Adjoint pairs of functors and Frobenius extensions

By
Kiiti Morrra
(Received May 10, 1965)

Introduction

Throughout this paper A and B are assumed to be associative rings which pos-
sess identity elements 14 and 1z respectively. The category of all left (resp. right)
A-modules will be denoted by It (resp. M4), and by a functor we shall always
mean a covariant additive functor. In case we speak of a subring B of A we shall
assume that 1z=14. All modules over a ring are assumed to be unitary.

Let S be a functor from 40t to M and T a functor from M to .M. In case
there is a natural isomorphism

(1) Homp(S(X), Y)=Homua(X, T'(Y)) for Xe.M, YesM,

where both sides of (1) are considered as bifunctors in X and Y with values in the
category of abelian groups, we say, following D. M. Kan [5], that S is a left adjoint
of T and T is a right adjoint of S. If S is a left adjoint of 7 and 7 has a right
adjoint we shall say that {S, 7"} is an adjoint pair of functors.

Among adjoint pairs of functors the simplest one is such that {7, S} as well as
{S, '} is an adjoint pair; in this case {S, T'} will be called a strongly adjoint pair.
As an example of a strongly adjoint pair we can mention category-isomorphisms;
if ST and T'S are naturally equivalent to the identity functor, each of S and T is
called a category-isomorphism?®.

Another example of strongly adjoint pairs is provided by Frobenius extensions.
The notion of Frobenius extensions was first introduced by F. Kasch [6] and later
generalized by T. Nakayama and T. Tsuzuku [14], and by Kasch himself [7]. Let
B be a subring of A. Then it will be shown (§5 below) that A is a Frobenius
extension of B in the sense of Kasch [7] if and only if the functors S and T de-
fined by S(X)=pA+Q X, T(Y)=,4Az®Y form a strongly adjoint pair.

The notion of g-Frobenius extensions in the sense of Nakayama-Tsuzuku [14]
involves an automorphism S of the subring B of A. This notion, however, exhibits
a midway feature, as is pointed out in [14, Part II, p.137], in generalizing the end-
omorphism ring theorem of Kasch; indeed, Theorem 22 in [14] necessitates a rather
strong assumption that B be extendable to an automorphism of A. On the other

1) In this case T is called an inverse of S and will be denoted by S-1; S—! is determined
uniquely by S up to a natural equivalence. As for category-isomorphisms, cf. K. Morita
[10], [11], H. Bass [2]; [2] gives a nice summary of the theory.
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hand, in [14, Part I, p. 92] Nakayama and Tsuzuku suggested generalizing the notion
by taking account of an automorphism a of A besides 8. Their intention seems to
be realized by the notion of (a, §)-Frobenius extensions defined below, which, how-
ever, has still a midway feature®. The unsatisfactory point seems to be remedied
by considering the situation from the point of view of adjoint pairs of functors.

Let Sy be a category-isomorphism from I to itself and 7, a category-isomor-
phism from p0t to itself. In case {S, 7'} is an adjoint pair of functors such that
T,7'SS, is a right adjoint of 7, we shall say that {S, 7'} is an (S, Zv)-strongly ad-
joint pair. In §5 we define the notion of (S,, 7b)-Frobenius extensions so that A is
an (S, Tv)-Frobenius extension of B if and only if {7,5'Ss, T} is an (Ss, To)-strongly
adjoint pair where S/(X)=pA.Q® X, T(Y)=.AzQRY, for Xe M, Ye M. In case
So is a category-isomorphism induced by an automorphism « of A and 7, is one
induced by an automorphism B of B, we speak of an («, 8)-Frobenius extension in-
stead of an (S,, 7v)-Frobenius extension; a g-Frobenius extension in the sense of [14]
is nothing but a (1, 8)-Frobenius extension in our sense.

The purpose of the present paper is to develop a theory of adjoint pairs of
functors. Our first result, Theorem 3.1 in §3, asserts that (S, 7} is an adjoint
pair of functors if and only if there are natural equivalences® :

SX=pUa®@X, T(V)ZAV®Y,  XeaM, Yeut,
with bimodules pUy, 4V35 such that
(2) gU is finitely generated and projective?,
(3) AVe=a[Homp(aUs, 38B)]5°.

In §4 we shall define (S,, To)-quasi-strongly adjoint pairs and in §5 the notion
of (S,, To)-quasi-Frobenius extensions will be introduced. Quasi-Frobenius algebras
were introduced by T. Nakayama as a generalization of Frobenius algebras. While
the notion of Frobenius extensions was obtained about ten years ago, it is quite
recently that the notion of quasi-Frobenius extensions has been defined by B. Miil-
ler [13] and by A. Rosenberg-S. Chase independently. Quasi-Frobenius extensions
in their sense are special cases of (S,, Ty)-quasi-Frobenius extensions in our sense.

The well-known theorem of Gaschiitz-Ikeda-Kasch concerning relatively projec-
tive and injective modules will be discussed in the framework of adjoint pairs of
functors (§ 6).

A left A-module is called reflexive (cf. [1]) if the natural A-homomorphism

(4) n(X): X—HomsHoma(X, 4A), Al

2) Even if A is a (I, g)-Frobenius extension of B, the B-endomorphism ring of Az is not
always a (7, a)-Frobenius extension of A except for the case where Ap is free or f=1.

3) In case both sides of the symbol = are considered as functors, by = we mean “is
naturally equivalent to”.

4) As usual, a module M is written as 4M (resp. M4) in case it is to be stressed that
M is considered as a left (resp. right) A-module; similarly for 4Map.

5) For acd, beB, feHomp(U, B), we define af and fb, as useal, by (af ) (w)=1(ua), (fb)(x)
=fu)b, ue U.
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is an A-isomorphism. In §7 we shall prove that in case {S, T’} is an adjoint pair
satisfying certain conditions, X is reflexive if and only if the left B-module S(X)
is reflexive. This constitutes a generalization of the duality in quasi-Frobenius al-
gebras. In §8 it will be shown that Nakayama isomorphism can be defined for ad-
joint pairs satisfying some conditions.

The endmorphism ring theorem will be established in §9 for (S,, 7b)-quasi-strong-
ly adjoint pairs.

Finally, in §10 we shall give a characterization of category-isomorphisms for
the case where A and B satisfy the minimum condition, from the stand point of
adjoint pairs of functors.

§1. Preliminaries

A left A-module V is called a generator (of ) if there is a positive integer
n such that a direct sum of n copies of ¥V has a direct summand which is A-iso-
morphic to 4A; V is a generator if and only if there exist a finite number of ele-

ments v;eV, p;eHoma(V, 4A4), i=1,---,n, such that f}@i(vi):lm
i=1

For a right A-module U4 we denote_by Endi(U.) the A-endomorphism ring of
U,; we consider Enda(Ua) as a left operator domain of Us. For a left B-module
sU we denote by [Endz(»U)]° the ring which is inverse-isomorphic to the B-end-
omorphism ring of zU; we consider [Endz(sU)]° as a right operator domain of zU.
In case U, is a B-A-bimodule, by B=End.(Us) we shall mean that B is iso-
morphic to End.(Us) by the correspondence b—¢, where ¢y(u)=0bu for ueU; simi-
larly by A=[Ends(zU)]° it is meant that A is inverse-isomorphic to Ends(U) by
the correspondence ¢—¢, where gu(u)=ua for ueU.

Lemmva 1.1, Let Vi be an A-B-bimodule. Then the following statements hold.

1) If 4V is a generator and B=[End.(.V)]°, then Vi is finilely genevated and
projective and A=Endp(Vp).

2) If Vi is finitely generated and projective and if A=LEnds(Vy), then iV is «
generator.

This is nothing else Morita [10, Lemma 3. 3].

TueoreM 1.2, If S: M—sM is a category-isomorphism, there exists a B-A-
bimodule sUs such that there is a natural equivalence S(X)=pUs Q@ X. For a B-A-
bimodule Uy the following conditions are equivalent.

I The functor sUsRX from M to zM is a category-isomorphism.

II. Ui and pU are finitely generated and projective, and B=End.(Us), A
== [EHd};(E U)]O.

III. Ua is a finitely generated, projective generator and B=End.(U.).

This is proved in Morita [10, Theorems 3.2, 3.4 and Lemma 3.3]. See also
H. Bass [2]. Theorem 3.1 in §3 below is viewed as a generalization of Theorem
1.2.

LevMa 1.3. Let 4V be an A-B-bimodule. If iV is a generator, then Vz @Y
is a generator of M for any generator Y of M.

Proof is obvious.

Lemma 1.4, Let B be a subring of A and V a left A-module. If 5V is a gen-
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erator, then pB is a direct summand of pA.
Proor®. By assumption there exist v;eV, ¢.€eHomu(V, zB), i=1,---, n, such that
n
¥ oiv)=1p5 Let us set
i=1

Pla)= i:‘ﬁi(cwi), for aeA.

Then ¢eHomp(zA, zB) and ¢(b)=>0 for bebB.

A functor S from M to an abelian category is said to be faithful if S(f)=0
implies f=0 for feHom(X, X’) (5. MacLane [9, p. 263]).

