that St (A4, U, )CG implies St (A, Cpy)cInt(G; @), Let y be
any point of Int(U;@,) with UeqJ,, where ANInt (U;®.)~¢. Then St(y, Ui U
for some j and, since ANUDANInt(U;®)=¢, we have UcSt(4, U,)cG.
Therefore St (y, U, )G, that is, yelnt (G, @,).

Thus, if St(U’, U, cU for U'eU,,,, UeU,, then StIat(U’;®,), Vs, ,,)
cInt (U; ®,). This shows that ¢{/,,,, is a star-refinement of <y, Moreover, it is
easy to see that C17;,>U,, while U, >V, for i=1,2,---. Let us denote the
normal sequence {C(7,,|i=1,2, -} by @¥ and call it the normalized normal sequence
associated with @,. Indeed, we have

and {goz(CV;i)]i':l,Z,‘--} is a normal sequence of open coverings of X/®, which
defines a uniformity of X/@,, where ¢:(C1V;)={o:(V)| Vecy),,). Therefore X/?, is
a metrizable space. :

Here it should be noted that if order of 4J;,=n+1 for each i, then order of
0(CV,)=n+1 for each i since order of ¢,(C{/;,)=order of ¢/, <order of J,, and
cosequently we have dim X/@,=» by Nagata [13, Corollary to Theorem 5. 1].

Next, we shall introduce a partial order in {®,]2e4}. Let 2, peA. In case for
each ¢ there exists ¢ ,;e®, such that J,;,>%U,, we write &,<®,. Then for a
countable number of elements 2;, i=1,2,--- of 4 there exists an element px of 4
such that ¢,,<9®, for i=1,2, -

Suppose that @,<®,. Then it is easy to see that if a subset G of X is open
in (X, ®,), then so is G in (X, @,) and that

ye N St(z,,) implies e N St(w, Us)
j=1 i=1

for any two points z,v of X. Therefore there exists a canonical map
ofr X|0,—~X[D,.

¢} 1s continuous as is seen from the commutative diagram

X—(X,0,)— X/,
Pu
i ot

i, v

X (Xr (])2) o .X)(I)g

where 7 is the identity map.
Let us now utilize the normalized normal sequences @F={C1’,,} and @F={CV,;}
associated with @, and @, respectively. If 9J,,>U,,,, then we have

W;{j> Cl]pj> q]1i+1>qjli
and hence (¢5) ' (0:(C1:)) <¢(V,,). Thus ¢f is a uniformly continuous map from
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274 Kiiti Morita
X|®, onto X/®,.
From the above considerations it is seen that
(XD o}

is an inverse system of metrizable spaces. Let us denote by p,(X) the limit of
this inverse system:

(X)) =1im X/, ,
—

and by =, the projection from ,(X) into X/®,. By the uniformity of p,(X) we
mean that uniformity which consists of

{ritea(CV) 1 2€4, i=1, 2,
For any point z of X {¢,(x)|2€} defines a point of p(X) and defines a map
o1 X—p(X).

Since V=0 (77 ex(C1:))), © is a uniformly continuous map. Moreover, if zxa’
for z, 2z’ of X, then ¢,(z)=@,(z") for some 2 of A. Hence ¢ is one-to-one, and

is a uniform homeomorphism and ¢(X) is dense in g, (X).

In case every Cauchy family {C,} of X with the countable intersection property
is non-vanishing (that is, HC—,A#(/)), we say that X is weakly complele with respect
to ®. Then we have

Tuarorem 1. 1. The map o1 X—p(X) is onto if and only if X is weakly com-
plete with respect to @.

The “if” part is easy to see. Indeed, let y be any point of p,(X). Then
{or'(ea(y)) | 2€ 4} is a Cauchy family of X wity respect to @ and has the countable
intersection property; for zee; (m:(y)) we have

o (m(yNC St (x, Uay) i=1,2 -,
and for Ze/, i=1,2,--, if we take peA such that ¢,,<@®,, i=1,2,-, we have
@;l(f"(y))cgof_zl(:q(y)) ) Z_—_l, 2, e,

since ¢h,00,=@,, oier,=n,. Therefore, if X is weakly complete with respect to
@, there exists a point x of X such that

z€ N o7 m(y),
2

and we have ¢(r)=y, which shows that ¢ is onto.
Next, let {C,|ye!"} be a Cauchy family of X with respect fo @ which has the
countable intersection property. Then for each }and each positive integer i there
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Topological completions and M-spaces 275

exists y(&)e/’ such that C,u,c V,, for some V,,€Cy;,. From the countable
intersection property of {C,} and the agreement of {,(CV,,)]i=1,2, -} with the
topology of X]@, it fellows that M ¢:(C,u,) consists of exactly one point, and this
i=1
point does not depend on the choice of C,,; we denote it by y,. Therefore, if
?,>0,, we have ¢i(y,)=v..
Let F={D;s|ded} be a maximal filter containing {C,|y€!’}. Since

e:(Craap) TSt (Us, @2(CV2,))
we have

e(Ds) NSt (ya, (V) b

IS

for every ¢ in 4, and hence
o (St (v oSV e .

