Duality for Modules and its Applications to the Theory of
Rings with Minimum Condition

By

Kiiti MoriTa
(Received November 11, 1957)

Introduction

The purpose of this paper is to develop a theory of dualities for modules
and to give some applications to the theory of rings with minimum condition
for one-sided ideals. Dualities with which we are concerned are functorial dualities
based on the notion of functors in the sense of Eilenberg and MacLane [5] and
are not axiomatic ones such as discussed by MacLane [16] and Buchsbaum [2].

1. Let A and B be two rings with unit elements. Let % be a class of left
(or right) A-modules and B a class of left (or right) B-modules. The category
in which “objects” are modules in A (resp. B) and “maps” are all A-homomor-
phisms (resp. B-homomorphisms) will be denoted by the same letter N (resp. B).
A function T which assigns to each module X in % a B-module 7{X) in B and
to each A-homomorphism f: X— X’ (X, X’ eW) a B-homomorphism 7(f): 7(X)
— T(X7), is called a covariant functor from the category 2 to the category B if
the following conditions are satisfied:

(0.1) If f:X— X is the identity, then 7(S) is the identity.

(0.2) T(fof)=T(f)oT(f) for f:X-X', f/: X' —»X".

0.3) TU+Sf)y=THH+T(") for f,f:X—-X".
In case T assigns to each A-homomorphism f: X— X’ a B-homomorphism 7(f):
T(X"— T(X) and T satisfies (0.1), (0.3) and (0.2)" below:

0.2 TS0 f)=T(f)oT(f") for [f:X->X', f: X' —>X",

7 is called a contravariant functor from % to B.

Let 7% and 7T, be two functors from % to B, both covariant (resp. both
contravariant). A natural transformation @: 71— T is defined to be a family
of B-homomorphisms @#(X): T1(X)— T5(X) such that the diagram

T:(X) M T.(X)
lﬂ(f) sz(f)
DX

TX"y — ToX")

is commutative (l.e. To(f)o@(X)=0(X o Ty()) for all f: X=X’ (resp. f: X'~
X). If each @(X) is a B-isomorphism® of 74(X) onto 7»(X), then @ is called a

1) ¢« Isomorphism ¥ means “isomorphism onto”.

(1)
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natural equivalence. If there exists a natural equivalence @: 77— 7T,, T and
T, are said to be naturally equivalent. Eilenberg and MacLane [5] explained
these notions by taking the duality relation between finite-dimensional real vector
spaces as an example. In this paper we shall formulate dualities in terms of
these notions.

‘ 2. Let % be a class of left A-modules and B a class of right B-modules
such that % contains A as a left A-module and B3 contains B as a right B-
module. A (functorial) duality between N and B is defined to be a pair (D, D»)
of a contravariant functor D; from % to B and a contravariant functor D, from
B to A such that the covariant functors D.D, and D,D, are naturally equivalent
to the identity functor; namely, if there exist a family of A-isomorphisms 4,(X):
X—D,D(X) and a family of B-isomorphisms A,(Y): ¥Y— D, D,(Y) such that the
diagrams

x 2% ppyx) y ) ppv)
04 |7 |pDir) o 20
X , A(Y)
X' —=" DDy (X" Y’ " D\DJ(Y")

are commutative for any A-homomorphism f: X— X’ and any B-homomorphism
g: YY" (X, X'eW;, Y,Y €B), then the pair (D, D,) is called a duality. In
this case, D; (resp. D),) is called an anti-isomorphism from A onto B (resp. from
B onto N).

3. A typical example of dualities is furnished by character modules which
are algebraic analogues of character groups of locally compact commutative
groups (cf. [33]). Let U be a two-sided A-B-module; by this we shall mean
that U is a left A-module and a right B-module such that «(ud)=(au)b for ac A,
beB, ueU. For a left A-module X and a right B-module Y we put

(0.5) Chary X=Hom. (X, U) , Chary Y=Homs (Y, U) .
Here Hom. (X, U) is a right B-module which consists of all A-homomorphisms
Qf X into U with the usual compositions:
(a+B)w)=alz)+Bx),  (ab)z)=(alz)b

where a, fe Hom. (X, U), be B, ve X. Homgz(Y, U) is similarly defined. Charyg X
is called the U-character module of X; the U-character module Chary ¥ of a
right B-module Y is a left A-module. For any A-homomorphism f: X— X’ we
define

Charg f: Charg X’ —Chary X
by putting
[Chary fla)=wao f for ae€Chary X',

i.e. Chary f=Homu (f,1) in the notations of Cartan and Eilenberg [5]. For a
B-homomorphism ¢: Y— Y’, Charyg: Chary Y'—Charyg ¥ is similarly defined.

[Sci. Rep. T.K.D. Sect. A.
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For a left A-module X we define a natural homomorphim
(0.6) wy(X): X— Chary (Chary X)
by
[o(XD)(2)} () =) for zeX, aeChary X .

For a right B-module Y, a natural homomorphism 7y(Y) is similarly defined.

Chary is always a contravariant functor. If Chary maps % into % and maps
B into A, and 7, (X), ny(Y) are isomorphisms for every X in % and for every
Y in B, Chary defines a duality between % and % in our sense. In this case it
is said that the duality with respect to U-character modules holds between N and
. Such a duality is an algebraic analogue of the Pontrjagin duality for locally
compact commutative groups. It will be shown (Theorem 1.2 below) that if
Chary defines a duality between A and B, then zy(X) and #s(Y) are all isomor-
phisms for X in A and Y in B.

4. Another example of dualities is given by dual representation modules
for finitely generated modules over an algebra of finite rank with respect to a
field; a left A-module X is said to be a dual representation module of a right
A-module Y if the representations of A determined by X and Y are equivalent
(cf. Nesbitt and Thrall [22]). It has been proved quite recently by H. Tachikawa
[27] that dual representation modules can be obtained also as U-character modules
with a suitable two-sided A-A-module U.

5. Chapter I deals with dualities defined above as functors. In §1 we shall
establish that any duality between U and B is equivalent to a duality which
assigns to each module in A and B its U-character module with a suitable two-
sided A-B-module U. Here two dualities (D), D) and (E,;, E,) are said to be
equivalent if the functors D; and E; are naturally equivalent for i=1, 2.

6, In case A is a commutative ring and % is a class of left A-modules
containing A as a left A-module, a duality (or more precisely a self-duality) for
A is defined to be a contravariant functor D from % to U such that D? is
naturally equivalent to the identity functor; in this case there exists a family
of A-homomorphisms A(X): X— D2 X) such that the diagram

X igf+)D?(X)

|7 |27

X’
x4 paery
is commutative for any A-homomorphism f:X—X’. In §5 we shall prove
that any duality for % is equivalent to a duality defined by means of semi-linear
(U, 6)-character modules where U is a left A-module and ¢ is a ring-automorphism
of A with period <2.

7. Semi-linear character modules are defined as follows. Let U be a left
A-module with a semi-linear isomorphism w; that is, there exists a ring-auto-
morphism 8 of A such that o(aw)=60(a)w(u). We assume further that §2=1. For

0.7)
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a left A-module X the set of all semi-linear (A, 9)-homomorphisms « of X into
U (by this we mean that @ is a mapping with the property afaz)=0Ha)ax(x))
forms a left A-module under the definitions:

(a+B)w)=alx)+p), (aa)z)=a(a(z))

where ve X, ae A. This module is called the semi-linear (U, 0)-character module
of X and will be denoted by Chary,e X. For any A-homomorphism f: X— X’
we define an A-homomorphism .

Chary,e f: Chary,e X’ — Chary,e X
by [Chars,ef]{@)=aof:X—U for «€ Chary,eX’. We define a natural A-homo-
morphism

7wu,e(X) 1 X — Chary,e (Chary,e X)
by putting [y e(X)(2))(a)=w(a(z)) for ve X, acChary,e X. From the assumption
that 0*=1, it follows that zy,e(X) is actually an A-homomorphism. As in the
case of character modules, if Chary,e defines a duality for % then 7wy o(X) is an
A-isomorphism for X in 2.

8. Let %A be a class of left A-modules and ¥ a class of left B-modules such
that % contains A as a left A-module and B contains B as a left B-module. Let
T, be a covariant functor from U to B and 7» a covariant functor from B to .
If 7,7, and 7,7, are naturally equivalent to the identity functor, T, (resp. 7%)
is called an isomorphism from 9 onto B (resp. from B to A). Under some con-
ditions on A and B, it will be shown in §3 that 7, is naturally equivalent to
each of covariant functors U® 4+X and Hom.(V,X) where U is a two-sided
B-A-module and V a two-sided A-B-module. It is to be noted that a composite
of two anti-isomorphisms is an isomorphism.

9. Chapter II is devoted to a detailed investigation of dualities between A
and B for the case where A and B are rings satisfying the minimum condition
for left and right ideals, and % is the class 4" of all finitely generated left A-
modules and B is the class My of all finitely generated right B-modules. The
necessary and sufficient condition in order that the duality with respect to U-
character modules should hold between A and B, which is obtained in § 2, is sim-
plified greatly in this case. This will be discussed in §6; a half part of Theorem
6.3 was first proved by Tachikawa [27]. Our results obtained in §§6 and 10 may
be considered as a generalization of the theory of quasi-Frobenius rings (§ 14).