Lemma 1.5. Let V be « left A-module and set S'(X)=Hom,(V, X), Xe.M.
Then the functor S’ is jaithful if and only if 4V is a generator. If S’ is jaithful
then S'(X)=0 implies X=0; conversely, in case V is projective, if S'(X)=0 implies
X=0 then S’ is faithful®.

Proor. Suppose that S(f)=0 for feHom,(X, X"). Let x,eX. If there are vieV,
w;eHoma(V, A), i=1,---, n, such that Je«(v:)=1, then f(zo)= Y (fog:)(v:)=0 where we
set g:(v)=e:(v)zy for veV. Thus f=0, as desired.

Let J be the left ideal of A generated by ¢(®) for all veV, peHom(V, A). Let
o be the canonical projection of 1A onto A/J. Suppose that S* is faithful (resp. V'
is projective and S/(X)=0 implies X=0). Then S(¢)=0 (resp. S'(A//)=0). Hence
J=A, that is, V' is a generator.

§ 2. Dual sets of generators

For UepIt, Velly, by a B-bilinear form on UxV we shall mean a map w:
UxV—DB such that o is additive with respect to » € U and veV and w(bu, v)=bw(x, v),
o(u, vb)=w(u, v)b for beB, uelU, veV.

Two sets of elements, {#;€U, i=1,--,n} and {v:€V, i=1,---,n}, will be called
dual sets of gemerators of U and V with respect to a B-bilinear form o, if the con-
ditions (5) and (6) below are satisfied:

(5) U= f w(u, Vi), for ueU,
i=1
(6) v=Yvw(,v)  for veV.

If {#:} and {v;} are B-bases of U and V respectively and w(us, v;)=0:;1p, {2;} and
{v:} are called dual bases of U and V; in this case {#;} and {v;} are, of course,
dual sets of generators of U and V. Conversely, if {#:} and {v:} are dual sets of
generators of U and V with respect to a B-bilinear form w and if {#;} is a B-basis
of U, then w(ui, v;)=0d;;15 and {v:} is a B-basis of V, that is, {#;} and {v;} are dual
bases.

TueoreM 2.1. Let 3Us be a B-A-bimodule and Vs an A-B-bimodule. Then
the following conditions are equivalent.

6) Lemma?li as well as its proof is a slight generalization of Miller [13, Hilfssatz 1].
6a) The first part of Lemma 1.5 is essentially the same as H. Bass[2, Lemma 1].
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1. a) pU is finitely generated and projective.
b) AVBEA[I‘IOTHB(B UA, BB)]B
II. a) Vs is finitely generated and projective,
b) sUs=p[Homp(4Vs, Bsla.
III. There exists a natural A-isomorphism

4V ® BY%HOTI}];(B Uy, Y) for YezM.
IV. There exists a B-bilinear form w on UxV such that
(7) o(ua, v)=olu, av) for acA, ueU, veV,

and that there are dual sets of generators {u;, i=1,-,n} and {vi, i=1,--,n} of U

and V' with respect to o.
Proor. The equivalence I«II is evident.
I—III. Assume I. Then by I a) the homomorphism

2:Homs(pU, sB) ®Y—Homz(zU, Y)

defined by [A(f Q@ ¥)(w)=rf(u)y for feHomz(U, pB), v €Y, ueU, is a natural isomor-
phism by virtue of S. MacLane [9, p.147]. It is easy to see that 2 is a left A-iso-
morphism. Hence III holds in view of I b).

III—IV. Let

/1( Y) 2 AVa @ BYEHOITXB(B UA, Y), YesM
be a natural A-isomorphism. Then we have
(8) w(B): 4V ® sB=Homp(3Us, 5B)

by setting Y=3B. From the naturality of ¢ it follows that p(B) is a right B-iso-
morphism if both sides of (8) are viewed as right B-modules as usual. Now set,

o, )=[p(B) 0@ 1)),  for uel, veV.
Then o is additive with respect to e U and »€V, and we can easily prove that
o{bu, v)="Dbw(u, v), w(u, vb)=wl(u, v)b
w(ua, v)=w(u, av)
where a€A, beB, ucU, veV.
If we set
ou(b)=0bu for ueU, beB,

then we have ¢p.eHomp(sB, sU) and the diagram
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B)
Nz ® 3B HOm(B U4, BB)
1R oy Hom(1, pu)
| w(U) l

AV @B U——m—rm-Hor—— HOH’IB(BUA, B U)
is commutative. Hence we have
(9) [((B) 0 @ b)) ()] u=[p(U) (0 ® b2e)] (")
for u, u'eU, veV, beB.

Let us set

C=[Ends(z1)]°=[Homas(»U, sU)]°.
Then, by the convention made in §1, (9) can be written as follows:
o', vh)yu=u'[(U) (v & bu)].
If we set b=1p, we have then
(10) o', Vu=u'[p(U) (0 ® )],

where %, #'eU, veV. If we denote by 1 the identity element of C, then there are
a finite number of elements u;e U, v;€V, i=1,---, » such that

(U (1o)= 5 i@
since w(U) is an isomorphism. Hence we have
uzulcz‘izzjlu[/z(U)(vz@%i)],
and consequently by (10) we get
1D u=i§i_.‘lm(u, viu;  for ueU.
Now, let veV and set
12) Do=D— éviw(ui, 2).

Then by (11) we can prove that w(w, v,)=0 for all veU. From the definition of
it follows that [(B) @, ®1s)](%)=0 for all zeU. Since p(B) is an isomorphism, we
have 9,=0. Thus {#«;} and {»;} are dual sets of generators of U and V with re-
spect to .

IV—I. Assume IV. Then by Cartan-Eilenberg [3, p.132] we see that 30U and
Vs are finitely generated and projective. Let us set

()= élvif(ui) for feHomg(sU, 5B).
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Then by (5) we have f(u)=w(u, D(f)) for ueU. Hence @ is a one-to-one map from
Homg(sU, zB) into V. For v,eV we have @(fo)=w, if we set fo(u)=w(u, v). Since
it is easy to see that @ is an A-B-homomorphism, statement I holds.

CoROLLARY 2.2. Suppose that condition I of Theorem 2.1 is satisfied, and set

o(u, v)=[t(®)](2) for ueU, veV,

where t is an A-B-isomorphism from 4V onto Homp(pUs, sB). Then for any set
of generators {uy,,un} of pU, there exists a set of generators {vy,--, v} of Vi
such that {u:} and {v;} ave dual sets of gemerators of U and V with respect to .

Proor. Trom the proof of Theorem 2.1 it follows that there are {u:} and {v:}
which are dual sets of generators of U and V with respect to w. Let {«jlj=1,---, m}
be any set of generators of sU. Then there exist b;;eB such that u,= 2byuj. Set
vy=2vibi;. Then it is easy to see that {«}} and {vj} are dual sets of] generators
of U and V with respect to w.

Lemma 2.3, Let U be a finitely gemerated, projective, left B-module and Vg
=[Homp(U, sB)s. Then [Endsz(zU)]° and Ends(Va) are isomorphic.

LevmMa 2.4, Let pUs and 4V be bimodules satisfying condition I of Theorem
2.1. Then, if 4V is faithful, then the lefi A-module \Vs@Y is faithful for any
Jaithful left B-module Y.

Proor. Let aseA and @,x0. Then there is »,eV such that aw.x0. Hence
there is o€ U such that w(u, aeo)=0. Since Y is faithful there is ¥, €Y such that
(oo, V)Yox0. Let us set ¢u)=wl(u, vo)ys for weU. Then ¢eHomp(zU, Y) and
(@) (216)0. This proves Lemma 2.4 in view of Theorem 2. 1.

§ 3. Adjoint pairs of functors

Througout this paper it will be assumed that S, S’ are functors from .0t to
AN and T is a functor from M to M.

In case S is a left adjoint of 7 and 7T has a right adjoint, that is, for some S’
there are natural isomorphisms:

(13) AX, Y): Homp(S(X), Y)=Homa(X, T(Y)),
(14) (X, Y) :Homu(7(Y), X)=Homz(Y, S"(X)),

we shall say that {S, T'} is an adjoint pair of functors; in this case hy S’ we shall
always mean a right adjoint of 7.

For example, in case there is a ring homomorphism ¢ from A into B such that
e(1a)=1g, if we set S(X)=3B.QRX, T(Y)=4Bs®QY, S"(X)=Homua(.Bs X) where
we define 4B, Ba by axb=¢(a)b, bxa=0be(a) for beB, acA, then {S, T'} is an adjoint
pair of functors. :

TuroreM 3. 1. {S, T'} is an adjoint pair of functors if and only if there arve
natural equivalences :

(15) SXN)=pUs® X, T(Y)=4Ve®Y,  Xedlt, Yepl
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with bimodules pUa and Vg satisfying conditions (16) and (17) below:
(16) sU is finitely generated and projective,
(17) AVBEA[HOIHB(BUA, BB)]B.

Remarik. The conditions (16) and (17) are equivalent to conditions (16)’ and
any

(16)” V3 is finitely generated and projective,
a7y U= p[Homp(4V5, Bs)la.