Since @7 (St (ya, (V) =0 7 (St (s, 0a(CV5y), we see that if we denote by y the
point {y;} of p,(X) we have yep(C,) for every y in /'. This shows that if ¢ is
onto then X is weakly complete with respect to ¢.

Corovrrary 1. 2. If X is complete with respect to @, then o: X—p,(X) is onio.

Hereafter we identify X with ©(X) and consider X as a subspace of g, (X).
The following theorems are contained in the proof of Theorem 1. 1.

Tueorem 1. 3. p(X) is the weak completion of X with respect to .

Turorem 1. 4. If X admits a uniformily which consists of open coverings of
order =n-+1 and with respect to which X is weakly complete, then X is the [imit
of an inverse system of metric spaces of dimension =n. This is the case if X is
paracompact and dim X=mn.

The notion of weak completeness is different from that of completeness; for
example, every metric space is weakly complete with respect to its metric uniformity.
However, there are cases for which both notions of completeness coincide. The
uniformity consisting of all normal coverings of X is called the finest uniformity
of X.

THEOREM 1. 5. The following statements are equivalent.

(2) X is complete with respect to its finest uwiformity (resp. the umniformity
consisting of all countable normal coverings of X); that is, X is topologically com-
plete (resp. realcompact).

(b) X is weakly complete with respect to ils finest uniformity (resp. the uni-
Formity consisting of all countable normal coverings of X).

(¢) X is the limit of an inverse system of metric (resp. separable metric) spaces.

(@) X is homeomorphic to a closed subset of a product of metric (resp. separable
melric) spaces.
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276 Kiiti MoriTa

Proof. By Theorem 1.1 (b) implies (¢). Since a metric (resp. separable metric)
space is topologically complete (resp. realcompact), (d) implies (a). Since the impli-
cations (a) 2 (b) and (c)=(d) are obvious, this completes the proof of Theorem 1. 4.

Expansions of spaces into inverse systems of metric spaces have been investi-
gated by B. Pasynkov [5], V. Kljusin [7, 8] and some results similar to ours are
obtained; in particular, the second part of Theorem 1.4 and the equivalence of
(a), (¢) and (d) in Theorem 1.5 are obtained by Pasynkov. '

2. Characteristic properties of p(X)

Throughout this section, @ is assumed to be the finest uniformity of X. In
this case we write p(X) instead of 1,(X). Thus {@,[2e/} is the set of all the
normal sequences of open coverings of X. For any continuous map f: X—Y there
exists its extension A(f): p(X)—A(Y"), where for a space S 5(S) means the Stone-
Céch compactification of S.

Lemva 2.1 {B(X]D)); Blet)} is an inverse system and its limit can be identified
with B(X).

Pyroof. Let ¥={9);]i=1,2,---} be a normal sequence of finite open coverings
of A(X). Then g:nX={WnX|Weqs}, i=1,2,- - determine a normal sequence
of open coverings of X, which is equal to @; with some % of A; @,={U,,|i=1,2,-}
and U,,=9%:NX. As in §1, we have a canonical map ¢; H(X)—p(X)/¥ which is
continuous. Then the following assertions hold:

(1) For two points z and z’ of X

'€ 0 St (e, Wa) e—>a'e N St Uiy -
7=1 i=1

(2) If H is open in (B(X), ¥), then HNX is open in (X, ¢,).

(3) If G is open in (X, @,), then there is an open set H of (F(X), ¥) such that
G=HnX.

Since (1) and (2) are obvious, we have only to prove (3). For this purpose, let
z be any point of G. Since G is open in (X, ®,) there exists an integer #(z) such
that St (z, U 1;4,) G- Let us set

j{: U {SL (fE, CY/f/i(x)) ! ZE G} .

Then KNX=G. Let us set further H=Int (K;¥). Then we have GCHc K and
hence HNX=G. This proves (3).
From (1) to (3) it follows that

0| X=nogs: X—X]0,—EX)V,

where 1 X/0,—B(X)/¥ is the inclusion map. Hence we have 0=p()°f(e.).
7+ Let y and y* be any distinct points of A(X). Then there exists a normal
sequence ¥ of open coverings of A(X) such that 0(y)=0(y’). Hence Ble)(y)=xHe)y’)
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Topological completions and M-spaces 277

for some 1€/ as is seen from the result in the preceding paragraph.
Therefore the cancnical map ;9(X)—»1(ir_n {B(X]D,); B} is one-to-one and conse-
quently a homeomorphism. This proves Lemma 2. 1.