10. In case A and B are algebras of finite rank over the same field, we
shall restrict ourselves to dualities satisfying a certain condition depending on
the ground field. We shall say that two algebras A and B over the same field
are similar if there exists a duality between the categories 49 and My, or what
amounts to the same thing, if there exists an isomorphism between the categories
£M and M. It will be shown in §9 that A and B are similar if and only if
their basic algebras A° and B in the sense of Nesbitt and Scott [21] are isomor-
phic as algebras. Thus our notion of similarity is identical with that of similarity
introduced by Osima [24], and is reduced to the classical notion of similarity for
central simple algebras. In case A4 and B are similar, we can determine the

[Sci. Rep. T.K.D. Sect. A.
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complete family of dualities between At and Mx with the aid of basic algebras.
In determining the complete family of dualities for modules over a commutative
ring with minimum condition, the work of Snapper [26] plays an important role.
It will also be shown that a faithful module over a commutative ring with mini-
mum condition which has a composition series is completely indecomposable in
the sense of Snapper if and only if it is injective. The same fact remains valid
for completely indecomposable modules in the sense of Feller [7].

11. In Chapter III we shall give some applications of our theory. In §15
we shall discuss regular pairings introduced recently by Curtis [4]. His results
will be generalized or refined. In §16 we shall deal with the endomorphism
rings of faithful modules over a quasi-Frobenius ring. We shall prove that for
a quasi-Frobenius ring A the A-endomorphism rings of two faithful right A-
modules U and V are isomorphic if and only if there exists semi-linear (A°, 8)-
isomorphism of Ue onto Ve with a ring-automorphism ¢ of A° where A°=e¢Ae is
the basic ring of A and e is a sum of mutually orthogonal non-isomorphic primi-
tive idempotents of A. For a quasi-Frobenius ring A, the A-endomorphism ring
of a faithful right A-module U is not always quasi-Frobenius; we shall prove
that it is quasi-Frobenius if and only if U is a projective right A-module. In
case A is a quasi-Frobenius algebra, the A-endomorphism ring of a faithful right
A-module is a QF-3 algebra in the sense of Thrall [29]. Thrall has introduced
the notion of QF-3 algebras as a generalization of quasi-Frobenius algebras. In
§17 it will be shown how we can obtain QF-3 algebras.

12. In Appendix it will be shown that any duality for the category of all
locally compact commutative groups is equivalent to Pontrjagin’s duality defined
by means of character groups. Here a duality D for this category is postulated
to be such that D maps the topological space Hom (X, X’) with the compact-open
topology continuously into Hom (D(X"), D(X)) for any locally compact commuta-
tive groups X and X’.

13. Throughout this paper, rings will be assumed to be associative rings
with unit elements (=identity elements), and by a module with a ring as a left
(or right) operator domain we shall mean always a module on which the unit
element of the ring acts as the identity operator. The significances of the nota-
tions used in the Introduction will be retained throughout this paper.
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CHAPTER I. GENERAL THEORY OF DUALITIES

1. Dualities between two categories of modules

The purpose of this section is to prove the following theorem.

Tueorem 1.1. Let A and B be rvings whose unit elements will be denoted by
1 and 1’ respectively. Let N be a class of left A-modules and B a class of right
B-modules such that W contains A as a left A-module and B contains B as a
right B-module. Then any duality D=(D,, D;) between N and B is equivalent to
a duality which assigns to each module in VN and B its U-character module with
a suitable two-sided A-B-module U; more precisely, there exist a two-sided A-B-
module U, a family of B-isomorphisms 0(X): Dy(X)— Chary X (Xe) and a
Jamily of A-isomorphisms @Y ): Dy(Y)— Chary Y (YD) such that the diagrams

D D,
iy 290 pxy pary 29, vy
lml<X'>Ch lwm W v lw Y)
Charg X’ arlLf» Chary X Chary Y’ Charg_% Chary Y

are commutative for f: X—X’ (X, X’eN) and g: YY" (Y, Y eB). Moreover,
the natural homomorphisms
mr(X): X— Chary (Chary X) , Xe
7y(Y): ¥Y— Chary (Chary V), Ye®B
defined by
(D@ @) =alz),  [no(Y)WIB)=PB)
where v€ X, ye Y, aeChary X, 8e Chary Y, are all isomorphisms.

. IIDROOF. We shall divide our proof in several steps. For the sake of simpli-
city ‘we shall denote D, D, by the same letter D and 4, 4, by the same letter
4. Further we put

(1) PHX)=DAXNADX)),  AHY)=DATY))o A(D(Y))

where Xell, Ye®B. %X ) and A*(Y) are respectively a B-isomorphism and an

[Sci. Rep. T.K.D. Sect. A,
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A-isomorphism.
I. 1) Let us put

(2) U=D(A) .

.Then U is a right B-module. For any element ¢ of A we define an A-homomor-
phism ga: A— A by putting pu(z)=2a for z€ X. Since D(gp.) is a B-endomorphism
of U, D(pa)u is defined for any element z of U. We set

(3) an=D(pa)t for ueU, ac A .
Then it is easy to see that U is a left A-module; e.g. we have a'(au)=(a’a)u
for a,a’€ A, uelU since a’(au)=D(pa)(D(@u)it)=D(paocpsltt=D{(pas)u=(a’a)u.
Moreover we have a(ub)=(au)b for a€ A, be B, ue U, since D(¢s) is a B-homo-
morphism and hence D(ga)(ub)=(D(pa)u)b. Thus U is a two-sided A-B-module.
ii) Let us put

(4) V=D(B).
Then V is a left A-module. For any element b of B we put
(5) vb=D(P)v , for veV,

where ¢p: B— B is defined by ¢u(y)=by for yeB. Similarly as in i) we can
prove that V is a two-sided A-B-module.
II. i) Let X be any left A-module in A. We define a B-isomorphism
w{)(X): D(X)"‘)CharyX by
(6) [0(X)]W)=2%(B) o D(Py)oA(X)  for yeD(X),

where ¢y: B— D(X) is defined by ¢y (b)=yb for beB. Furthermore, we shall
consider a mapping ¥y(X): Chary X— D(X) by putting

[T (X)) =(D(ct) o ABY1") for aeChary X .

We shall first prove that @y(X)o%(X)=1. If we put y=%(X)(«), then ¢y=
D{a)yoA(B) and hence D(d)oA(X)=D(A(B))oD¥a)od(X). On the other hand,
D)o A(X)=[D.Dy(a)]o A(X)=2D(B))oa by the property of dualities (cf. (0.4) in
Introduction) and hence we have @y(X)(y)=A*B) o D(AB))oA(D(B))oca=«c by
(1). Therefore @y(X)o¥y(X)=1.

We shall next prove .that ¥o(X) is a B-homomorphism. Let a¢€Chary X.
Then for any element 2 of X and for be B we have (ab)(z)=(a(x)b=D () alz))
by the definition of scalar multiplication for character modules and by the defini-
- tion of multiplication of elements of V with elements of B. Therefore we have

[7o(X))(ab)=(D(ab)o A(B)(1")=(D(a)o D*(¢n) o X(B))1")
=(D(@)od(B)odn)(1)=(D(a)o A(B))1"-b)
=D (@) e ABNANb=[T (X )()]b .

Thus ¥y(X) is a B-homomorphism since it is clear that ¥o(X )N a+a")=Ty(X ) a)+
Ty X)),

Vol. 6, No. 150]
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Now @(X) is one-to-one since D(¢,)=D(dy) for v,y € D(X) implies D(¢,)
=D*¢y) and hence ¢,=¢y, and consequently y=y". Since @y(X)o¥y(X)=1, we
see that #y(X) is onto. Hence ¥y(X) is also one-to-one and onto. Therefore
i’o(X) is a B-isomorphism and hence @,(X) is also a B-isomorphism. Thus we

ave

(7) [B(XD] M) =(D(ax)o A(BNL" , for quharVX.
ii) We shall define an A-isomorphism @(Y): D(Y)— Chary ¥ for YeB by
(8) [Bo()(@)= (A (AN o D(p)oA(Y),  for zeD(Y),

where ¢.: A— D(Y) is defined by ¢.(a)=ax for a€ A. Similarly as in i) we can
prove that @,(Y) is actually an A-isomorphism and that

(9) [0y V)] B)=(D(B)oA(A))1), for BeChary Y.
III. We shall prove that the diagrams
pxy -2V pon by P9 by
(10) la)g(Xf)Ch [Xes oy o)
Chary X* "3 T char, x Chary ¥ 9 Char, ¥

are commutative for any A-homomorphism f: X-—X (X, X’e) and for any
B-homomorphism ¢: Y- Y’ (Y, Y’ e®B).

i) Let y¥eD(X"), € X and put y=D(f)¥’). Then for ¢,: B— D(X) defined
by ¢y(b)=yb, we have ¢y(b)=yb=(D(/ )y Nb=D(f)y'b)=(D(f)od,)(b) and hence
D)o A(X)=D(Py)o D)o A(X)=D(dy)o (X )of. Therefore we have

[ @o(X) o DM ) 2)=[(2*(B)) o D(¢y) o A X))(w)
=[(A*(B)) 1o D(¢y) o A(X")o f(2)=[((Chary ) o @y( X" N(¥)](x) .
Thus the commutativity of the first diagram of (10) is proved.