Proor or Twurorem 3.1. Suppose that {S, 7"} is an adjoint pair. Then we have
natural equivalences (13) and (14). Let us set

(18) U=S(4A4), V=T(sB).

Then UepM and Ve M. For any element a of A we define p.eHoma(4A, 4A) by
vu(x)=2a, zeA, and set

(19) ua=5(pa)n for ue U, acA.

Then U becomes a right A-module, and moreover zU, is a B-A-bimodule. Similar-
ly, let us set

(20) vbo=T(du)v for veV, beB,

where ¢yeomp(sB, zB) is defined by ¢u(y)=yb for yeB. Then V becomes an A-
B-bimodule.

From the natural isomorphism 2 in (13) we obtain a natural isomorphism in
YepMt:

Homp(pUs, YV)=Homa(4A, T(Y)).

Moreover, this isomorphism is a left A-isomorphism as is easily seen from the natu-
rality of 2 in Xe, M. Thus we have a natural A-isomorphism

(21) T(YY=Homzs(pUs, Y) for YezMt.
Similarly, from (14) we obtain a natural B-isomorphism

(22) S(X)=Homa( V5 X),  for Xe. N

On the other hand, by [3, p.28] we have a natural isomorphism
23) Homzp(xU. @ X, ¥)=Homa(X, Homu(zUs, Y))

for Xe.M, YeM. As is proved by D. M. Kan [5], a left adjoint of a functor, if
it exists, is determined uniquely up to a natural equivalence. Therefore by (21)
we obtain a natural B-isomorphism
Vol. 9, No. 205]
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(24) S(X)EB Uy ®X, Xe M.
Similarly, from (22) we get a natural A-isomterphism
(25) T(Y)=.VsRY, YesMt.

In view of Theorem 2.1, the proof of the “only if” part of the theorem is now
completed by (21) and (25).

The “if ” part of Theorem 3.1 is stated in the following theorem more ex-
plicity.

THEOREM 3.2. Suppose that S, S’ and T are defined by

S(X)=pUs® X, S(X)=Homa(,Vs X), for Xe.M,
T(Y)=4Vs®Y, for YegpM,

where sUs and 4Vy are bimodules satisfying conditions (16) and (17) of Theorem
3.1. Let us set

(26) (2, v)=[c(v))(2t) for ueU, veV

where © is an A-B-isomorphism: Vp=i[Homp(pUas, 8B)]s. Let {#t1, -, a} and {v, -,
va} be dual sets of gemerators of U and Vi with respect to a B-bilinear form .
Then the homomorphisms

22 Homp(S(X), Y) —Homa(X, T(Y)),

p: Homa(T(Y), X)—Homz(Y, S'(X))
defined by
@D [@)@)=50: @0 @), for weX,
28) [N WID=F@®Y),  for ve¥, veV,

are isomorphisms which are natural in Xe M and YesM.
Proor. As is well known, the homomorphisms

Dy Homp(sUs ® X, Y)—Homa(X, Homa(sUs, Y))
®,: Homp(sUs, 2B)® 5Y—Homs(aUs, ¥)

defined by

(29) [Do(9) ()] () =9(u & ),

(30 [2:.(2 Q@) (w)=h(u)y,

where ze X, yeY, uelU, geHomps(zrU.®X,Y), heHomp(zU4, B), are natural iso-
morphisms; the isomorphism of @, follows from (16).
Let us set
[Sc. Rep. TK.D. Sect. A.
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(31) Dy=010(r®1): AV ®Y—-Homp(rUs, ¥)
(32) A=Hom(1, @;%)e®,: Homp(S(X), Y)—Hom (X, T(Y)).

Then @, is a natural isomorphism in ¥ and 2 is an isomorphism which is natural
in X and Y.

Since it follows from (30) that
(33) [D2(0 @ )] ()= [(v) (w)]y = 0 (u, v)y,
we have for geHomz(S(X), Y)

[2a( 330 @ (0: @ 2)(e) = S0, 030t D )

:g(éw(u, Ui r)=9(u® x);

we have used here the property (5) of dual sets of generators (cf. §2).
Hence by (29) we have

0:(330: @01 @ 2) =D(9) (@),
which shows, in view of (32), that
@n X0) ()= 50 @01 @ ).

Since it is obvious that p defined by (28) is a natural isomorphism, the proof of
Theorem 3.2 is completed.

CoOROLLARY 3.3. Under the same assumptions as in Theorem 3.2, the natural
transformations®

ao(X): X—TS(X), ay(X): TS'(X)—X,
Bo(Y): Y=S'T(Y), p(Y): ST(Y)—-Y
defined by
a(X)=A1sxy), a(X)=p1s:n),
Bo(Y)=p(lrer>), B(Y)=2""(1rer)®

are expressed as follows:
a(X) (2)=30: @ u: Q , for ze X,
i=1

a(X) (v @ 9)=09(v), for veV, geHomu(4V, X),

7) Cf. §6 below for the significance of these transformations.
8) We denote by lx the identity map from X onto itself.
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[Bo(Y) (W)](@)=0 &, for yeY, veV,
L)Y uQ@vRy)=olu,v)y, for uel, veY, yeY.

Proor. The expressions for ao(X) and B.(Y) are obvious from Theorem 3.2.
We shall consider

A t=0; % [Hom (1, O;H] =05 «Hom (1, @y)
with the notations used in the proof of Theorem 3.2. If we set

g=[Hom (1, @2)](1r¢ry),
we have

[P7 (DN ®z)=g(x)(w) Dby (29),
[9(v @ ¥)(w)=(u, v)y by (33).
By setting z=v®vy we then obtain
[P (D)@ v @ v)=[9(v @ V() =w(u, v)y.
This shows that S(Y)(#Rv&® v)=w(x, v)y.

Next, we shall consider a,(X). TForveV, feHoma(.Vs, X) we have a(X) (0 f)
=f(v) by (28). Thus the proof of Corollary 3.3 is completed.

§4. Quasi-strongly adjoint pairs

An A-B-bimodule 4 Wy will be said to be similar to an A-B-bimodule Wi if
AWy is A-B-isomorphic to a direct summand of a finite direct sum of copies of 4 W7
and if 4W% is A-B-isomorphic to a direct summand of a finite direct sum of copies
of 4Wg; we write 4« Wa~,W5 In this case. +Wp is similar to W% if and only if
there exist @i, ;e Homa, gy (a Wa, A W5), ¢1, e Homea, my(a Why, a W), i=1,-,m; j=1,-,
m, such that

n m
2iei=1y, Z(,—D;")Gb}:luu.
i=1 =

The notion “similar” is likewise defined for one-sided modules®.
For functors S,S5": sM—sM we shall say that S is similar to S, if for some
positive integers » and s there are natural transformations
o(X) H(X)
S(X) —5 T @I(X) — S(X)
i=1

/ X /7

o0 ¢/(X)
S(X) ——> J@SX) —— S(X)

9) A left A-module is similar to 44 if and only if it is a finitely generated, projective
generator.
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such that ¢(X)eo(X)=1sr, and ¢'(X)od/(X)=1s (x>

In case S is naturally equivalent to a functor defined as Us® 4+ X with a B-A-
bimodule sU4, S’ is similar to S if and only if S’ is naturally equivalent to a func-
tor defined as U, ®4X with a B-A-bimodule U4 which is similar to zUa.

Let Sy be a category-isomorphism from M to itself and 7% a category-isomorph-
ism from M to itself; let M., M3, sNp, zN5' be bimodules such that

(84) . SiX)=MRX, SgUX)= MR X, Xe.Mm,
(35) To(Y)=aNe®Y, T7H(Y)=ZN'R Y, Ye M.

These notations shall be retained throughout this paper.

Let {S, T} be an adjoint pair of functors such that 7" has a right adjoint S’.
Now let us consider the following requirements for S7:

1) S'=S,

2y S'=T1SS,,

3) § is similar to S,

4) S’ is similar to 737'SS..

According as 1), 2), 3) or 4) holds, we shall say that {S, T} is a strongly ad-
joint pair, an (Se, To)-stronely adjoint pair, a quasi-sirongly adjoint paiy or an (S, To)-
quasi-strongly adjoint pair.

We shall now establish the following theorem.

TreoreMm 4.1. {S, T} is an (S, Ty)-quasi-strongly adjoint pair if and only if
there are natural equivalences:

(36) SXN=pUs@X, TNz QY, S(X)=,U,Q0X

with bimodules pUa, 4V and Uy satisfyvine conditions (37) to (40):

37) AV and Vi are finitely generated and projective,
(38) sUs=Homz(4Vs, Bs),

(39) 2Ui=Hom (4 Vs, 44),

(40) sUh~sN5' @ sUs&® 4 M.

If the condition (40)-is replaced by (40), (40)’, or (40)'" below, we have a neces-
sary and sufficient condition for {S, T} to be a strongly adjoint pair, an (S, Tv)-
strongly adjoint pair, or a quasi-strongly adjoint pair:

40y 2UL=nUs,
(40)” U= pNE' Q sUa Q) aMa,
40y sUs~nUa.