THEOREM 2. 2. For any space X, we have XCp(X)C H(X) and
X = N{EGe) (X0 | 26 1)
=N U X—=T is a continusus map with T melrizable}.

Proof. The first equality follows directly from Lemma 2.1. To prove the
second equality, let f be an arbitrary continuous map from X into a metric space
7. Then there exists 2eA such that f=gop, with a suitable continuous map g¢:
X|¢—T; if {9;]i=1,2,---} is a normal sequence of open coverings of 7" which
agrees with the topology of 7, then {f~3 (/) }i=1,2, - }=@, with some 2 of / and
we have a desired map g¢.

Therefore we have

BT =5 (Bo) (T D flea)~ (X[D,)

and the second equality is proved.
Now, let f: X—Y be any continuous map. Then for any continuous map ¢
from Y into a metric space 7" we have

X)) 3ol ) TYy=pU )M BEO)(T))
and hence
AU By (T .

In view of Theorem 2.2 this shows that A(f) carries p(X) into #(¥). Let us
denote this map by u(f). Then we have wu(gf)=plg)n(f) for continuous maps
Ji1 X—=Y, g Y>Z and p(lx)=1l.cx.

Lemma 2.3, If XcYcuX), then (V)= pu(X).

Proof. If g is a continucus map from Y into a metric space 7, then f=g¢|X:
X—T is continuous and S(f)=73(g). Conversely, for any continuous map f from X
into a metric space 7" pu(f) carries u(X) into w(7") and, since T=p(T) by Corollary
1.2, g=p(f)]Y is a continuous map from Y into 7" such that ¢|X=f. By Theo-
rem 2.2 we have therefore p(Y)=p(X).

TuroreM 2. 4. w(X) is characterized as a space Y with the following properties

() Y is a topologically complete space containing X as a dense subspace.

(b) Any continuous map f from X into an arbitrary metric space T can be
extended to a continuous map from Y into T.

Proof. p(X) is the limit of an inverse system of metric spaces and hence by
Theorem 1.5 p(X) is topologically complete. Thus «(X) satisfies (a). As for (b),
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the extension of j over p(X) is given by w(f): uX)—u(T)=T.

Conversely, let ¥ be a space satisfying (a) and (b). From (b) it follows that
AY)y=p5(X), and hence Xc V< 5(X). For any continucus map f from X into a
metric space 7" there exists a continuous map ¢: Y—7 such that f=¢|X. Since
BOY=8g): BXD—AT) and 5g)] Y=y, we have p(f)(Y)c T and hence Y 3(/)~ (1.
Therefore we have Ycp(X) by Theorem 2.2. Now, Lemma 2.3 shows that
w(Yy=p(X). On the other hand, x(Y)=Y since Y is topologically complete. Thus
we have Y=p(X).

THEOREM 2.5, pu(X) is characterized as a topologically complete space Y which
is the smallest with respect to properties (a) and (b) below:

(@) Y contains X as a dense subspace,

(b)  every bounded real-valued conlinuous function on X can be extended to a
conlinuous function over Y.

roof. Let Y be a topologically complete space ¥ satisfying (a) and (b). Then
XcYcp(Y)=5X). Let f be the inclusion map: X—Y. Then 5(f): S(X)—EY)
is the identity. Since u(f/) =5 p(X): p(X)—pu(Y) and w(¥Y)=Y, we have u(X)C Y.

TueoreM 2. 6. (X)) is homeomorphic to the completion of X with respect to
its finest uniformity.

Proof. Let Y be the completion of X with respect to its finest uniformity.
Let f be any continucus map from X into a metric space 7. Then f is a uniformly
continuous map if we consider X and 7' as uniform spaces with the finest uni-
formity. Since T is complete with respect to its finest uniformity, / can be
extended to a continuous map from Y into 7. Hence by Theorem 2.4 we have
Theorem 2. 6.

The above considerations except Theorem 2.5 apply equally well to 1,(X) for
the case where @ consists of all normal coverings of X with cardinality =m (m:
an infinite cardinal number) if we require 7 to be a metric space with weight =
In particular, in case m="'%, p,(X) is the Hewitt realcompactification of X.

In concluding this section, we state the following theorem; its proof is simple
and is left to the reader.