11) The second diagram of (10) is proved similarly as in i).
IV. We shall now prove that a mapping w: U— V defined by

1L o(w)=[(AB)To D(Pu)o A(ANL),  for uelU
is an A-B-isomorphism and that the inverse of w is given by
(12) o W w)=[D(po)o AB)1), for velV,

where ¢u: B—U and g¢,: A—V are defined by Ju(b)=ub, p.(@)=av, for a€ A,
beB.
Let y: Chary A— V be a mapping defined x(a)=a(l) for a€Chary A. Then
x is clearly a B-isomorphism. Since @,(A) maps D(A) (=U) B-isomorphically
onto Char, A as is already proved in II and w=yxo0,(A), we see that w is a
B-isomorphism. Hence we have only to prove that o is an A-homomorphism.
For an element ¢ of A we have ¢uu(b)=(au)b=a(ub)=[D(pas)od.](b) and hence

[Sci. Rep. T.K.D. Sect. A.
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D(dau) 0 (A)=D(pu) o D¥gpa)o AA)=D(pu)o (Al ops since D*pa) o M AY=D,D\(¢aq) ©
A(A)=2A(A)opa by the property of dualities (cf. (0.4) in Introduction). Therefore
we have

w(au)=[(A*(B)) " o D ($au) 0 (A V)=[(A*(B)) o D(du)o A(A) e pa)(1)
=[(2%(B)) "o D(¢u)o A(A))(a- 1)=a[((A*(B))"* o D(Pu) o A(A)(1)]
=qaw(u) .
Thus @ is an A-homomorphism and hence @ is an A-B-isomorphism. It follows
from (7) that = is given by the formula (12).
V. Let v be any A-B-homomorphism of U into V. Then the mapping
Hom (1, r): Chary M— Chary M
defined by [Hom (1, t)](y)=toy: M— V for y€Chary M, Me¥ or B, is clearly an
A-homomorphism or a B-homomorphism according as Me*®B or Me.
Since w: U— V is an A-B-isomorphism as is proved in IV, Hom (1, ®~?) is a
B-isomorphism if it is applied to a left A-module X. Let us put
O(X)=Hom (1, o= o0y(X) , O(Y)=0,Y), for XeWN, YeB.

Then @#(X): D(X)—Chary X is a B-isomorphism and

13) O(X)y) =010 (A*(B))"to D(py) 0 A(X) , for ye D(X),
(14) [0 (@)= (D(woa)o (B)(1),  for aeChary X .
The diagrams
pxy P px pyy P9, pr
(15) L@(X’) l@(X) lm( YY) lmm
Chary X 37T Chary g Chare v "3, Chary ¥

are commutative for any A-homomorphism f: X— X’ (X, X'e¥) and for any
B-homomorphism ¢: Y— Y’ (¥, Y’ €B); this is seen from the commutativity of
the diagrams (10).

VI. i) Let us put

(16) w(X)=(Chary (#(X)o Ay e @(D(X))o A(X)
o ¥ -1
3 2% ity PP Gy pay A OO G, (Chary )

for any left A-module X in . Then u#(X) is an A-isomorphism.

Let z be any element of X and put »"=[A(X)](»). Then we have, for any
element @ of A, gu(a)=ax’ =a(A(X)(@)=AX)ax)=AX)o¢:)(a) and hence D{(gz-)°
AD(X)) = D(gz)o DIAX)) o ADX)) = D(@)o*(X).  Since [O(D(X))od(X))z)=
O(D (X)) =(A*(A))~ o D(@xr) oA D(X)), for any element « of Chary X we have

[(X) (@) ](@) =[2*(A)~10 D(p=) 0 A XD)(AH(X) o O(X) 1) ()
=[A*(A) "o D{pz)o D(woa)o A(B)I(1)
=[1*(A)o D(wowopz)o A(B)(1) .

Vol. 6, No. 150]
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On the other hand, we have, for any element ¢ of A, (woaog.)a)=w(alax))=
alo{a(2))=@oa(@). Hence from (12) we obtain [2(X)(2)](e)=[A*(A4) o D(@uam)©
AB)A)=(2*(A)* o~ Hwa(w))), that is,
an [u(X ) (@)= (A AN Ha(z)) , for vx€X, aeChary X.

The value of [#(X)(x)](«) can be calculated in another way. Indeed, since
Puay(@)=al2*(B) " o D(dac) 0 (A =[2*(B) "0 D(dac>)o A(A)l(@), we have

[ X)(@)](a)=[2*(A) 0 D(A(A)) 0 D*(acz)) 0 D(AH(B )1 o A(BII(1")

=[2*(A)" o D(A(A)) o A(D(A)) o uczy 0 A(B) o D(A¥(B ) )o AB)1")

=(a(2))bo ,
where we put
(18) by=[A(B) to D(A*(B) Yo X(B)I(1") .
Thus we get
(19) [ X)) (@) =(al2))bo = (2*(A)~Nalz)) .

Applying (19) to the case where X=A, a=¢.: A— U (i.e. a(@)=¢p(r)=2u) and
=1, we have A*(4A)"'u=ub, for any element # of U. This shows that A*(A)"1 is
an A-homomorphism of U into itself. Since A*(A)~! is a B-isomorphism, A*(A)™!
is an A-B-isomorphism. Therefore Hom (1, 2*(A))ou(X) is an A-isomorphism.
Since wy(X)=Hom (1, 2*(A))ou(X) by (17), we see that =,(X) is itself an
A-isomorphism.
ii) Let us put

20) 2(Y)=(Chary (8(Y) o 2*(¥))™) o (D (Y))o XY)
v 28 payy PPN oy, peyy SR O I (4o, (Chars 1)

for any right B-module Y in 8. Then u(Y) is a B-isomorphism.

Let ¥ be any element of Y and let us put ¥'=AY)(»). Then we have ¢, =
AY)ody. Since [@(D(Y))o Ay =[0(D(Y)]H)=w"10i*(B) " oD(Py)oA(D(Y)),
for peChary Y we have

[ Y)IB)=[0"1 0 A*(B)~ o D(¢y) 0 D(A(Y)) 0 AD (Y NNAH(Y )1 o 0(Y)71)RB))

=[w o *(B)" o D(¢y) 0o D(B) 0 A(A)K1)
=[w~10A¥(B) o D(Body) 0 A(A)D) .

Since Body=dew and [2¥(B) o D(Paw)oA(A)(1)=w(B(y)), we obtain
@D LY )IB)=By)=[rv (YIWI(B) .

Therefore =np(Y) is a B-isomorphism.

Thus the functorial duality D is equivalent to a duality defined by means of
[J-character modules and the duality with respect to U-character modules holds.
This completes our proof.

As an immediate consequence of the above proof we have
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Turorem 1.2. Let U be a two-sided A-B-module. If Chary determines a
duality between W and B, then the natural homomorphisms nu(X), n(Y) defined
in Theorem 1.1 arve all isomorphisms for Xe, YeB.

Remark 1.3. Let us denote by Z(A) and Z(B) the centers of A and B re-
spectively. Then for any element a of Z(A) the correspondence #—au defines
an A-homomorphism of U into itself. Since ny(B) is a B-isomorphism, there
exists an element b of B such that

(22) au=ub for any element » of U.

The element b belongs to the center of B. It is easy to see that (22) defines a
ring-isomorphism

(23) Cv: Z(A)— Z(B) .

In particular, if A and B are commutative, then A and B are ring-isomorphic.
The element b, defined in (18) belongs to Z(B) since u— ub, is a B-isomorphism.

2. Dualities defined by means of character modules

In this section we shall determine a necessary and sufficient condition that
the duality with respect to character modules hold between two categories of
modules. We shall begin with some lemmas. In the following, by Ann (L; M)
we denote the set of all elements of M which are annihilated by every element
of L with respect to a multiplication under consideration.

Lemma 2.1. Let A be a ring. Let U be an injective left A-module such that
Jor any left ideal I of A with I><A there exists a non-zero A-submodule of U
which is A-homomorphic to A[l. Then for any left A-module X and for any
A-submodule X, of X we have

Xo=Ann (Ann (Xy; Chary X); X) .

Proor. Let a, be any element of X such that oy & X,. Let us put X;= Ax,
+X,. If we assign to each element a of A the coset {ax,} modulo X,, we have
an A-homomorphism ¢ of 4 onto X;/X,. If we denote by [ the kernel of o, there
is an A-isomorphism ¢, of A/l onto X;/X,. Since X;=<X;, we have I=<A.
Hence by assumption there exists an A-homomorphism 7 of A/I into U such
that ©(A/[)><0. If we denote by { the natural A-homomorphism of X; onto
X,/X,, the A-homomorphism to,"'i maps X; into U such that ro~1i(z0)=<0.
Since U is injective, tag,~'i is extended to an A-homomorphism « of X into U
such that a(Xp)=0, a(x)=<0. Hence =& Ann(Ann(X,y; Chary X); X). This
proves our lemma.