Proor. Suppose that {S, T} is an (S,, Tv)-quasi-strongly adjoint pair. Then by
Theorem 3.1 there are bimodules 3U, and .V such that (38) and the part of (37)
for Vp hold. Since T7'SSy(X)= 4N Q s U@ 4M4&® 4 X, by the remark made at the
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beginning of this section there is a B-A-bimodule U} such that S/(X)=,U4&® X and
2Uh~gNg' Q@ pUsa® sM4. From the form of the functor S it follows that S* has
a right adjoint, and hence {7, S’} is also an adjoint pair. Now Theorem 3.1 is
applicable; thus 4V is finitely generated and projective, and (39) holds. Therefore
conditions (36) to (40) hold. Conversely, suppose that conditions (36) to (40) hold.
Then {S, 7} and {7,S’} are adjoint pairs by Theorem 3.1. Thus the first part of
the theorem is proved. The second part is easy to see.

TrarorEM 4.2. (S, T} and {T,S’} are adjoint pairs if and only if lhere are
bimodules pUa, Vg, and zUYy satisfying conditions (36) to (39) in Theorem 4.1. The
conditions (37) to (39) are satisfied if and only if there are an A-bilinear form wi
on V' x Uy and a B-bilinear form wp on zU X Vi such that

(41) w (0D, u'Y=w.(v, bu’) for beB, veV, u' ell,
(42) wp(ua, v)=wpu, av) for aeA, uelU, veV,

and such that there are dual sets of gemerators {v}, j=1,---,m} and {u}, j=1,---, m}
of AV and Uy with respect lo wa, and dual sets of generators {u;, i=1,---,n} and
{vi, i=1,---,n} of sU and Vs with respect to wsg.

The first part of Theorem 4.2 is contained in the proof of Theorem 4.1 and
the second is a direct consequence of Theorem 2. 1.

THeorREM 4.3. Let us set

SX)=XR Vs, T(V)=YR U, T"V)=Y® zU%

where XeMy, YeMp. If the bimodules U, pUy and Vi satisfy conditions (37)
to (39), (§, T} and {T’,§ } oare adjoint pairs, and conversely.
Proof is obvious.

§ 5. Frobenius and quasi-Frobenius extensions

Throughout this section B is assumed to be a subring of A.
We shall say that A is an (So, To)-Frobenius (resp. (So, Tv)-quasi-Frobenius) ex-
tension of B if conditions (43) and (44) (resp. (43) and (45)) below are satisfied:

(43) Apg is finitely generated and projective,
(44) 3A4= N ® s[Homp(uAp, Bs)la & 4 My,
(45) BAA ~BN1}! ® B[HOI‘HB(AAB, BB)]A ® M 4.

Then we have

TuroreM 5.1. Let us set T(YV)=.AsQRrY, YesM. Then the following state-
menls are equivalent. ‘

1) A is an (So, To)-Frobenius (resp. (So, To)-quasi-Frobenius) extension of B.

2) S, T} is an (S, To)-strongly (resp. (Se, To)-quasi-strongly) adjoint pair for
some functor S: #N— M.

3) There is a natural isomorphism:
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Homz(sU. @ X, Y)=Hom4(X, T(Y)) For Xe M, Yezm

with @ B-A-bimodule 3Us such that zUs=(resp. ~) sNs® pAs® M7

Proor. If we set S/(X)=3A,QX (Xe.M), then {7T,5’} is always an adjoint
pair, since Homa(uaAz X)=pA.Q X. Hence statements 2) and 3) are equivalent.
The equivalence of 1) and 2) follows readily from Theorem 4. 1.

Levma 5.2. The conditions (43) and (44) (resp. (43) and (45)) are equivalent to
conditions (43)" and (44)’ (resp. (43)’ and (45)") below:

(43)’ sA is finitely generated and projective,
(44) aAp= AM4Q a[Homp(sA 4, B N5,
45y AAp~ M4 @ A[Homp(nA4, 5B)]5R zNz'.

Proor. Assume (43) and (44). Then we have (43) and
Homp(pAa, sB)=Homz(N7' @ [Homp(uAs, B)]Q +M.i, zB)
=Homz([Homs(1 Az, Bp)]® 4M.4, sNz)
=Homa(aMa, 4 As@ sNp)= M3 Q 4 AR 5N

The remaining parts are similarly proved.
We shall next consider the case where Sy and 7, are induced by automorphisms
a and B of A and B respectively; that is,

(46) So(X)=(a, X), T(Y)=(8, Y), Xe M, YesMN.

Here for a left A-module X we denote by (a, X) the left A-module which coincides
with X as additive groups and has a new left A-module structure defined by a*z
=a(@)z for ae A, zeX; for a right A-module X the right A-module (X, «) is simil-
arly defined.

In case (46) holds we have

(A7) aMa= (e, aA)a= a(Au, aVa, sNeZ (8, 8B)s= p(Bs, f~)s
and hence conditions (44) and (44)’ are stated as follows:

(48) BB, (8A4, )] a= p[Homas(4 Az, Br)]a,

(48) ala, (4Az, = s[Homu(pA4, 5B)]s;

if we replace = by ~, we have the conditions corresponding to (45) and (45)’.

In case (46) holds we shall speak of an («, f)-Frobenius (resp. («, B)-quasi-Fro-
benius) extension instead of an (S,, Ty)-Frobenius (resp. (Ss, Tb)-quasi-Frobenius) ex-
tension. In the special case that a=1, f=1 we shall simply speak of a Frobenius
(resp. quasi-Frobenius) extension; this definition agrees with those given by F.

10) More precisely, a quasi-Frobenius extension in our sense is a two-sided quasi-Fro-
benius extension in the sense of Miiller. One-sided quasi-Frobenius extensions in his sense
can also be treated in the framework of adjoint pairs of functors as is easily seen.
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Kasch [7] and by B. Miller [13]'®. A A-Frobenius extension in the sense of Naka-
yama-Tsuzuku [14] is nothing else a (1, B)-Frobenius extension.

Lemma 5.3. A is an (a, B)-Frobenius extension of B if and only if there is a
map

w: AXA—-B
such that o is additive with respect to each variable and
a(B(O)u, v)=bw(u, v),
o(u, v0)=w(u, v)b, u,veA, beB, acA,
o(ua(a), b)=w(u, av),

and there exist two sets {wui, i1=1,---,n}, {vy, i=1,---,n} of elements of A salisfying
the conditions below

w= 3Bl v)lu,  ued,

n
v=w0(ui, v), ve A.
i=1

Proof is obvious from Theorem 4.2 in view of (47).

An analogous theorem corresponding to («, 8)-quasi-Frobenius extensions can be
obtained.

An (e, B)-Frobenius (resp. (e, 8)-quasi-IFrobenius) extension A of B is an (a’, p’)-
Frobenius (resp. (a’, f')-quasi-Frobenius) extension of B if there is an element @, of
A such that @, has an inverse «;" and & 'f'(D)ac=a’a"'(5()) for all be B, since the
latter condition holds if and only if (B, (544, ))=(F, (sA4 «’)). In particular, in
case alB=p, a (1, p)-Frobenius extension A of B is an (a~*, 1)-Frobenius extension
of B.

In case B is contained in the center of A, any («, f)-quasi-Frobenius extension
A of B is always a quasi-Frobenius extension of B. Because for some integer 7>0

there are B-A-homomorphisms ¢, ¢:

¢

n &
(B, (3A4, a)) {;@ Hom(4Az, Be)—(B, (8A4, a))

such that ¢op=identity, and if we set @(1)=(%1, -, um) then for be B we have
(B =(batr, - Do) = (110, -, umb)==(a(D))

and hence S(0)=a(b).

§ 6. Relatively projective and injective modules

Let {S, 7'} be an adjoint pair and S’ a right adjoint of 7°; then there are natu-
ral isomorphisms:
[Sc. Rep. T.K.D. Sect. A.
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(13) AX, Y): Homp(S(X), Y)=Homa(X, T(Y)),

(14) (Y, Xy Homa(T(Y), X)=Homs(Y, S'(X)).
Let us set

(49) ao(X)=[AX, SN Lsexs) 1 X—TS(X),

(50) a(X)=[p(5"(X), ] (Lseexy) 1 TS(X)—=X,

(D) Bo(Y)=[u(Y, T(YD)(Arary): Y=S'T(Y),

(52) Bu(Y)=[AT(Y), )]7'(Ira): ST(Y)—Y.

Then a,, ai, B, p1 are natural transformations between functors and we have the
following factorizations:

(53) J =T (Neas(X)  for feHoma(X, T(Y)),
(54 S =a(X)e T(e(S7)) for f"eHom.(T(Y), X),
(55) g =5 (@)efo(Y)  for geHomu(Y, S'(X)),
(56) 9’'=Pp(Y)eS(2(g") for ¢’eHoms(S(X), Y);

these are proved by D. M. Kan [5].

A left A-module X will be called S'-projective if for any feHom (X, X"), gellom.
(X7, X)), X', X"e M such that S'(9)ek=lsx, for some keHomp(S'(X), S'(X")),
there exists AeHoma(X, X”) such that f=goh A left A-module X will be called
S-injective if for any feHomi(X', X), ge Homa(X", X7), X’, X" e 4 such that k-S(g)
=1lscxn for some keHomp(S(X"), S(X"), there exists AeHoma(X”, X) such that
f=hoeg.