Tueorem 2. 7. If X is the topological sum of X, Jed, then w(X) is the
topological sum of p(X,), i€/

3. p(X) for an M-space X
We shall first prove

THroreM 3. 1. w(X) is compact if and only if X is pseudocompact.

Proof. Suppose that X is pseudocompact. Then for any o, X—X/®, we see
that X/®, is compact and hence [lw) Y X/D,)=5(X). Therefore by Theorem 2.2

[Sc. Rep. T.K.D. Sect. A.
(56 )



Topological completions and AM-spaces 279

we have p(X)=4g(X).

Conversely, suppese that (X)) is compact. Then we have p(X)=p(X). Let
fi X—T be any continuous map from X onto a metric space 7. Then from the
property of wp(X) it follows that p(f) carries p(X) into 7. Since p(f) is clearly
onto, 7" is compact. Therefore X is pseudocompact.

Suggested by Theorem 3.1, we shall say that X is pseudo-paracompuct, if
#(X) is paracompact. As is seen from Theorem 5. 1 below, the product of a pseudo-
paracompact space with a locally compact paracompact space is pseudo-paracompact.
As an example of pseudo-paracompact spaces we can mention M-spaces.

In a previous paper [11] we have called a space X an M-space in case there is
a normal sequence {9J.} of open coverings of X satisfying condition (M) below:

(M) If {Ki} is a decreasing sequence of non-empty closed sets of X such that
K St (x, 9UJ,) for each i and for some point x of X, then NK;x¢.

For paracompact spaces M-spaces coincide with p-spaces in the sense of
Arhangel’skii [1].

Let X be an M-space and let @' ={®,;|2eA’} be the totality of all normal
sequences of X satisfying condition (M). Then {@;]2eA’} is a cofinal subset of
{@:14€4} by using the notations in § 2, and hence p(X) is the limit of the inverse
subsystem {X/®,]2eA’}y of {X/®,|ied}. As was shown in [11], ¢;: X—X/0, is a
quasi-perfect map for each 2 of 4. 1In case 2 peA’ and @,<®, we have o,=¢jo¢,
and hence ¢i: X/®,—X/®, is a perfect map. Therefore

Bl (X D) = o) (X/D,)
since X/®,=j(e9)~(X]®;), and consequently by Theorem 2.2 we have
(X)) =Bl (XD for each 2eA’.

Since a quasi-perfect map from X onto a metric space 7' coincides with ¢,: X—X/®,

5

for some i of A’, we obtain the following theorem.

TraroreM 3. 2. Suppose that X is an M-space. Then we have
wX)=p8)"T)
Ffor any quasi-perfect map f from X onto a metric space T, and n(f): wW(X)—T is
a perfect map. Moreover, ((X) is a paracompact M-space.

The following lemma is useful.

LemmMa 3.3, Let | be a continuous map from an M-space X into a metric
space T. Then the following assertions hold for p(f): p(X)—T.

@) fis onto if and only if p(f) is onfo.

(b) S is closed if and only if p(f) is closed.

(¢) [ is quasi-perfect if and only if p(f) is perfect.

Proof. There exists some Ze’ such that f=hoe, for some continuous map
i X|0,—T. From the commutative diagram
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#(X) /1((‘02)" X,
| 27 |

X — T
I

we see that u(f)=/oule.).

To prove (a) which holds for a non-M-space X also, suppose that (/) is onto.
Then % must be onto and hence f=/oy, is onto. This proves the non-trivial part
of (a).

Next, it is easy to see that 7 is closed (resp. quasi-perfect) if and only if 4 is
closed (resp. perfect) and the latter holds if and only if w(f) is closed (resp. perfect).
‘This proves (b) and (c).

THEOREM 3. 4. Lel | be a quasi-perfect map from arn M-space X onto an M-
space Y. Then p(f): p(X)—(Y) is a perfect map.

Proof. Let ¢ be any quasi-perfect map from ¥ onto a metric space 7. Then
pof: X—T is a quasi-perfect map and by Theorem 3.2 we have

X)) =) B (TN= ) (X)) .
This shows that w(f) is perfect since u(f)=p()|p(X).

ReMark. As was shown in {12], the image of an M-space under a perfect
map is not necessarily an M-space and Theorem 3.4 does not hold if we do not
assume Y to be an M-space.

Some properties of an M-space are expressed by those of p(X).

THEOREM 3. 5. Let X be an M-space. Then there exislts a quasi-perfect map
Jfrom X onto @ separable (resp. locally compact or complete) metric space if and
only if p(X) is Lindeldf (resp. locally compact or an absolute G).

This theorem is easy to see in view of Lemma 3. 3.