LevMA 2.2. Besides  the hypothesis of Lemma 2.1, assume further that U is
a two-sided A-B-module where B is another ving. If for a left A-module X the
natural homomorphism wy(X): X— Chary (Chary X) is an A-isomorphism, then
7o(Xy): Xy— Chary (Chary X,) is also an A-isomorphism for any left A-submodule
Xo Of X

Proof is obvious from Lemma 2.1.
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Lemma 2.3, Let A and B be two rings and U a two-sided A-B-module. Let
X be a left A-module and Xo a left A-submodule of X. If the natural homomor-
phism wu(X), ny(X/Xo) are A-isomorphisms, then

Xo=Ann (Ann (X;; Chary X); X).

Proor. We put X’'=Ann (Ann (Xj; Chary X); X). We have clearly X, & X".
Let 2, be any element of X such that 2y & X,. Then the coset {z;} modulo X, is
not zero in X/X,. Since my(X/X,) is an A-isomorphism, {2} determines a non-
zero B-homomorphism of Ann (X,; Chary X) into U. Hence there exists «e€
Ann (X,; Chary X) such that a(x,)=<0. Thus we have z,& X’. Therefore X,=
X7,
Throughout this section we shall assume that A and B are rings and U is a
two-sided A-B-module. We denote by €[ A4, U] the class of left A-modules which
are obtained from the left A-modules A and U by taking finite direct sums,
submodules and quotient modules; N[B, U] denotes the class of right B-modules
which are obtained from the right B-modules B and U by the same operations
described above.
Now we shall prove the following theorem.
TuroreMm 2.4. The following conditions are equivalent.
1. #no(X), ny(Y) are respectively an A-isomorphism and a B-isomorphism for
each module X in 8 A, U} and each module Y in N[B, U].

II. a) If aleft A-module X is A-isomorphic to a quotient module of A or
U, ny(X) is an A-isomorvphism.
by If a right B-module Y is B-isomorphic to a quotient module of B or
U, no(Y) is a B-isomorphism.

III. a) #y(A) and =o(B) are vespectively an A-isomorphism and a B-isomor-
phism; that is, A is isomorphic to the B-endomorphism ring of U and
B is inverse-isomorphic to the A-endomorphism ring of U by the cor-
respondences a— v, b— by, where vu(u)=au, P(u)=ub.
b) U is injective as a left A-module, and for any left ideal I of A with
I>< A there exists a non-zero A-submodule of U which is A-homomorphic
to A/l
c) U is injective as a right B-module, and for any right ideal ] of B
with J><B there exists a non-zevo B-submodule of U which is B-homo-
morphic to BlJ.

Proor. 1) I—II is obvious.

ii) III—I. Assume III. Then by Il a) ny(U) is an A-isomorphism or a
B-isomorphism according as U is considered as a left A-module or as a right B-
module. Let X be a left A-module such that ny(X) is an A-isomorphism. Put
Y=Chary X. Then 74(Y) is also a B-isomorphism. Let X, be any A-submodule
of X, and put Yy=Ann(X,; Y). Then from III ¢) it follows by Lemma 2.2 that
7o(Yy) is a B-isomorphism. Since Xy=Ann (Yy; X) and Chary Yy~ X/X,, we see
that 7,(X/X,) is also an A-isomorphism. Thus 7y(Xy), 7r(X/Xo) are A-isomorphisms
for any A-submodule X, of X, and hence condition I holds.
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i) II—III. Assume II. Then III a) holds clearly. Let / be any left ideal
of A. In case it is necessary to emphasize that U is considered as a left A-
module (resp. a right B-module), we write .U (resp. Uz). We put W=Ann(l; Usx)
where the pairing of A and Us to U is considered. Since my(A) and my(A/I)
are A-isomorphisms, by Lemma 2.3 we have /=Ann(W; 4). On the other
hand, ny(U/W) is a B-isomorphism by II b), and Chary (U/W)=~1. Therefore
any A-homomorphism of [ into U can be extended to an A-homomorphism of
A into U. This shows that U is injective.

Let I be any left ideal of A such that /=<A. Then A/I is A-isomorphic to
Chary (Chary (A/D)) and hence Chary (A/I)2<0. We take a non-zero element «
from Chary(A/I). Then we have a(A/l)><0. Thus U contains a non-zero A-
submodule a(A/I) which is A-homomorphic to A/I. Therefore condition III b)
holds. Since III c¢) is proved similarly, condition III holds.

TrEOREM 2.5. Suppose that the duality with respect to U-character modules
holds between {A, U] and R[(B, U). If a left A-module X in LA, U] is pro-
jective, then Chary X is an injective right B-module.

Proor. We put Y=Chary X. Let J be any right ideal of B and consider
any B-homomorphism ¢ of Jinto Y. Let j: /— B be an injection. Since U is injec-
tive as a left A-module and a right B-module, the functor Chary is exact (ct. [3]).
Hence Chary j: Chary B—Chary J is onto. Since X = Chary Y and X is projective,
there exists an A-homomorphism J: Chary Y— Chary B such that Charyg=
(Chary j)of. Then if we define a B-homomorphism ¢ : B— Y by putting ¢ =
wy(Y)"toChary fony(B) we have g=¢’oj. This shows that Y is injective.

TueorREM 2.6. Suppose that the duality with respect to U-character modules
holds between LA, UY and N[B, U]. Ther the lattice of two-sided ideals of A 1is
tsomorphic to the lattice of two-sided ideals of B.

Proor. Let I be any two-sided ideal of A. Then V=Ann(/; U) is an A-
B-submodule of U since a'(av)=(a’a)v for a’€l, ac€ A, ve V. Conversely, if V’
is a two-sided A-B-submodule of U, then I"=Ann(V’; A) is a two-sided ideal of
A. Hence the correspondence [— Ann (/; U)=V establishes an isomorphism be-
tween the lattice of two-sided ideals of A and the lattice of all A-B-submodules
of U. Thus Theorem 2.6 is proved.

Let X be a left A-module and Y a right B-module. Suppose that to any
element x of X and to any element y of ¥ an element « of a two-sided A-B-
module U is assigned such that if we write #=(z, y), then (z,y) is additive with
respect to z and y, and (aw, V)=a(z, ), (v, y0)=(v, ¥b,a€ A, beB. If Amn(X; Y)
=0 and Ann(Y; X)=0, then X and Y are said to form an orthogonal pair to U.
The following theorem is now easily proved by Theorem 2.4.

TurorReEM 2.7. Suppose that the duality with respect to U-character modules
holds between L[A, U] and R(B,U). If XelA, U] and YeR[B, U] form an
orthogonal pair to U, then each of X and Y 1is isomorphic to the U-character
module of the other.

The following theorem is essentially proved in [17].

Tueorem 2.8. Let U be a two-sided A-B-module. Suppose that the U-character
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module of every simple left A-module and that of every simple right B-module
are simple. If a left A-module X and a right B-module Y form an orthogonal
paiv to U and one of X and Y has a composition sevies, then the other has also
a composition series, and for every A-submodule Xy of X and every B-submodule
Yo of Y, no(X/Xo), no(Y]Yy) ave isomorphisms and the amnihilator relations
Ann (Ann (Xy; Y); X)=Xo, Ann(Ann (Yy; X); Y)=1Y, hold.

3. Isomorphisms between two categories of modules

The following theorem is an analogue of Theorem 1.1.

Tueorem 3.1. Let A and B be two rings. Let W be a class of left A-modules
and B a class of left B-modules: we assume that U contains A as a left A-module
and B contains B as a left B-module. Let Ty be an isomorphism from the category
N to the category B and T, an isomorphism from B to U such that T.T\ and
0T, are naturally equivalent to the identity functor. Then the functors Ty and
T, are naturally equivalent to functors Homa (V, ) and Homu (U, ) respectively
with a suitable two-sided A-B-module V and a suitable two-sided B- A-module U.

Let 4, be a natural equivalence from 7,7, to the identity functor and 4, a
natural equivalence from 7,7, to the identity functor; the diagrams

X M) Ty Ty(X) Y MY TW\ToY)
lf lnmf) lo lnn@
(X WY Y

X — = T, T\(X) Y s TT(Y)

are commutative for any A-homomorphism f: X— X’ and any B-homomorphism
g: Y- Y7, and A,(X), A(Y) are isomorphisms (X, X e; Y, Y eB).
I. Let us put
24) U=T1(4) .
Then U is a left B—module. For any element ¢ of A we define an A-homomor-
phism ¢q: A— A by ¢ualw)=2a. We set
(25) wa=Ty(pa)ut , uelU, ac A.

Then it is easy to see that U is a two-sided B-A-module; e.g. we have (bu)a=
Ti(@a)bu)=0({T1(pa)u) =bua) for a€ A, beB, ueU.

Let us put
(26) V=Tu«B) .
'If we put
27 vb="Ty(dnw)v , veV, beB,
it is seen that V is a two-sided A-B-module, where ¢,: B— B is defined by
$u(y)=yb.

II. i) For each module X in A we define a B-homomorphism @,(X): T1(X)
—Homu (V, X) by
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(28) O X)) =A(X) o Tu(P)oA*(B),  ye Ty(X),
where we put
(29) A Y)=2(TAY) o TyA(Y)), for Ye®B.