Then we have the following lemmas.

Lemma 6.1, T(Y) is S'-projective for Ye gl

Proor. Let feHomi(7(Y), X), ge Hom4(X’, X) and suppose that S’(¢g)ok=1s.(x,
for some keHomp(S'(X), S(X"). Let us set Ao=rkoS'(f)opo(Y). Then ho=S"(1"(/1s))°
Bo(Y) by (55). Hence S'(f)eBu(Y)=S'(g)ohte=S"'(got)ofs(Y) where we set fi==p='(/).
Again by (55) we have f=goh.

LemMma 6.2, If a left A-module X is S'-projective, so is a divect summand of +X.

Proof is obvious.

Lemma 6.3, A left A-module X is S’-projective if and only if X is A-isomorphic
to a divect summand of TS'(X).

Proor. By (55) we have

Lsocry=5"(p7 (Lssxy))e Bo(S" (X)) = 5" (ay (X)) = fo(S"(X).

If X is S’-projective, then there exists pe Homa(X, 7'S'(X)) such that ly=ai(X)ep,
and hence the “only if” part is proved. The “if” part is obvious by Lemmas 6.1
and 6. 2.

Dually to these lemmas we have
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Lemma 6.1, T(Y) is S-injective for Ye M.

LemMa 6.2/, If a left A-module X is S-injective, so is a direci summand of 1+X.

LemmMa 6.37. A left A-module X is S-injectwe if and only if X is A-isomorphic
to a direct summand of TS(X).

Now we shall define the fransfer homomorphism

67 t: Homp(S(X), S"(X")—Hom (X, X)
by
(58) Hy)=ay (X e T(g)oao(X), for g e Homx(S(X), S'(X")),

where X, X’"e .
Then it is easy to see that

(59) WS (0)egoS(f ) =het(g)of

for feHoma(X", X), heHoma(X7, X77).
LemmMa 6.4, For any left B-module ¥ we have lyay=1(Bo(Y)ef1(Y)),
Proor. The diagram

1]

Homu(T(Y), T(Y)) ————— Homu(Y, S’ T(Y))
Hom(T'(8:.(Y)), 1) Hom(B(Y), 1)

I—Iom,;(TSlT( Y), T(Y)) L HomB(S’jl“( Y),S'T(Y))
is commutative, and hence we have
Bo(Y)opu(Y)=[Hom(:(Y), Dop](1rcry)

= [zeHom(T(B:(Y)), DIz ery)

=T (E(Y)).
On the other hand, by (53) we have the factorization

lran=T@"'Arw))a(T(Y)=T(BY ))ea(T(Y)),
and by (b4)
TBY N=a(T(Y ) T((T(B(X D))

Thus Lemma 6.4 is proved.
Now we are in a position to establish the following theorem.
THEOREM 6.5. For a left A-module X the following statements are equivalent.
(a) X is S'-projective.
by X is S-injective.
(¢) There exists heHomp(S(X), S/(X)) such that 1x=1h), where 1x is the identity
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map of X onto itself.
Proor. (a)—(c). Assume (a). Then there exists pe Hom4(X, 7S(X)) such that
le=a(X)op (cf. the proof of Lemma 6.3.). Since the diagrams

a(X) a(X)
IS'(X) ———— )I( T’ —— TS(X)
TS (o) o 0 TS(p)
I oa(T(Y)) |
TS'T(Y) — T(Y), T(Y) ————— IST(Y)
a(T(Y))

are commutative where we set o=a,(X), Y=5(X). By Lemma 6.4 we have
ly=aelruyop
=goar(T(Y))e T (Buo(¥ )oY ) oao(T(Y))op
=ay(X)e TS (0)e T(Bo( Y ) fu(¥ ) e T'S(p) o oo X).
Hence, if we set 2=S5"(c)°Bo(Y )oB:1(Y)oS(p), we get e Homp(S(X), S/(X)) and
ly=a(X)e T(I)eao(X)=t().

Thus (c) holds.

(c)—(a). If (c) holds, then we have ly=a)(X)ep where p=71(#)eao(X)ecHom,
(X, TS'(X)). This shows that X is A-isomorphic to a direct summand of 7.5/(X),
and hence by Lemma 6.3 we see that X is S'-projective.

The implications (b)—(c), (¢)—(b) are proved similarly. Thus Theorem 6.5 is
proved.

LemMA 6.6, If a left A-module X is projective, so is S(X). More generally,
this holds in case S is a left adjoint of an exact functor T.

LemmMa 6.67. If a left A-module X is injective, so is S'(X). More generally,
this holds in case S’ is a right adjoint of an exact functor T.

We shall prove Lemma 6.6’. Let g: Y—Y? be a B-monomorphism. Then 7(¢):
T(Y)-T(Y") is an A-monomorphism. Let feHomp(Y,S(X)). Then by the injec-
tivity of X there is ZeHomu(7T(Y’), X) such that x~'(f)=%°T(g). On the other
hand, f=5(¢'(/))°B:(Y) by (55). Hence f=S5"(2)>S"T(9)Lo(¥Y)=5"(A)°po(Y")og. This
proves Lemma 6.6’.

It is to be noted that the arguments so far are of such a nature that they may
be applied to adjoint pairs of functors for abelian categories as well. Lemmas 6.1
to 6.3 (resp. 6.1/ to 6.3’) are valid under the condition that S’ (resp. S) is a right
(resp. left) adjoint of 7.

Now we shall apply Theorem 6.5 to quasi-strongly adjoint pairs.

LemMa 6.7. If {S, T} is an (So, To)-quasi-strongly adjoint pair, each of state-
ments (@) and (b)Y below for Xe M is equivalent to each of (a) and (b) of Theo-
rem 6.5.

(@) So(X) is S-projective.
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b)Y S;NX) is S'-injeclive.

Proor. S’ is similar to 7;!SS,. Hence X is S’-projective if and only if X is
T7'SSe-projective.  Since 7,7 is a category-isomorphism, X is 7;'SS,-projective if
and only if X is SS,-projective, and the latter statement is equivalent to (a)’. Thus
(a) and (a)’ are equivalent. Similarly (b) and (b)’ are equivalent.

By using the results of §3 we can express the transfer homomorphism by
means of dual sets of generators. '

Lemwma 6.8, Let pUs, sU4, 4V be bimodules satisfying conditions (36) to (39)
of Theorem 4.1. Let us set

w4, u')=[c(u")](®), w'el!, veV,
o i(u, v)=[(®)](u), uel, veV,

where o pUL= s[Homa(uVp, a4, 71 aVe=a[Hom(pUy, sB)s. Let {wu:y i=1,--,n},
{v;, i=1,---,n} be dual sets of generators of zU and Vi with respect to wgs. Set

(60) S(X)=13U4®){, S/<X)=13UQ®X, T(Y)=,1V13® Y-

Then the lransfer homomorphism t defined by the maps 2 and p below:
[x(g)](x):Z::le@g(ul@x)’ ;UGX»

(W)= 20 @@, veY,

where {vj} and {u}} are dual sets of generators of 4V and Uy with respect to w.,
1s expressed as follows:

(61) [H0)](2)= Zen(X) i@ 9. ),
(62) a (XN 0Ru R x)=wsv, u')z.

This lemma is readily obtained from Theorem 4.1 and Corollary 3. 3.
In case A is an (So, Tv)-quasi-Frobenius extension of B, we can set

AV=4As, sUs=3A4, 04, u)=v1,
and hence we have
(63) [t(g)](x):ié 030w @ ),
where 3A4® X is identified with X.

Thus the transfer homomorphism coincides with Spur homomorphism in the
sense of Kasch [7)'V.

11) In the case of group rings, the transfer homomorphism in our sense coincides
with that given by Cartan-Eilenberg [3, p.254], and with the norm homomorphism as de-
fined in [3, p.233].
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With Lemmas 6.7 and 6.8, Theorem 6.5 generalizes a theorem of Gaschiitz-
Tkeda-Kasch [6] as well as a theorem of B. Pareigis [16, Satz 11]; the results of
B. Miiller [13] are contained also in Theorem 6.5 (cf. the proof of Lemma 6. 7).

ExampLe 6.9. In Lemma 6.7, (a)' cannot be replaced by “X is S-projective”.
This is seen from the following example.