Theorem 3.5, together with Theorem 3. 4, gives rise to the following theorem,
since the properties of a space such as “Lindeldf ”, “locally compact” or “absolute
G;” are preserved under perfect maps.

THrorREM 3.6. Let | be a quasi-perfect map jrom an M-space X onto an M-
space Y. If X admits a quasi-perfect map from X onto a separable (resp. locally
compact or complete) metric space, so does Y.

4. Spaces whose topological completions are M-spaces

In this section we shall first prove the following theorem.

TuroreM 4. 1. A space X is a paracompact M-space if and only if X is the
limit of an inverse system {T:; ¢4} of metric spaces T; with bonding maps ¢4 perfect.

[Sc. Rep. T.K.D. Sect. A.
(58)



Topological completions and M-spaces 281

The “only if ” part is proved in the paragraph preceding Theorem 3.2 and
was proved by Kljusin [7]. The “if ” part is a direct consequence of the following
theorem.

Tororem 4.2, Let {X;; i) 2, nedt be an inverse systems such that ¢} is a
perfect map for each pair 2, pp with 2<y, and let X be its limit. Then the projection
00 X=X, is a perfect map.

Proof. For any point z; of X, we have
o () =lim {(eh) Mz ; @i | p>2, v>p>0).
—

Siree (¢9)~'(z;) is compact and non-empty, ¢;'(z;) is compact and non-empty, and
hence ¢; is onto.

Let F be any closed subset of X. Suppose that there is a point z, of X, such
that @, ¢p.(F). Then ¢i'(z)NF=¢ and, since ¢;'(x;) is compact, there exist a
finite number of elements gy, j=1, -, of /4 such that

eri@)c U eid( W), el W)NF=¢
i=1

with some open subsets W; of X,; for j=1,.-,m. Here we can assume that p;>2,
j=1,--,m. Now, take pe/ so that p>p; 7=1,---,m, and set

W="U (g )7 (W)
j=1

Then W is an open set of X, and we have
ez e (W), o' (WINF=g.
Since ¢,=¢hop,, we have (g9 '(xz;)c W. Hence if we set
V=X,— (X — W),
then z;€V and (¢)(V)c W, and V is open since ¢} is a closed map. Thus we

have
M VINFCe (W)NF=¢.

This shows that x,&p:(F). Therefore ¢,(F) is closed. This completes the proof
of Theorem 4. 2.

CoROLLARY 4. 3. Under the same assumptions as in Theorem 4. 2, if each X,
is a (paracompact) M-space, so is X.

After the first draft of this paper had been completed, T. Isiwata [5] generalized
the notion of M-spaces as follows: A space X is called an M’-space if there is a
normal sequence {QJ:li=1,2, -} of open coverings of X satisfying condition (A7)
which is obtained from condition (M) in §3 by restricting each K; there to be a
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zero-set (of a real-valued continuous function over X). Analogously as in the case
of M-spaces a space X is an M’-space if and only if there is a continuous map
f from X onto a metric space 7 such that f(#) is closed for each zero-set /' of X
and f-(¢) is relatively pseudocompact (that is, every real-valued continuous function
over X is bounded on f~'(#). He calls a map with such a property as f an SZ-
map. In case X is an AM’-space, the set A’ of jieA such that ¢,: X—X/®,, with
notations in §2, is an SZ-map is cofinal in /4 and ¢4 is a perfect map if @,<®,
and %, peA’. Thus by Theorem 4. 2 (X)) is a paracompact M-space. This is seen
also from Theorem 2.5 and Isiwata [5, I; Theorem 2. 5].

TrroreM 4. 4. (X)) is a paracompact M-space if and only if X is an M’'-
space.

We have only to prove the “only if ” part. Suppose that p(X) is a paracompact
M-space. Then, by using notations in §2, u(e): p(X)—X/®, is a perfect map for
each 2 of a cofinal subset A’ of /4, and hence if ©,<®, for 2, peA’, the map
oy X|0,—X|®, is a perfect map. Let ¢ be an arbitrary real-valued continuous
function over X. For a given 2 of 1’ there exists pe’ such that ©,<®, and
g=hop, with some real-valued continuous function /. If F=¢=*(0), then ¢.(F)=/4"1(0)
is closed and, since ¢ is perfect, ¢,(F)=vlp(F) is closed. Moreover, g is bounded
on ¢7'(y) for ye X|®,, since gler (W) =gle; ()W) =r{(¢%)(y)). This shows that
X is an M’-space.

It should be noted that Theorem 3.5 remains true for an M’-space if we
replace “a quasi-perfect map” by “an SZ-map”.

5. Conditions for (XX Y)=puXXpuY
We shall first prove the following theorem.

THroOREM 5. 1. Let Y be a locally compact paracompact space ov a locally
compact, topologically complete space. Then we have

XX Y)y=pX X pY (=pXXY)
for any space X.