.and ¢dy: B> T(X) is defined by ¢u(b)=0by. We shall prove that @,(X) is a B-
isomorphism. To prove this we shall consider a B-homomorphism #(X):
Homua (V, X)— Ty(X) defined by

V(X ) a)=(Tila)od(B)(1), for weHomai(V,X).
If we put y=¥(X)(a)=(T1(a)o (B, then dy="T1(w) 0 A(B) and hence 7T.(¢)
=TT (a)o Ty(2,(B)). Therefore we have
O (X)) =A(X) o T Ti(a)oTu(A:(B))o AH(B)!
=aod(Ty(B)) o Tu(A(B)) oA (B) =« .
This shows that @,(X)o%(X)=1.
Let aeHom4(V,X) and ve V. Then by the definition of multiplication of
a with elements & of B on the left (cf. Cartan and Eilenberg [3, p. 22]), we
have (ba)(v)=a(vd). Since a(vb)=ca(T:(dv)v)= (o Tu(du))(v), we have ba=ao Ty{).
Therefore we have
V(X)) (ba)=[T1(be) 0 2(B)J(1") =[T (@0 Tu(¢hu)) 0A:(B))(1")
=[Tw(a)o Ty Ts(he) 0 (B)(1)=[T1(a) 0 x(B) o hJ(1)
=(T1(a)o 2u(B))(b-1")=0(T1(ew) 0 (B ))(1")=b[¥ (X Ne)] .
This shows that #,(X) is a B-homomorphism. From the fact that @,(X)o¥(X)
=1 it follows that @,(X) is onto. On the other hand, @,(X) is obviously one-to-
one. Thus 9,(X) is a B-isomorphism and ¥(X)=0,(X)"
ii) For each module Y in B we can define an A-isomorphism @,(Y): TW(Y)—
Homgy (U, ¥) by
O, ) ()= A(Y) 1o Ty (@z) 0 A*(A)1, for 2eTy(Y),
where
25 X)= (T X))o TH(A(X)), for Xe¥
and ¢z: A— Ty(Y) is defined by ¢.(a)=ax. The inverse of @,(Y) is given by
D,(Y)YB)=[T:(B) o (A1), for BeHoms(U,Y).

III. The diagrams

7,00 9, Homa (v, 1) 77y Y om0, v
1Tl<f> iHom i) lm) lHom (1,9

O,(X") S N Z040) ,

THX) 222 Homy (V, X7) TAY)) =22 4 Homy (U, ¥7)

are commutative for any A-homomorphism f: X— X’ and any B-homomorphism
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g: Y— Y7 (for the notation Hom (1, ) cf. [3, p. 20]). To prove this, let ye 7,(X)
and put ¥'=T1(/Ny). Then ¢y=T,(f)o¢,. Hence we have
[0:(X) o TW(N(y)= A(X ") o Toldhyr) 0 4,%(B)

=0(X)T o T TS ) o Taldy) 0o ¥ (B) 1= 1 0 Ay(X) Vo Tu(dhy) 0 A%(B)~!

=[Hom (1, /) o @:,(X)](®).
Thus the commutativity of the first diagram is proved. The commutativity of
the second diagram is proved similarly.

Now our Theorem 3.1 follows readily from I to III.

IV. Homu(V,A) is a left B-module. Since A4 is a right A-module
Hom. (V, A) is a two-sided B-A-module. We shall prove that

@,(A): U—»Hom. (V, A)
is a B-A-isomorphism. To prove this, let ¢€ A and weU. Then @,(A)u)=
A(A) o To(Pu) o 4,#(B)1 where ¢u: B— U is defined by ¢u(b)=0bu. Hence we
have
D (A)ua)= A1 (A) o To(dua) 0 24H(B) 1= 4(A) o T Ti(pa) o pu)o A, ¥(B)?
= Zl(A)“1 o Tg T]((ﬂa) o] T_:,(Qllu) o XL*(B)_l': Pa © 21(14)—1 o Tg((ﬁu) o Xl*(B)_l
=[0.(A)(u)]a .

This shows that @,(A) is a right A-isomorphism. Similarly we can prove that
?,(B): V—Homs (U, B) is an A-B-isomorphism.
V. Let us consider an A-isomorphism

w(X): X—Homy (U, Hom. (V, X))
defined by
w(X)=Hom (1, (91(X) 0 (X)) o OT1(X)) o 1(X) .
Let v€ X and o' =4(X)(x). Then
Do( T (X)) = A T2 (X)) o Ti(@ar) 0 A¥(A)?
= A(TUX)) Yo T(A(X) 0 @) 0 A (A)!
=(THX ) o T (X)) o Tilez) o M (A) .
Hence for e U we have
[(X)(@)) ()= [D(X) o Ti(@a) 0 2,*(A) ")) .
On the other hand, if we put y=[T1(pz)oA*(A)"(x), we have ye T (X) and
Py=Ti(@z)0 A*(A) odu. Therefore we have
[ X)) (@)] () = A1,(X)~F o To(ghy) 0 A *(B )
=4(X)"ro T T1(¢x) 0 To(A*(A)™Y) o To(du) 0 H*(B)
=@z 0 A(A) o Tu(A*(A) ) o 4y(A) o A(A) Lo Ty(du) o 4,* (B) !
= [z 0 {A(A)" 0 To(A*(A) ) 0 A (A I A) ) .

[Sci. Rep. T.K.D. Sect. A.
(16)



Duality for Modules and its Applications to the Theory of Rings 99

Hence for v€ V we have
(30) LX) =10 A) ) (0))(ao) , for zeX,
where
ay=[A{A) o Tu(A,*(A) 1) o A,(AQ) .
Since u(X)(az)=a[n(X)2)], we have

€y [([2.(A) @) aaw) =[[0.(A)))w)aan) ,  a€ A, v€X .
VI. We define a mapping
(32) w: VQusU— A

by putting w(@ ® u)=[@(A)x)](»). Then it is easy to see that w is actually single
valued. Since ofa(v®u)]=o(av @ u)=[0,(A)w)}(av)=al(® (A ()] =alo® )
and  w[(v@u)a] = 0w Q@ua) = [OL(A)ua)(v) = [[O:(A)(w)]a] (v) = [[@.(A)w)]®)]a =
[o(v@u)]a, w is an A-A-homomorphism.

Therefore the image of o is a two-sided ideal I of A. If every quotient
module of the left A-module A belongs to %A, then we have [=4. To prove
this, assume that /=< A, and put X=A/l. Then 2(X) must be an isomorphism.
On the other hand, for any element = of X we have Ix=0 and hence
[Le X)) ())(w) =w(w @ u)az)=0. This shows that u(X) fails to be one-to-one.
Therefore we conclude that w is onto.

VIiI. The B-endomorphism ring of the left B-module B is isomorphic to the
A-endomorphism ring of V by the correspondence a— Tyw(). Hence B is inverse-
isomorphic to the A-endomorphism ring of V by the correspondence b— ¢, where
u(v)=vb, ve V.

As is proved in VI, the image of w coincides with A. Hence there exist a
finite number of elements v;€ V, us €U, i=1,---, n such that > o(@.®u)=1.
Therefore we have

ﬁ: ai(v)=1

where «;€Homu. (V, A) are defined by the formula a:(v)=w(w®u;). Hence by
virtue of Lemma 3.3 below we see that V¥ is a finitely generated, projective,
right B-module and that A is isomorphic to the B-endomorphism ring of V by
the correspondence a— ¢, where ¢,(v)=av, ve V.

VIII. We assume further that every quotient module of the left B-module
B belongs to B. Then we can prove similarly as in VII that U is a finitely
generated, projective, right A-module and that B is isomorphic to the A-endo-
morphism ring of U by the correspondence b— ¢, where ¢y(u)=0bu, ue U.

From the relation 3 w(v;@u:)=1 we obtain

iEZ.}Bi(ui)= 1

where ;€ Homu (U, A) are defined by the formula B:(u)=w(v:iQ@u). Hence by
Lemma 3.3 below we see that U is a finitely generated, projective, left B-module
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and that A is inverse-isomorphic to the B-endomorphism ring of U/ by the cor-
respondence a— @, where ¢u(u)=ua, u€ U; the latter fact is proved also by an
analogous method as in the first part of VIIL.

Thus we have proved the following theorem.

TreorEM 3.2. Besides the assumption of Theorem 3.1 we assume further that
every quotient module of the left A-module A belongs to W and that every quotient
module of the left B-module B belongs to B. Then U (resp. V) is finitely gene-
rated and projective as a left B-module (rvesp. A-module) and as a right A-module
(resp. B-module). The ring A is inverse-isomorphic (resp. isomorphic) to the B-
endomorphism ring of U (resp. V) by the correspondence a— ¢o where ¢u(u)=ua
(resp. va(v)=av). The ring B is isomorphic (vesp. inverse-isomorphic) to the A-
endomorphism ring of V (resp. U) by the correspondence b— ¢, where ¢u(v)=0vb
(resp. ¢u(u)=>bu).

Lemma 3.3. Let V be a two-sided A-B-module. Suppose thalt B is inverse-
isomorphic to the A-endomorphism ring of V by the correspondence b— ¢y where
d()=0vb. Then the following two conditions are equivalent.

1. V is a finitely generated, projective, right B-module and A is isomorphic
to the B-endomorphism ring of V by the corvespondence a— ¢a where @u(v)=av,
ve V.