Let A be a subalgebra of the full matrix ring (K)s over a commutative field
K which is generated by

M= Ca1~+Cas+Crs T Cso, n=Cy - CoatContCory
p=catcss, q=Cs1+CoztCrytCsa,

together with 1, where ¢y are matrix units. Then {1,m,n, 0, ¢, mq, ng, pq} is a K-
basis of A. Let B and C be subalgebras of A defined as B=K1+Km, C=B+Bn,
and let @ be an automorphism of A defined as a(m)=n, a(m)=m, a(p)=p, a(q)=q.
Then A is an (a, 1)-Frobenius extension of C and C is a (1, 1)-Frobenius extension
of B. Hence by Corollary 9.2 in §9 below A is an (a, 1)-Frobenius extension of B.
Let us set Ny=Km and L=,AQ sN,. Then L is a left A-module such that Sy(L)
is S-projective, where S, is defined by (46), and S(X)=;A.@ S, (X). Since A is a
completely primary quasi-Frobenius algebra, L is indecomposable. If L were S-
projective, then S;*(L) would be SSi-projective. Since B is a completely primary
uni-serial algebra and S;(L) is indecomposable, S;%(L) would be A-isomorphic either
to 4+A or to L. On the other hand, S;(L)=So(L)=a(L) and a(L) is A-isomorphic
neither to +A nor to L since (mg)la(L)]=0 while (mq@)m=0, meL, me,A. Thus
L is not S-projective.

§7. Duality

Throughout this section, let S, &, T, sUs, 4Va, @, {ss,, %}, {02, v} be the
same as in Theorem 3. 2.
Then by setting Y=3B in Theorem 3.2 we see that

(64) A [Homp(sUsQ X, 5B5)]ls—[Homa(X, Ve)ls
defined by
(65) 16)(@)= S0 ®2)

is a right B-isomorphism which is natural in Xe.It; this is seen from the natu-
rality of 2 in Theorem 3.2 with respect to X and Y. Here ,Vi® 5B is identified
with 4Vs.

From (65) it follows that the inverse of 2 is given by

(66) (@@ z)=olu, f(2))

for zeX, uelU, feHoma(X, V).
Similarly, the map A’ defined by
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(65)’ (@) @)= o @vus,  for veX

is a left B-isomorphism

(64)’ A2 s[Homp(X&Q 4V, Bl = s[Homa(X, 2U4)]
which is natural in Xe2t,, and its inverse is given by

(66) () Nz @ v)=o(f (%), v)

where ze X, veV, feHomu(X, zUy).
Levmma 7.1. If JW is finilely generated and projeclive, then the map

o1 Homa(4X, 44)Q sW—Homa(4X, 4W)
defined by
[o(f @ w)l(z)=1 (z)w

for xe X, weW, feHoma(uX, 4A), is an isomorphism which is natural in Xe, M and
n AT’V

Proor. The naturality of p in X and in W is obvious. In case W=44, o is
clearly an isomorphism. Hence p is an isomorphism if 4W is finitely generated and
projective.

Now, let us assume that 4V and U, are finitely generated and projective. Then
the map p defined by

67 [e(f @ v)l(z)=F (z)v
yield a right B-isomorphism
(68) o: [Homa(X, 4+ A)Q 4Vls=[Homa(X, sVi)ls

which is natural in Xe N
Similarly, the map ¢’ defined by

67y [/ (@ N z)=uf (=)
yields a left B-isomorphism
(68) o' sl3Ua@Homa(X, Aq)l=s[Homa(X, zU)I,

which is natural in XeM4.
Now, let us set

(69) @=Hom(4, 1)eHom(p%, 1)e(A)~1ep’,
where p’ is a map defined by (68)" with X replaced by Hom4(X, 4+ 4) (XeM). Then
(70) @: zUs@Homa([Homa(X, 1A)]4, Ad)

—Homp([Homs(zUs ® X, 5B)]5, Bz)
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is a left B-isomorphism which is natural in Xe . Let
uelU, veV, aeHom (Homi(X, +A), As), fe Homa(X, +A4).
Then by (65)" and (67)" we have

(A o' Q@ aNI(f R v)=w(p’ U@ ) (f), v)
=w(u(a(f)), v)=w(u, a(/Iv).
Now, let geHomp(rUsR X, 5B).
(7D

If

0N =5 F1©P,

where fyeHomua(X, 4A), 7;¢V, then we have

P(u®a)(g) =j}’:]1 [(A)(p" (w @ aD](f5 & V5)

:J};Ejla)(u, a(f)v7).

Let x be an arbitrary element of X and set
ao( =S (x0) for feHoma(X, s A).
Then we have clearly aye Hom (Homa(X, 1 4), AL).

On the other hand, by (71) and
(67) we have

Xg) (@)= 53 = e 9.
Therefore, we get finally by (66)
(72) D(u® ao) (9)= g(u & x0).

Now, let us define

(73) 7(X): X—Hom.(Hom (X, 1A), AL, Xe M,
(74) 2(Y): Y—HompsMHomxz(Y, zB), Bs), YesM,
by

[m(X) @](F)=f (@), [=(Y)DI@)=9(y)
where ze X, feHomu(X, 1A), yeY, geHomp(Y, zB). Then Lemma 7.2 below is a
direct consequence of (72).
LeMMA 7.2. Assume that Uy and 4V are finitely generated and projective. Then
we have

(zU4 Q@ X)=P-(1Q (X))
Vol. 9, No. 205]
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Jor Xe W, and O is a B-isomorphism which is natural in X.

We are now in a position to establish the following theorem.

THrOrREM 7.3. Let {S, T} be an adjoint pair such that S has a left adjoint,
S has a right adjoini and S is faithful'®. Then =(X) is an A-isomorphism if and
only if =(S(X)) is a B-isomorphism, where X ¢ SN

Proor. By assumption Uy, 4V are finitely generated and projective, and U, is
a generator. Let us set D=End.(Us). Then by the convention made in §1 U is
viewed as a D-A-bimodule. Then the functor P: s M—pM defined by P(X)=pUa
® X is a category-isomorphism by Theorem 1.2. If =(sUs® X) is a B-isomorphism,
then 1®=(X) is a B-isomorphism by Lemma 7.2. This isomorphism may be con-
sidered as a left D-isomorphism:

D UA ® X= D U4 ® I’IOH]A(H:OITLA(X, _4A), AA),

since (1R n(XN(uRz)=u@r(X)(x). As is shown above, P is a category-isomor-
phism, and hence #(X) is an A-isomorphism. Since the “only if” part is obvious
by Lemma 7.2, the proof of Theorem 7.3 is completed hereby.

TueoreM 7.4. Under the same assumptions as in Theorem 7.3, n(X) is an
A-monomorphism if and only if n(S(X)) is @ B-monomorphism where Xe 4.

This is readily seen from the proof of Theorem 7.3.

COROLLARY 7.5. Under the same assumptions as in Theorem 7.3, for a left ideal
J of A we have (7(]))=] if and only if we have L (r.(UJ))=UJ. Here v(L) or I(L)
means the right or left annililator of L in A, and

ro(UN={veV | v, v)=0 for all w' €U},
lo(VY={uecU|w(u,v)=0  for all v eV’}.

Proor. w(4(A/))) is an A-monomorphism if and only if I(/)))=7, and =z(s(U/UJ))
is a B-monomorphism if and only if l.(r.(UJ))=UJ. This proves Corollary 7.5 in
view of Theorem 7.4.

In applications of Theorems 7.3 and 7.4 it is to be noted that =(Y) (YesM) is

a B-isomorphism either
(a) if Y is finitely generated and projective, or
(b) if B is quasi-Frobenius and Y is finitely generated'®.

§8. Nakayama isomorphism

Let pUs, 4V, o, {tty,-, un}, {v1,-+, v} be the same as described in Theorem
3.2. Let us set

(75) C=Ends(Vy), D=Endu(U,), E=[End.(L1)]°

Then by the convention made in §1 U is a D-A-bimodule and V is a C-B-bimodule

12) As is easily seen from the existence of an algebra which is QF-3 but not quasi-
Frobenius, Theorem 7.3 does not hold in general unless S is faithful.
13) Cf. K. Morita and H. Tachikawa [12], Morita [10].
[Sc. Rep. T.K.D. Sect. A.
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as well as an A-E-bimodule. Then by Lemma 2.3 C is ring-isomorphic to [Endg
(zU)]° which will be identified with C by the formula

(76) w(uc, v)=wlu, cv), for uelU, veV.
Furthermore, we assume that
) U, Vi and 4V are faithful.

Thus we may, and shall, consider that A is a subring of C and B is a subring of
D and E.

Let us set
(78) Co=2Zc(A), Do=Zn(B), Ey=Zr(B),

where Zr(F) means the centralizer of ¥ in R for a subset F of a ring R: Zz(F)
={reRlrz=zr for all zefF'}.

Let deD,. Then the correspondence w—du defines a B-endomorphism of U and
hence there is an element ¢(d) of C such that

(79) du=uo(d)  for uelU.