Proof. (i) Suppose that Y is compact. Let f be any continuous map from
XXY into a metric space 7. For each point x of X let us define a map ¥(xz) from
Y into T by

W) =1 (z,v) .

Then ¥(z) is a continuous maps from Y into 7. The set of all continuous maps
from Y into T becomes a metric space if we define a distance between two con-
tinuous maps « and g from Y into T by

ola, fy=sup {prlaly), 5y)) |ye Y},
where py is a metric in 7. This space is denoted by 7. Then we have a map
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o X—TY.

The map ¥ is continuous. Because for any point z of X, any positive number ¢
and any point ¥ of ¥ there exist a neighborhood Uy(z) of x and a neighborhood
V{y) of v such that

or(f (2, 9), F (@, 4N < =

% for w'eUyx), ¥'eViy).

Then there exist a finite number of points y;, t=1, ---,m of ¥ such that

Y= Lj V (ya) -
fe=l

If we set

ki

Ulz)y= N Uylz),
{=1
then
or(J(z, ), (2", y)<e for 2'eUlx), yeY,

and hence ¥ is continuous.
Since 7% is a metric space, there is an extension p(¥): p(X)—TY of ¥. Let
us set

g&n=[pWON)  for feu(X), yel.

To prove the continuity of the map ¢: pXX Y —T, suppose that fep(X), yeY and
¢>0. Then there exists a neighborhood U(&) of £ such that

A pVED, n(UEN < for &elUls).

L\;!ﬁ

Take a neighborhood V(y) of v so that

3

or(pEONW), [N < 5

for y'eV(y).

Then we have
o9&, ), 98, y")) < for &eU(8), v'eV(y).

This shows that ¢: pXxY—T is a continuous map which is an extension of
i XxY—-T.

Since (X)X Y is topologically complete, by Theorem 2.4 we have p(XXY)=
nXXY.

(i) In case Y is not compact, there exists an open covering {B,|ye/} of ¥
such that B, is compact for each y. Let f: Xx Y—T be any continuous map,
where T is a metric space. As has been shown above, f| XX B, can be extended
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to a continuous map g¢,: w(X)x B,—T. Since ¢,(z,v)=g,(z,y) for zeX, yeB,N B.,
we have also ¢,(&, v)=g,.(&, v) for feuX, ye B,NB,. Therefore, if we define a map
[V /J(X)X Y—T by

g€ v=0(&y)  for ZeuX), yeb,,

then ¢ is well defined and since ¢ |xXx B, is continuous for each 7, ¢ is continuous.
On the other hand, pXX Y is topologically complete. Therefore by Theorem 2. 4
we have p(XXY)=pXXY=pXxpY. This completes the proof of Theorem 5. 1.

As is well known, there are pseudocompact spaces P and @ such that PX@ is
not pseudocompact. In this case, by Theorem 3.1, x(P) and n(@) are compact but
p(Px @) is not. Therefore, p(XXY)=p(X)X(Y) does not hold in general. If we
restrict our consideration to Ad-spaces, we obtain the following theorem.

TrroreMm 5. 2. Let XX Y be an M-space. Then the following statements are
equivalent.

(@ pXXY)=pXxpY.

(b) There exist quasi-perfect maps ¢ X—S and ¢: Y—T with S, T metrizable
such that oxX¢: XX Y--SxT is quasi-perfect.

(¢) If K (resp. L) is any countably compact closed subset of X (resp. Y), then
Kx L is countably compact.

Proof. (a)=> (). Let ¢: X—S and ¢: Y—T be any quasi-perfect maps, where
S and T are metric spaces. Then plp): p(X)—S and u(¢): (Y )—T are perfect
maps, and hence

wle)X p(p): p(X)X u(¥Yy—=SX T

is also perfect. If (@) holds, by Lemma 3.3 oXx¢ is a quasi-perfect map. This
proves (b).

(b)={c). Suppose that there are quasi-perfect maps o: X—S, ¢: Y—7 with S
and T metrizable such that oxX¢: XX Y—Sx T is quasi-perfect.

Let K (resp. L) be any countably compact closed subset of X (resp. ¥). If
we set Ko=o 'o(K) and Lo=¢ '¢(L), it follows from the quasi-perfectness of ¢x¢
that K,x L, is countably compact, since o(K)X¢(L) is compact. Hence KX is
countably compact.