II. There exist a finite number of elements vi€V, aie Homa(V, A), 1=1,
<o, 1 such that

s

a(vi)=1.

i=1

Proor. i) I—II. Let X=Bx,@® --- ®Bwn and Y=4,BP --- DyB be free
left and right B-modules. Let a=(wuy;) be a matrix of type (%, n) with coefficients
in B. We set

(X biw)a=3) biatijus (S yjcj)-:hz YrlxjC
t,J 2y

W’ (3 bivs, 2 yse=23 bice

o(S ysc5, 2 biwi)=(cibi)i,. € (B)n ,

where bi,c;€B and (ciby)i,x means a matrix with cbe as its (7, k)-coefficients
(i, k=1, ---,n) and (B), means the full matrix ring over B. Then we have

o' (wa, P=0'(v, ay), o' (bz, yo)=bw'(v,y)c ,

vy, )= (P, yo'lz, )=y, 2y ,

w(ay, vf)=ao(y,x)B, o(yb,x)=o0(y,bv),
where v, 7€ X; v,y €Y, a, BE€(B; b,ceB. It is also clear that v and o are
additive with respect to each variable.

Let 8 be an idempotent in (B)s. Then since 3 w(yi,x)=1, we have

S w(Bys, :f) =F2=p, and the B-endomorphism ring of Y is isomorphic to A(B ).
Hence if we put A=B(B).G then BY is a left A-module and 3} a:(By:)=8 where
afy)=w(y, z:f) for ye Y.
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Any finitely generated, projective, right B-module is B-isomorphic to Y if
we choose a suitable integer » and a suitable idempotent £, Hence the above
consideration shows that I implies II.

i) II—1. Assume . The mapping v—ai(v)’ is an A-endomorphism of
V for each i and each element »’ of V, and hence there exists a uniquely
determined element By(v’) of B such that vBi(v )=cu(v)y’. From the assumption
that >} as(v)=1 it follows that

v=3 a;(wv="3 vifi(v) .

If we denote by §: the mapping v— Bi(v), then 8 is a B-homomorphism of V
into B. Therefore by a theorem of Cartan and Eilenberg (3, p. 132}, V is a
finitely generated, projective, right B-module.

Let 8 be any B-endomorphism of V. We set gqo=3 a(B(v:)). Then we have
a=2 ai(P))v=23 Bw)Bi(v)=B(3 vifv))=F). This proves that II implies 1.

The following theorem shows how we can construct an isomorphism between
categories of modules.

Tueorem 3.4. Let V be a two-sided A-B-module satisfying the two condilions:

a) Vs projective and finitely generated as a left A-module and as a right
B-module;

b) A is isomorphic to the B-endomorphism ring of V and B is inverse-
isomorphic to the A-endomorphism ring of V by the correspondences a— @a, b—
&y where ¢ v)=av, P,v)=0vd, ve V.

Then the natural homomorphisms

o(X): VQuHomy (V, X)— X, (Y): Y—=Hom.(V, V&zY)

defined by the formulae o(X )v@ a)=a(v), (V)P 0)=vQ®y where ve V, yeY,
aeHomu (V, X) are respectively an A-isomorphism and a B-isomorphism for any
left A-module X and any left B-module Y. The functors Ty(X)=Homu(V, X)
and TLY)=VQsY are isomorphisms between the category of all left A-modules
and that of all left B-modules.

Proor. By [3, p. 120, Prop. 5], it follows that the mapping o(X): V&»
Hom. (V, X)— Hom.a (Homz (V, V), X) defined by [¢(X)0 @ &)l(r)=alr(v)), ve V,
a€Hom4 (V,X), reHoms(V, V), is an A-isomorphism. The mappings £(X):
Hom. (Homs (V, V), X)—>Homi (A4, X) and 5»(X); Homa (A, X)— X which are
defined by [E(X)(N@)=f(ea), [#(X))(g)=9(1) where pa(v)=av, a€ A, veV, are
clearly A-isomorphisms. Since p(X)=%(X)oE(X)oa(X), p(X) is itself an A-
isomorphism.

Similarly as in [3, p. 120] we can prove that the mapping v: Hom. (X, V)@s ¥
—Homu (X, V®s Y) defined by [rla®y)](x)=alx)@y is an isomorphism if X is
a projective, finitely generated left A-module. Hence =(Y): Homa (V, V)®5s Y —
Homu (V, V@5 Y) defined by [«(Y)7r Qy](v)=7@) Xy is a B-isomorphism. Since
Hom4(V, V)~B and BQs Y~ Y, we can prove similarly as in the first part of
the proof that »(Y) is a B-isomorphism. This completes our proof.

We shall now prove the following theorem.
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Tueorem 3.5. Let U be a class of left A-modules containing A as a left A-
module. Let T\ and T. be isomorphisms from the category N onto itself such
that T,T, and ThT, are naturally equivalent to the identily functor. Suppose that
there exists an A-isomorphism o: A—Ty(A). Then there exists a ring-automor-
phism 0 of A such that

(33) o7V o Ty(pa)o o =Psa) ;
(33) is equivalent to
(34) o wa)=[o"*W))(0(@), for veV, aecA,

where V=Ty(A) and the mulliplication of elements of V with elements of A on
the right is defined by (25) with B=A. The functor Ty is naturally equivalent
to the identity functor if and only if 6 is an inner automorphism.

Proor. The first assertion is obvious. Suppose that # is an inner automor-
phism; there exists an element @, of A such that 8(a)=aaa,"t. Hence if we
put oy(@)=0@)a,"t, we have ay(va)=c(va)ay™=(c@))(ay aay)ay *=0oy(v)a, and hence
gy: A— V is an isomorphism as two-sided A-A-modules. This shows that 7, is
naturally equivalent to the identity functor.

Conversely, suppose that 7% (and hence 7)) is naturally equivalent to the
identity functor. Let @ be a natural equivalence from 7% to 1. Then we have
the following commutative diagram

A2 ey B4

PLoca) T @a) Pa
fll LN T}(A) o4 fll

If we put oy=0(A)o0, oy is an A-isomorphism and hence there exists an element
ap of A such that oy(x)=ga,(x) for z€ A. Thus we have @ow)=@u, 10 ¢a0@qy, that
is, Ola)=ayaay™.

Remark 3.6. In Theorem 3.5 let I"(X): X— Hom. (V, X) be a mapping defined
by I'(X)(&)=¢z0 a7t for x€ X. Then I'(X) is one-to-one and onto. For ve V we
have

[T(X)(0(@)a))(v) =[¢ocar= 0 07 (W) =[o7)](0(a)x)
=[o" W)0(a)]x =07 (va)]x= ¢z 67" )(va)
and hence
(35) r'X)o(az)=all"(X)@)] .

From this we can conclude that for any given ring-automorphism ¢ of A there
exists an isomorphism 73 from U to A such that the automorphism # defined by
(33) for this 7T, is identical with the given §.

4. Egquivalence of dualities

Let A and B be two rings. Let % be a class of left A-modules and B a.

[Sci. Rep. T.K.D. Sect. A.
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class of right B-modules such that % contains A as a left A-module and B con-
tains B as a right B-module. Let D=(D;, D,) and E=(E,, E.) be two dualities
between A and ®B. Then by Theorem 1.1 D and E are respectively equivalent
to dualities defined by means of U-character modules and V-character modules
where U and V are two-sided A-B-modules constructed from D and E similarly
as in the proof of Theorem 1.1. Then the following theorem holds.

TueoreM 4.1. In order that two dualities D and E be equivalent it is mneces-
sary and sufficient that U and V be isomorphic as two-sided A-B-modules.

The sufficiency of the condition is obvious. The necessity of the condition
follows from Theorem 4.2 below.

TueoreM 4.2. Let D=(Dy, D,) and E=(E,, E,) be two dualities between N and
B.  Suppose that there exists a B-isomorphism c: U~ V, that is,r: Di(A)~ E(A).
Then there exists a ring-automorphism 0 of A such that

(36) (0(a)u)=a(t(u)) , ac A, ue U,
(36) can also be writien in the form
(37) 7 o0 Ey{pa) ot=Di(psw) ,

where po: A— A is defined by eolx)=wa. In this case, two dualities D and E are
equivalent if and only if 0 is an inner automorphism.

Proor. Let us put T\=E.,D\, T,=D,E,. Then Ty and T, are isomorphisms
from the category % into itself, and 7,7, and 7,7, are naturally equivalent to
the identity functor. If we put o=Dy(x o d,(A), ¢ is an A-isomorphism from
A onto Ty (A). We now apply Theorem 3.5 to our case. Then from the com-
mutativity of the diagram

A AA o D
j{@om) lD Dl(@”ﬂ(a)) lT‘z(ﬁf’a)
A popay 2T s

where @ is an automorphism of A defined by the formula (33) in Theorem 3.5,
it follows that t~'o Ei(¢a)ot=Di(¢sw)). Conversely, (37) implies (33). Thus
Theorem 4.2 is a direct consequence of Theorem 3.5, since D and E are equivalent
if and only if 74 is naturally equivalent to the identity functor.

It will be shown in §14 that Nakayama’s automorphism for a Frobenius
algebra A is nothing but an automorphism connecting two dualities which are
defined by means of A-character modules and by means of dual representation
modules. .