It is clear that ¢(d)eC,. Moreover, as is easily seen, ¢ is an inverse-isomorphism
of the ring D, onto C,. Similarly, there is an inverse-isomorphism ¢ of the ring
FEy onto G, such that

(80) ve=¢(e)v for veV, ee k.
Now, let us set
(81) 0 dy= o) (d),  deDo.
Then 0 is a ring-isomorphism of D, onto £, and we have
(82) w(du, v)=w(u, v0(d)), for uelU, veV.
Since for deD,N B it holds that w(du, v)=dw(u, v)=w(u, v)d=wv(u, vd), we have
(83) 0d)y=d,  for deD,nB.
Let us define a two-sided B-homomorphism /: U@ 4Ve—nrBr by
(84) Dholu @ v)=w(u, v) for ueU, veV.
Let ZeHoms (sUs® 4V5, 8Bs); then there is an element d of D, such that
u@v)=w(du, v) for ueU, veV,

since the correspondence »—/ha(x®w) determines an element »’ of U such that
hu@v)=w(u’,v) for all v, and the correspondence #—u’ is a B-A-endomorphism of
U. Thus we have

(85) Homs,n(8Us @ 4Va, Bs)=hDs.
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Let o/ AVe=Homas(sUs, 5B)]s be another A-B-isomorphism and let o’(,?)
=[c’@)](x) for weU, veV. Then, as is seen from the above consideration, there is
an element dy of D, such that d;' exists and o’(%, v)=w(dou, v). Hence the ring-
isomorphism 6’ of D, onto E, corresponding to o’ is expressed as

0/(d)=0(dedd;")  for deDs.

Thus 6 is determined uniquely up to an inner automorphism. We shall call
0 a Nakayama isomorphism.
Next, we shall consider

(64) 2: Homp(rUs® X, sB)=Hom (X, 4V5)

which is defined by (65) in §7.

TuroreMm 8.1. The isomorphism 2 in (64) is a right B-isomorphism which s
natural in Xe M. If we regard the left-hand side of (64) as a right Dey-module and
the right-hand side as a righl Evmodule, then 2 is a semi-linear isomorphism with
respect lo 0; that is,

(86) [2(gd)(2)=[4g) @)]0(dD),  Sfor deDo, weX.

Furthermore, 2 maps Hom s, 5,(sUs @ 4 X, 58Br) isomorphically onto Hom s zy(aXn, 4V 5)-
Proor. From the property of dual sets of generators we get for de D,

=2 0(dts, 0,
(87) "
v,0(d)= 2w (s, v,0(d)).

Hence by virtue of (82) we have (86). The last part of the theorem follows readily
from (65).
We note further that

(88) o) =1v,

since A(Ae) ()= X v:ihe(u; Q v)= Jvs0(us, v)=0.
THEOREM 8.2. Let 41Xp be an A-B-bimodule which is A-B-isomorphic to a di-
rect summand of a direct sum of a finite number of copies of +Vp. Then the map

D: Hom(B,B)(B Ui® 4 X5, BBB)®D0[0, Homs(uVz, X’)]—»HQmA()(’ X
defined by
[P RN x)=g(A( /) (=), xeX

is an isomorphism which is natural in 14Xz and in X' e SN

Here for a left E-module Y we denote by (4, Y) the left Dy-module which coin-
cides with Y as an additive group and on which left multiplication by an element
d of D, is defined by dxy=6(d)y, veY. -

Proor. Let }I,GHOI’H(A,B)(AXB, 4X%).

[Sc. Rep. T.K.D. Sect. A.
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Then we have
AL (LR A))=AS")ohr

for f”GHOH](B,B)(BUJA®AX§; sBr), where 1&®/% € I_IOTH(B‘B)(B U4®A—XB, U+ ® 4 X5).
Thus @ is natural in +Xs. It is obvious that @ is natural in X’ e 9. Now, let
us set 4 Xz=4V5.

Then we have for ¢ € [0, Homa(s Ve, X))

[D(Red @ 9)1(@) = g(Alod) ()= g((Ar0) @NO(D)) =g (w0(d)) = (dg) (v),

that is, ®(hd®¢)=dg. This shows that @ is an isomorphism in this case. Since
@ is natural in 4Xp, it follows that @ is an isomorphism in general for 4 Xz with
the type described in the theorem.

Levmma 8.3, Let X be a left A-module which is A-isomorphic to a direct sum-
mand of a finite divect sum of copies of .V. Then the map

lUf: Homu(X, 4Ve)® e[Hom.(.V e, X")]—Hom.(X, X")
defined by
rol@)=o(f (), zeX

is an isomoyphism which is natural in X and X' e M.
Proor. If X=,V, then we have for eecf

[2(1ve @ Nl(@)=g(ze)=(eg) (x), zeX,

and hence ¥ is an isomorphism. Since ¥ is natural in X, the lemma follows readily.

On the basis of these results we can establish a cohomology theory for adjoint
pairs, analogously as in F. Kasch [8] and B. Miiller [13]. The case of QF-3 algebras
treated by H. Tachikawa [17] is also contained in our considerations.

§9. The endomorphism ring theorem
Let
S, S M-, T 0=,
PP MR, Qr MM

be functors.

Lemma 9.1. Let {S, T} and {P,Q} be adjoint pairs such that S’ is a right ad-
joint of T and P’ is a right adjoint of Q. Then {PS, TQ} is an adjoint pair such
that P'S’ is a right adjoint of TQ.

Proor. We have

Home(PS(X), Z)=Hom»(S(X), AZ)=Hom.(X, TQ)),
and similarly Homi(7TQ(Z), X)=Hom(Z, P'S' (X)), where Xe M, Ye M, ZeM.

Vol. 9, No. 205]
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CorOLLARY 9.2. Under the same assumption as in Lemma 9.1, if {S, T} is an
(So, To)-quasi-strongly (resp. (So, To)-strongly) adjoint pair and (P, Q) is a (To, Qo)-
quasi-strongly (resp. (To, Qo)-strongly) adjoint pair, then {PS, TQ} is an (Se, Qo)-quasi-
strongly (resp. (Se, Qo)-strongly) adjoint pair, where Q, is a category-isomorphism from
M to itself. :

Proof is obvious.

We shall now establish the endomorphism ring theorem.

Turorem 9.3. Let {S, T} be an (S, To)-quasi-strongly (resp. (Si, To)-strongly)
adjoint pair; let sUs, 4V, sUY be bimodules satisfying conditions (36) to (39) and
(40) (resp. (40)"). Let us set

C= End&(VB)

and assume that 4V is faithful. By the comveniion made in § 1 A becomes a sub-
ring of C. Then, if either Vi is a generator or Ty=1, then C is a (Qo, So)-quasi-
Frobenius (resp. (Qo, So)-Frobenius) extension of B, where Qo is a category-isomorphism
from &M to itself and Qo=1 in case To=1.

Proor. By (38) we may assume that C is a right operator domain of U and
Homy(cVs, Bg)=3U:. Then we have

Vi@ pUc=c[Homp(pUe, 2Ug)le=cCe.
Let us set

P(Y)=Homu(Us, Y)=cVRY, Yes,

QZ)=pUc®Z, ZedM.
Then we have
(91) PSX)=cCa®X, TRZ)=4CcRZ,
(92) Hom.(TQ(Z), X)=Homc(Z, PS'(X)).

Let us set
Qo=PTyQ or Q=1

according as pU is a generator (case 1)) or To=1 (case ii)). In case i), Pand Q are
category-isomorphisms and P7;'SS, is naturally equivalent to Q7(PS)S,. Since S’
is similar to 7,7'SS, by assumption, PS’ is similar to @;'(PS)S,. Hence by (92)
there exists a left adjoint R of PS and R is similar to S(7T@Q)Q;*. In case ii), PS’
is similar to (PS)S, and hence PS has a left adjoint which is similar to So(7@).
In view of (92), we see by Theorem 5.1 that in either case C is a (Qo, So)-quasi-
Frobenius extension of A, and that if {S, T'} is an (S, 7)-strongly adjoint pair, then
C is a (@, So)-Frobenius extension.

TueoreM 9.4. Let .Vy be an A-B-bimodule such that
1) Vs is a finitely generated, projective generator and 2) 4V is faithful.

Let C=Endz(V5). If C is a (R, So)-quasi-Frobenius (resp. (Qo, So)-Frobenius) ex-

[Sc. Rep. T.K.D. Sect. A.
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tension of A, then {S, T} is an (S, To)-quasi-strongly (resp. (So, To)-strongly) adjoint
pair, where

S(X)=Homp(uVs Bs)R X, T(Y)=.VRY, Xe M, YeMm

and To=QQP, P(Y)=cVyRY, QZ)=Home(cV5 Z) (Ye M, ZecM), and Q.: JIM—
¢ is a category-isomorphism.
Proor. Let us set

KX)=cCa®X, LZ)=4Cc R Z, Xe M, ZeM,

and let K’: JM—,M be a right adjoint of L. Then by assumption {K, L} is an
(S, @o)-quasi-strongly (resp. (Sy, Qo)-strongly) adjoint pair. On the other hand, P and
Q are category-isomorphisms which are inverses of each other, and hence {@, P} 1s
a strongly adjoint pair, and consequently {@, P} is a (Q,, Tv)-strongly adjoint pair.
Since LP(Y)=T(Y), {S, T} is an (S, To)-quasi-strongly (resp. (S,, To)-strongly) ad-
joint pair by Corollary 9.2.

In view of Theorem 5.1, Theorems 9.3 and 9.4 contain Kasch’s theorem [6,
Satz 5] and its generalizations by Kasch [7], Nakayama-Tsuzuku [14], Pareigis [16]
and Muller [13]*¥. If A is a (1, B)-Frobenius extension of B and B is extendable to
an automorphism « of A, A is an («~!, 1)-Frobenius extension of B (cf. the end of §5),
and hence C=Endz(Ap) is a (1, a )-Frobenius extension of B by Theorem 9.3;
this is the case treated by Nakayama-Tsuzuku [14] and Pareigis [16]. TFor an («, 8)-
Frobenius extension A of B, C=Endz(As) is a (7, @)-Frobenius extension of A in
case Ay is free; except for this case and the case =1, C is not always a (y, a)-
Frobenius extension of B where y is an automorphism of C.