(¢)=>(a). Assume (c). Let f be any continuous map from Xx Y onto a metric
space R. Let K (resp. L) ke any countably compact closed subset of X (resp. Y).
Then, by (c) and a theorem of Glicksherg (cf. [3]), f| KX L is extended to a con-
tinuous map gruscry s KX BIL)y—R. If we take another countably compact closed
set K’ of X, then we have a continuous map g sz K’ XH(L)—R. Then two
maps gxwpery and gro.ps, coincide with each other over (KNKA‘)x L and hence over
(KNK'yx B(L). Any point = of X is contained in some countably compact closed
set. Hence we have a single-valued map

Gxwpcry s XXBL)—R
which coincides with gx.scry over Kxp(L). If C is a countably compact subset of
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XX B(L), then
Cc Kx5(L)

for some countably compact closed subset K of X. Since gy.sczy i continuous
over KXA(L), gxxscy 18 continucus over C. According to Nagata [14, Theorem 1],
every M-space is a quasi-k-space. Since XX A(L) is an M-space we can conclude
that gxxscry 1S a continuous map. Applying Theorem 5.1 to the present case we
see that gx,sy 1S extended to a continuous map

Gucxrepery s p(XYXBL)—R.

Thus f]Xx L is extended to a continuous map gr: uXXL—R.

If L’ is another countably compact closed subset of Y, then f| XX L' is extended
to a continuous map ¢, (X)X L'—R. Then two maps ¢, and ¢z coincide with
each other over XX (LNL’) and hence over p(X)x(LNL’). Therefore we have a
singlevalued map ¢: p(X)x Y—R, which coincides with ¢, over u(X)x L. Since
(X)X Y is an M-space and hence a quasi-k-space, we can conclude by the same
argument as given before that ¢ is a continuous map.

Similarly as above, the map ¢: (X)X Y—R is extended to a continuous map
A X)X w(Y)—R. Thus any continuous map f: XX Y—R is extended to a
continuous map /21 (X)X (¥ )—R. On the other hand, (X)X (Y is a paracompact
M-space by Morita [11, Theorem 6. 4] and hence topologically complete. Therefore
we have (XX Y)=pXxpY by Theorem 2.4. This proves (a).

ReMark. Recently Y. Tanaka has proved that the product map ox¢: XX Y—
Sx 7, where ¢o: X—S and ¢: Y—T are quasi-perfect maps and S, 7" are first
countable spaces, is a quasi-perfect map if and only if the product of any countably
compact closed subsets of X and Y is countably compact.

In applications of Theorem 5. 2 the following theorem is useful.

TreorEM 5. 3. For an M-space X the following statements are equivalent.

(a) XX Y is an M-space for any M-space Y. :

(b)  Every gquasi-perfect map ¢ from X onto a metric space S has the property
that o X ¢ XX Y—=Sx T is quasi-perfect for any quasi-perfect map ¢ from any space
Y onto a metric space T. ‘

(¢) FEwery countably compact closed subset A of X has the property that AXY
is countably compact for any countably compact space Y.

(d) FEvery normal sequence (U3} of open coverings of X satisfying condition
M) in §3 has the property (CM).

(CM): For any discrete subsequence N of a sequence {x;} such that x;€St{x, U;)
for each i and some point x of X, and for any non-empty subset S of K—X where
K is any compactification of X, the subspace NUS of K is not countably compact.

Proof. (b)>(a) is obvious. (a)é&=>(d) is proved by T. Isiwata [6]. To prove
()= (c), let A be any countably compact closed subset of X, and let ¢ be a quasi-
perfect map from X onto a metric space S. Then .¢(A) is compact. Let T be a
Vol. 10, No. 271]
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space obtained from S by contracting ¢(A) to a point 4. Then the quotient map
¢ S—7T is perfect and 7' is metrizable. Hence f=¢eop: X—T is quasi-perfect and
ACS ). It is sufficient te prove that if (d) holds, then B=f"4) has the
property that Bx Y is countably compact for any countably compact space Y.

Let {9;} be a normal sequence of open coverings of 7" such that (St (z, 9/:)} is
a basis of neighborhoods at each point 7 of 7. Let us set U,=f"(WY,), i=1,2,--.
Then {9J:} is a normal sequence of open coverings of X satisfying condition (M).
Let K be any compactification of X and L the closure of B in K. Then L is a
compactification of B and L—BcK—X since B is closed in X.

Let N be any countable discrete subset of B. Then we have NC BCSt (b, Uy)
for each 7 and each point » of B. Hence, if (d) holds, NUS is not countably
compact for any subset S of L—A. Therefore, by a theorem of Frolik [2] BxY
is countably compact for any countably compact space Y. This proves that (d)
implies (c).