Remark 4.3. In Remark 1.3 in § 1 we see that there exists a ring-isomorphism
Cv: Z(A)~Z(B). Similarly we can define a ring-isomorphism {»: Z(4)~ Z(B) by
means of V. Let a be any element of Z(A); then for the B-isomorphism 7 in
Theorem 4.2 we have a(t(w))=t(0(@yu)=1{u(lu(0(a)))]=[r(u))¢v(6(a)) and hence

- (38) Co(0(a)=Crla) .
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For the case of Frobenius algebras mentioned above, &y and & may be considered
as the identity and hence any element of the center of A remains invariant under
Nakayama's automorphism.

Tueorem 4.4. Let 0 be an automorphism of the ring A. Let D be a dualily
between W and B. Then there exists a duality E between W and B such that
there exists a B-isomorphism tv: Di(A)~ E,(A) satisfying (37).

Proor. Let U=D,(A) be the two-sided A-B-module defined in the proof of
Theorem 1.1. We define a new multiplication of elements of U with elements
of A and B by

axu=00)u , uxb=ub ac A, beB, ucl.

Then we have a new two-sided A-B-module which will be denoted by V. Then
Char, defines a duality £ satisfying the condition of the theorem. This is a
direct description of E. The existence of E, however, is clear from Remark 3.6.

5. Dualities for modules over a commutative ring

In this section we shall discuss dualities for a class of A-modules with a
commutative ring A as left operator domain.

Turrorem 5.1. Let A be a commutative ring and N a class of left A-modules
containing A as a left A-module. Then any duality D for U is equivalent to a
duality which assigns to each module in W its semi-linear (U, 0)-character module
where U is a left A-module and 0 is a ring-automorphism of A with period <2;
more precisely, therve exist a left A-module U, a ring-automorphism 6 of A with
period <2, a semi-linear (A, 0)-isomorphism o of U onto itself, and a family of
A-isomorphisms ®(X): D(X)—Chary,e X (XeN) such that the diagram

pxy 2L paxy
la)(X’) im(X)
Charg,s X” Chary 9—]; Charg,e X

is commutative for any A-homomorphism f: X—X'. Furthermore, the natural
A-homomorphism

7wo,0(X): X— Charg,e (Chary,e X)
defined by the formula [7v,0(X)@) (@) =0(a(z)), v € X, ae Chary,s X, is anA-isomor-
phism for each module X in N.

Proor. For any left A-module X in % we denote by X a right A-module
which is identical with X as an additive group and the elements of which are -
multiplied on the right with elements of A4 by the formula va=ax, ac 4, xe X.

We put A= {XIXGQI} Let us put next Ey(X)= D(X) E(X)=D(X) for Xe¥,
and define Ex(f): Ex(X")— EdX), Euo(f): Ex(X")—EyX) respectively by E(f)=
D(f), EXf)=D(f) for f=F: X—X’. Then E is a duality between ¥ and 9.

[Sci. Rep. T.K.D. Sect. A.
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Therefore the proof of Theorem 1.1 can bhe applied to E. The results thus
obtained may be stated in terms of left A-modules alone as follows (I to VI).

I. Let us put U=D(A). Then U is a left A-module. For an element a of
A we define an A-homomorphism ¢a.: A— A by putting ¢ulz)=za, v€ A. We
introduce a new multiplication of the elements of U with elements of A:

(39) axu=D(edu, a€A, ucl.

Then we have ax{(a’'u)=a'(a*xu) for a,a€ A, ueU. By U* we denote the new
left A-module thus obtained from U.

II. We can define an A-isomorphism w: U*— U by the formula
(40) o@)=[2*(A) o D(pu)o A(A)L), for uelU,

where ¢u: A— U is defined by ¢u(x)=au for € A and A*(A)=D(A(A))c A(D(A)).
Then the inverse of @ is given by

(41) o™ a)=[D(pu) o A( A1), for uelU.

III. i) Let X be any module in %A, For any A-homomorphism a: X—U*
we define an A-homomorphism aw: X— U* by (aa)(@)=ala(z)) for ace A, z€X.
It is to be noted that the multiplication of a(x) with an element « of A is taken
here in the original left 4A-module U. Then the set of all A-homomorphisms of
X into U* forms a left A-module which will be denoted by Ci(X). We can
define an A-isomorphism @,(X): D(X)— Cy(X) by putting

(42) O X)Y)=w"r 0 L (A) o D(py)o A(X),  for yeD(X)

where ¢y A— D(X) is defined by ¢y(a)=ay for ae A. The inverse of @,(X) is
written as follows: [@(X)]" Y @)=(D(woa)o A(A)Q) for ae Ci(X).

ii) Let XeW. For any A-homomorphism f: X— U we define an A-homo-
morphism af: X— U by (aB)z)=ax*(B(z)) for a€ A, x€X. Then the set of all
A-homomorphisms of X into U forms a left A-module which will be denoted by
CyX). We can define an A-isomorphism @,(X): D(X)— Cy(X) by the formula

(43) D(X)(y)=2*(A) 1o D(py)e A(X), for yeD(X)
where ¢, has the same meaning as in i). The inverse of @.,(X) is given by
[2.()](B)=(D(B) 0 (A1), for Be Cu(X).
IV. Let f: X— X’ be any A-homomorphism (X, X’e%). For a’eCi(X"),
B eCyX") we define A-homomorphisms Ci(f): Ci(X")— Cu(X), Cu(f): CoX)—

Cy(X) by putting Ci(f )=’ o f, Co(f}B)=B o f. Then the diagrams below
are commutative.

pxy 2V pexy iy P9 by
lqu lmlm lm.z(X') j@(X)
XD ~ o
C.(X) S Ci(XD Co(X7) —= Cy(X)

V. Let us put
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2(X)=Co((0:(X) 0 D(AX)) 0 AD (X)) 0 Bo(D(X)) 0 AX) .

x 20 pery 2P, ¢, pxyy SO RECNADENT .00

Then we have
(44) (X))@ @) =ap(alz))  for ze X, aeCi(X)
where gy A and a,"! exists. u(X) is an A-isomorphism.

VI. We have 1*(A)‘u=ae for every element u of U/. On the other hand,
for any element @ of A there exists an element 8(a) of A such that

(45) axu=0(a)u , for uel,

as is shown in Remark 1.3. 6(aq) is determined uniquely by «a. It is obvious that

¢ is a ring-automorphism of A.
Now we shall proceed to the final step of the proof of Theorem 5.1. Since
w: U*— U is an A-isomorphism, by (45) we have

(46) w(0(a)yu)=alo(w)) , for ae A, ueU.

From (40) and (41) it follows that w(u)=a(w () for we U. Hence by (46) we
have ay(o~Y(0(a)n))= (aay)(o~(x)) and so ayf*(@)w Y u)=aa,w ' (u), and consequently

47 0a)y=a , for aeA.

Let us put »(X)=C{((#,(X) o X))V o 0 (D(X)) o A(X), where A¥(X)=D(A(X))
o A(D(X)). Then we have, for v X, ae Ci(X),

(X))@ (a) = [(@:(D(X)) 0 A(X))(@)[(A*(X)* 0 0,(X) "))
=0 1 X) (@) (@) =0~ aw(r)) =ay ' 0(a)o(ala)) .
Since [zr,o(X)(@)](@)=w(alr)) we have
X)) @))(@) =6(an)as mv,o(X)(@)a)

where z€X, aeCy(X). Since »(X) is an A-isomorphism, my,s(X) is itself an
A-isomorphism.

" In terms of notations used in Introduction we have Chary,e X=C\(X),
Chary,e f=Ci(f) where f: X— X’ is an A-homomorphism. Thus our theorem is
completely proved.

TureoreMm 5.2. Let A be a commuiative ring and U a left A-module with a
semi-linear (A, 0)-isomorphism w of U onto itself where 0 is a ring-automorphism
of A with period <2. Let LA, U] be a class of left A-modules which are obtained
Srom the left” A-modules A and U by taking finite direct sums, submodules, and
quotient modules. Let ny,e(X): X— Chary,e (Chary,e X) be the natural A-homo-
morphism defined in Theovem 5.1 (and in Introduction). Then the following con-
ditions are equivalent. .

1. wv,e(X) is an A-isomorphism for each module X in YA, U).

II. nv,e(X) is an A-isomorphism for any left A-module X which is A-isomor-

phic to a quotient module of A or U.

[Sci. Rep. T.K.D. Sect. A.
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HI. a) #nu(A) is an A-isomorphism; that is, A is isomorphic to the A-
endomorphism ring of U by the correspondence a— ¢o where @u(u)=au,
ue U.
by U is injective and for any ideal I of A with I><A there exists a
non-zevo A-submodule of U which is A-homomorphic to AJlL
Proor. We shall make U into a two-sided A-A-module by putting axu=
Ol@u, wxa=au for ae A, ueU. This module will be denoted by V. By a
device described in the proof of Theorem 5.1 and notations used there it is seen
that condition I is equivalent to the condition that V-character modules define a

duality between the categories % and % where A=A, U]. Hence the implication
II—1II is proved by Theorem 2.4. Suppose that III holds. Then V is injective
as a right A-module and for any right ideal 7 of A with /=< A there exists a
non-zero right A-submodule of V which is A-homomorphic to A/I. From this it
follows further that V is injective as a left A-module and for any left ideal I
of A with /=< A there exists a non-zero left A-submodule of V which is A-homo-

morphic to A/I. Therefore V-character modules define a duality between % and A
by virtue of Theorem 2.4, and consequently condition I holds as is noted at the
beginning of the proof. Since I—1II is valid clearly, the proof is completed.