As an immediate consequence of Theorem 9.3 we have

CoroLLARY 9.5. Let {S, T} and C be the same as in Theorem 9.3. If Vi is
a generator and .V is faithful, then the functor T is the composite of a category-
isomorphism from sM to M and a funcior Cc@RZ: M—. M associated with a
(Qo, So)-quasi-Frobenius (resp. (Qo, So)-Frobenius) extension C of A.

Finally, in case B is a subring of A and there is an (S, To)-strongly adjoint
pair such that T(Y)=,VzR®Y and .,V is similar to 1Az, we shall say that A is a
strongly (So, To)-quasi-Frobenius extension of B. Then we have

TrroreM 9.6. If A is a strongly (S, To)-quasi-Frobenius extension of B, then
D=[End.(u¥)}° is a Q), To)-Frobenius extension of B and the ring A is similar to
DIS)'

Proor. {7,5'} is a (1%, So)-strongly adjoint pair and the theorem follows from
Theorem 9. 3.

The notion of strongly (S,, To)-quasi-Frobenius extensions is narrower than that
of (Se, To)-quasi-Frobenius extensions, but has much more similarity to quasi-Fro-
benius algebras as Theorem 9.6 shows.

14) Strictly speaking, Miiller’s result concerning two-sided quasi-Frobenius extensions.
We can establish the theorems so that they may contain Miiller’s result concerning one-
sided quasi-Frobenius extensions. Cf. also footnote 10).

15) Two rings E and I are called similar if there is a category-isomorphism from
=W to #M.
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§10. Adjoint pairs of functors and category-isomorphisms

We shall first prove the following theorem.

TueoreM 10.1. Let {S, T} be an adjoint pair such that S has a left adjoint,
S' has a right adjoint T, and S’ is faithful. Let Ye Mt

(@) If Y is projective or injective, so is T(Y).

W) If Y is finitely genevated, faithful, or a generator, so is T(Y).

(©) In case T is faithful, if 1.dim Y=m<oo, then 1.dim T(¥Y)=m.

Proor. By Theorem 4.2 there exist bimodules 4V, sUs, »U4 which satisfy
conditions (37) to (39) and we have

T(Y=4Ve®Y, S"(X)=Hom.(uVa X)= U, QX

Furthermore, 4V is a generator by Lemma 1.5. Hence Uj is also a generator.
Thus (b) follows readily from Lemmas 2.4 and 1.3. Next, (a) is a direct consequ-
ence of Lemmas 6.6 and 6.6’. Finally, to prove (¢) we first observe that there is
a natural isomorphism

(93) Exti(T(Y), X)=Exti(Y, S"(X)), n=0,1, 2, ---.

Secondly, since 7/(Y)=Hom(zU,, Y), S'(X)=,U4@X and T is faithful, zU" is a
generator and hence for any Yye M there is X,e .M such that S’(Xy) is B-homo-
morphically mapped onto Y,. The first fact implies 1. dim 7°(Y")=m, while the second
implies 1. dim 7(Y)=m.

Treorem 10.2. Under the same assumplions as in Theorem 10.1, the follow-
ing statements arve irue.

(@) If B salisfies the minimum condition for lefl (vesp. right) ideals, so does A.

(b If B is a quasi-Frobenius ring, so is A.

(c) In case S is faithful, if B is an S-ving in the sense of Kasch [6], so is A.

Proor. Let V3 and U, be the himodules as described in the proof of Theo-
rem 10.1. Then with the notations of Theorem 4.3 we have

SXO)=X®.Viz=Homi(zU, X)),  XeMa.

Since U% is a generator, §: Mu—My is faithful by Lemma 1.5. Now, (a) follows
from the fact that 5" (resp. &) is a faithful exact functor. Next, (b) is a direct
consequence of Theorem 10. 1.

Finally, to prove (c) we first observe that a ring C with the minimum condi-
tion for left and right ideals is an S-ring if and only if for any non-zero left (resp.
right) module Z we have Home(Z, cC)20 (resp. Home(Z, Ce)=0). If B is an S-ring,
and X is a non-zero left A-module, then S(X)20 and we have by Lemma 7.1

02xHomz(S(X), sB)=Homu(X, 4V =Hom.(X, LA X 4Vs.

Hence Homa(X, 4+4)%0. Similarly, we can prove, by making use of S, that Hom.u
(X, A)=0 for a non-zero right A-module X. Thus A4 is an S-ring.

Theorem 10.1 shows that a number of properties for modules are preserved
under a functor which is a member of an adjoint pair with some conditions. From
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this point of view we can give a characterization of category-isomorphisms.
TreoremM 10.3. Let {S, T} be an adjoint pair of functors such that S has a
right adjoint. Then T is a category-isomorphism if and only if the conditions a) and
b) below are salisfied:
a) if Xe, M is simple, so ave S(X) and S'(X);
b) if YesWl is simple, so is T(Y).
Here A and B are assumed to salisfy the minimum condition for left ideals.
Proor. We have only to prove the “if” part. Suppose that a) and b) hold.
Let N(A) (resp. N(B)) be the radical of A (resp. B) and set

A= Aei/ N(Aey, B i=BriINBY;,

where {ey, -, em} (resp. {S1,---,/2}) is a maximal set of mutually orthogonal primi-
tive idempotents of A (resp. B) such that Ae; & Ae; (resp. Bf; & Bf;) for ixj. By
assumption there is a map = from {1,--,m} into {1,--, %} such that S(A&)= Bf.q,, i
=1,---,m. Since Homz(S(X), Y)=Hom.(X, T(Y)), we have Homa(A, T(Bf:w))*0
and hence Aé;=7(Bf.y). Hence 7 is one-to-one and onto. Thus we may, and shall,
assume that m=n and

S(Ae)=Bf, TBF)=Aé,  i=1,m.
From this it follows further that S(A&)=Bf;. Since we have
Homs(S(Aey), Bf ;)=Homua(Aei, T(Bf))
_ ahe, il i=j,
=Homu(Ae;, Ae))=
0, if iy,
and S(Ae;) is projective by Lemma 6.6, we see that S(Ae;)= Bf;. Similarly, T(Bf)
= Ae;, i=1,---,m, since S’ is exact.
Now let us consider the map «o(X) defined by (49) in §6. It is seen that
wo(As:): Aé—TS(A&;) is an A-isomorphism since it is not zero as the image of the

identity map of S(Aé:) onto itself under A Let p be the canonical projection from
Ae; onto Aé. Then the diagram

0———— AT(A)&: — Aei Aéi 0

ao(N(Aey) ap(Ae;) (A8

TS(p) _

| l
TS(N(A)es)) — TS(Aey) — TS(Aé) -0

is commututive and each row is exact. Since T'S(o)eay(Aes)=au(Aé:)op0, as(Ae;)
is an epimorphism; otherwise we would have Image as(Ae;)SKernel 7S(o), since
TS(Az)=Aé;, TS(Ae;))=Ae; as has been proved above. Hence ay(Ae;) is an A-iso-
morphism. Consequently, as(aA4) is an A-isomorphism. Similarly, gi(sB) is a B-
isomorphism.

Vol. 9, No. 205]
(69)



70 Kiiti Morira

In view of Theorem 4.2 we may assume that
SX)=2Us@X, T(Y)=4Vs®Y, S(X)=pU,@X

where U4, U, and 4V are bimodules with properties described in Theorem 4. 2.
Then from the naturality of a(X) it follows that ao(4A) is a two-sided A-isomor-
phism: ao(4A): 1A= 4V®sUas. This shows that 7S is naturally equivalent to
the identity functor. Similarly, S.(zB) is a two-sided B-isomorphism and ST is natu-
rally equivalent to the identity functor. Therefore 7' is a category-isomorphism.
This proves Theorem 10.3'®.

In case there are functors S™: M—M and T M-, M, n=0, +1, +2,--,
such that S@=S, T®@=7T and S“ is a left adjoint of 7% and a right adjoint of
Tx=- and each of S™ and 7 are faithful, we shall call each of S and T a
category-quasi-isomorphism. As is easily seen, if {S, T} is an (S, To)-quasi-strongly
adjoint pair and if S and T are faithful then S and 7" are category-quasi-isomor-
phism. In case there is a category-quasi-isomorphism from .Mt to M, we shall
say that A is guasi-similar to B; quasi-similarity is an equivalence relation. Theo-
rem 10.3 may be considered as a characterization of category-isomorphisms among
category-quasi-isomorphisms. Theorem 10.1 as well as Theorem 7.3 gives a num-
ber of properties of modules preserved under category-quasi-isomorphisms, while
the properties of rings mentioned in Theorem 10.2 and the finistic left global di-
mension of a ring (cf. [1]) are quasi-similarity invariant.
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