Finally, assume (c¢). Let {J:} (resp. {C1/;}) be a normal sequence of open
coverings of X (resp. Y) satisfying condition (M). Let us set 9;={Ux V| UeU;,
Vecy). Then {9/;} is a normal sequence of open coverings of Xx Y (e.g. cf. [4]).
Let (@, yo) be any point of X'x Y, and suppose that

(1, y)e St (o, Yo), /1) for i=1,2, -

Then the closure A of {z;} in X and the closure B of {y;} in Y are countably
compact. Hence by (c) Ax B is countably compact, and consequently {(z;, v;)} has
an accumulation point in Xx Y. Thus (b) holds.

Remarkx., If X is an M-space satisfying one of the conditions: (i) X satisfies
the first axiom of countability, (i) X is locally compact, (iii) X is paracompact,
then X satisfies condition (a) of Theorem 5.3. T. Ishii, M. Tsuda and S. Kunugi
[4] have given a condition for an M-space which implies (a) and is implied by any
one of conditions (i) to (iii) above. However, as has been shown by T. Isiwata,
their condition is not necessary for (a) to hold.

6. The dimension of product spaces

For a space X we define the covering dimension of X, dim X, as the smallest
integer n with the property that every finite normal open covering of X admits
a finite normal open covering of order =n+1 as a refinement. This definition is
due to M. Katetov (cf. [3]) and it coincides with the covering dimension in the
usual sense if X is normal. Since dim X=dim 3(X), the lemma below is a direct
consequence of Theorem 2. 2.

Lemma 6.1, dim X=dim p(X) for any space X.

THEOREM 6. 2. If X is a pseudo-paracompact space and Y is & locally compact
paracompact space, then dim (XX Y)=dim X+dim Y.
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Proof. Since p(X) is paracompact, we have
dim (U X)x Y)=dim (X)+dim Y=dim X+dim ¥
by Morita [10]. On the other hand; by Theorem 5.1 we have
dim (XX Yj=dim (XX ¥Y)=dim ((X)X ¥) .

This proves Theorem 6. 2.
As another case for which the product theorem on dimension holds we can
state the following theorem.

- Tuarorem 6.3. If X is an M-space and Y is a metric space, then dim (XxY)
=dim X+dim Y.

Proof. In this case we have pu(XXY)=pXxY by Theorem 5.2 and Remark
following Theorem 5.3. Since w@(X) is a paracompact M-space, so is m(X)x Y.
Therefore, by Kodama [9, Theorem 4] we have

dim (uX)x Y)=dim u(X)+dim ¥Y=dim X+dim Y.

By the same argument as in the proof of Theorem 6.2 we obtain the desired
inequality.
By virtude of Morita {10, Theorem 7] the following theorem is proved similarly.

TueoreM 6. 4. If X is pseudo-paracoimpact and Y is a polytope of finite
dimension, then dim (XX Y)=dim X+dim Y.

7. Unsolved problems

Let us list some of unsolved problems relating to our results in this paper.

1. Find a characterization of a space X such that u(X) has a give property (P).

As examples of (P) we mention: “paracompact”, “locally compact”, and
“ Lindelsf ”.

1I. Find a necessary and sufficient condition on X and Y for p(Xx Y)=pXx pY
to hold.

As far as Xx Y is an M-space, Problem II is settled by Theorem 5. 2. How-
ever, the following problem is open.

1. If XxY is an M-space, then does the formula p(XX Y)=pXx ¥ hold?

This problem is equivalent to Problem IV below.

IV. If X and ¥ are countably compact spaces and if Xx Y is an M-space, is
XX Y countably compact?

Suppose that the answer of III is yes. If X and Y are countably compact
spaces and XXY is an M-space, then p(XxXY)=pX X pY and p(X), «(Y) are
compact by Theorem 3.1, and hence by applying Theorem 3.1 again we see that
XxY is countably compact. Thus IV is answered affirmatively.

Conversely, suppose that the answer of IV is yes. Let K (resp. L) be any
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countably compact closed subset of X (resp. ¥). Then KX L is a closed subset of
the M-space XX Y and so is itself an M-space, and hence Kx L is countably
compact, and consequently we have (XX Y)=pXxpY by Theorem 5. 2.

V. Does the product theorem dim (XX Y)=dim X+dim ¥ hold for any spaces
X and Y?

Try the cases (a) X is arbitrary and Y is locally compact and paracompact,
and (b) Xx Y is an M-space. The problem raised by J. Nagata: “Is dim (XX Y )=
dim X+dim Y true for paracompact M-spaces X and Y7?” is related to case (b)
intimately as is seen from the proof of Theorem 6. 3.

Added in proof (October 20, 1970). Recently Problem IV in §7 has been
answered in the negative by A. K. Steiner.
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