As an immediate consequence of Theorem 4.2 we obtain

TrEOREM 5.3. Let A be a commutative ring and U a left A-module satisfying
condition 111 of Theorem 5.2. Let 0, 0' be two ring-automorphisms of A with
period <2 such that theve exist semi-linear isomorphisms o and «’: o(aw)=
a)o(m), o (auw)=0"(a)o(n), ac A, ue lU. Then two dualities defined by means of
semi-linear (U, §)-character modules and semi-linear (U, 6)-character modules arve
equivalent if and only if 0=0".

Remarx 5.4. Let A be a complete discrete valuation ring and N a class of
left A-modules such that A€ and a left A-module X belongs to U with every
quotient module of X. Then any duality for % must be equivalent to a duality
defined by means of semi-linear (U, #)-character modules where U satisfies con-
dition III of Theorem 5.2 and ¢ is a ring-automorphism of A with period <2.
Since A contains no zero-divisor, U must be indecomposable and hence isomor-
phic to K/A where K is the quotient field of A (cf. [14, p. 53}). Since K/A is
divisible and A is a Dedekind ring, K/A is injective (cf. [3, p. 134]) and actually
satisfies condition III of Theorem 5.2. Since K is the quotient field of A, any
ring-automorphism ¢ of A with period <2 is extended to a ring-automorphism
of K which will be denoted by the same letter §. If we put o{u})={0w)} for
{uye K/A, w is a semi-linear (A4, #)-isomorphism of U onto itself where U=K/A.
Hence U and @ define actually a duality for the category &[4, UI». In this case
the family of all the equivalence classes of dualities for % is in a one-to-one
correspondence with the set of all ring-automorphisms of A with period <2. The

2) It has been proved by Kaplansky [13] and Schéneborn [25]} (cf. also Leptin [15])
that the duality with respect to KjA-character modules holds for some classes of topological
modules.
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same situation prevails for the case where A satisfies the minimum condition
for ideals (cf. § 12 below).

CHAPTER II. DUALITIES FOR MODULES OVER RINGS
WITH MINIMUM CONDITION

6. Dualities defined by means of character modules

For the sake of convenience we shall first state the following theorem (for
the proof cf. Morita, Kawada and Tachikawa [18]). Throughout Chapter II we
shall denote by N(R) the radical of a ring R with minimum condition.

Tueorem 6.1. Let A be a ring satisfying the minimum condition for left
ideals. Let U and V be injective left A-modules, and let us denote by S(W) the
semi-simple part of a left A-module W: S(W)=Ann(N(A); W)={wlwe W,
N(Aw=0}. Then the following propesitions hold.

1°. U and V are A-isomorphic if and only if S(U) and S(V) are A-isomor-
phic.

2°. U is indecomposable if and only if S(U) is simple.

3°. U is a divect sum of indecomposable injective left A-modules.

4°. For any semi-simple left A-module X there exists an injective left A-
module W such that S(W) is A-isomorphic to X.

We shall first prove the following lemma.

Lemma 6.2. Let A and B be two vings and U a two-sided A-B-module.
Suppose that U-character modules define a duality between 8[A, U] and N(B, U]
where 8 A, U] and N[B, U] have the same meanings as in §2. If A satisfies the
minimum condition for left ideals and every indecomposable injective left A-module
1s finitely generaied®, then B satisfies the minimum condition for right ideals
and U is a finitely generated left A-module. Furthermore, if A is an algebra of
finite rank over a commutative field K, then B is an algebra of finile rank over
a field which is isomorphic to K.

Proor. Let A be a ring satisfying the minimum condition for left ideals.
Then by the hypothesis of the theorem the ring B is inverse-isomorphic to the
A-endomorphism ring of U. Let us put No={b|[S(U)}b=0, be B} where S(U) is
the semi-simple part of /. Then N, is nilpotent and B/N, is inverse-isomorphic
to the A-endomorphism ring of S(U), and S(U)=Ann (N, U) as is proved in

[18]. Let us denote by A and B respectively the residue class rings A/N(A) and
B/N,. Then S(U) is a faithful left A-module, and for any A-submodule V of
S(U) and for any right ideal / of B we have V=Ann(Ann(V; B); S(U), J=
Ann (Ann (J; S(U)); B). For an A-submodule V, of S(U) there exists another

3) As examples of such rings we can mention quasi-Frobenius rings, commutative
rings (cf. § 12 below) and algebras of finite rank over a commutative field. The problem
whether any ring with minimum condition for left and right ideals enjoys such a property
remains open. It has been recently shown by Tachikawa that a ring with minimum
condition for left ideals does not always possess such a property.
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A-submodule Vi of S(U) such that S(U)=V,@ V.. Hence there exists an
element b, of B which induces the projection of S(U) onto V,, and we have Jy=
Ann (Vy; B)={b|Vob=0, be B}={b|S(U)byb=0, be B }={bbob=0, be B}.

Thus any right ideal of B is an annulet. We decompose S(U) into a direct

sum of left A-submodules Vi, i=1,2, --+, % such that any two simple left A-
moedules contained in S(U) are A-isomorphic if and only if they are contained

in the same summand. Then B~B, @ --- @ B: where B, is inverse-isomorphic
to the A-endomorphism ring of Vi;. Each ring B; is a primitive ring such that
every right ideal is an annulet. Hence by a theorem of Wolfson [32] we see
that B; is isomorphic to the ring of all matrices of finite order over a division ring.
Therefore S(U) is a finitely generated left A-module. Hence the ring B is
semi-primary and N, is the radical N(B) of B.

Assume that each indecomposable injective left A-module is finitely generated.
Then by Theorem 6.1 U is also a finitely generated left A-module. Since B=
Chary U, B satisfies the minimum condition for right ideals.

Now we shall consider the case where A is an algebra of finite rank over a
commutative field K. Then the center of A contains K and hence the center
of B contains a field K’ which is isomorphic to K by the isomorphism ¢, defined
in Remark 1.3. The left A-module U is a vector space of finite rank over K
and hence the right B-module U is a vector space of finite rank over K. Since
B satisfies the minimum condition for right ideals as is proved above and every
simple right B-module is B-isomorphic to a B-submodule of U (and hence of
S(UY), by Theorem 6.1 B is B-isomorphic to a B-submodule of U, with some
integer n where U™ is a direct sum of 7 copies of the right B-module /. Hence
B is a vector space of finite rank over K’. This completes the proof of Lemma
6.2.

Now we shall prove the following theorem.®

TueoreM 6.3. Let A be a ving salisfying the wminimum condition for left
ideals. Let B be another ring and U a two-sided A-B-module. Then the follow-
ing conditions are equivalent.

1. a) #r(X) and mu(Y) are isomorphisms for each module X in B[ A, U] and

for each module Y in R(B, U] where L[A, U] and R[B, U] are the
classes of modules defined in §2.
b) Every indecomposable injective left A-module is finitely generated.

II. a) B satisfies the minimum condition for right ideals.

b) wu(X) and wmu(Y) are isomorphisms for every finitely generated left
A-module X and for every finitely generated right B-module Y.

III. a) U is faithful as a left A-module and as a right B-module.

b) For every simple left A-module X and for every simple right B-
module Y, there exist the isomorphisms X~ Chary (Chary X) and Y=~
Chary (Chary Y).

¢) B satisfies the minimum condition for right ideals.

4) The implications VI~ IV, IV —II were proved by Tachikawa [27].
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IV. a) U is faithful as a left A-module and as a right B-module.

b)) The U-character modules of every simple left A-module and of every
simple right B-module are simple.
c) U is finitely generated as a lefi A-module.

V. a) For any left ideal I of A and for any right B-submodule W of U the
annihilator relations I=Ann(Ann(l; U); A) and W=Ann(Ann(W; A); U)
hold.

b) For any left A-submodule V of U and for any right ideal ] of B the
annihilator relations V=Am(Ann(V; B); U) and J=Ann(Ann(J; U); B)
hold.

¢) U is finitely generated as a left A-module.

VI. a) =ng(B) is a B-isomorphism (i.e. B is inverse-isomorphic to the A-
endomorphism ring of U by the correspondence b— Py where ¢u(u)=ub,
uel).

b) U is injective as a left A-module and every simple left A-module is
A-isomorphic to an A-submodule of U.
¢) U is finitely generated as a left A-module.

VI, U-character modules define a duality between the category of all finitely
generated left A-modules and the category of all finitely generated right
B-modules.

Proor. i) I—1II is a direct consequence of Lemma 6.2.

ii) II—III is obvious.

iii) II—IV. Assume III. Let X be a simple left A-module. For zeX,
aeChary X we put Xy=Ann (Chary X; X). Then X;=0, since otherwise we
would have X,=X and hence Chary X=0 which contradicts the assumption that
X=Chary (Chary X). Therefore ny(X) is an A-isomorphism. Let Y, be a B-
submodule of Chary X such that (Chary X)/Y, is simple; such a Y, exists by
virtue of III ¢). We put X;=Ann(Y,; X). Then we have either X;=X or
Xi=0. If X;=0, then Chary (Chary X)/Yy)~ X,=0. Hence X;=X=Ann (¥,; X).
This shows that Y,=0. Thus Chary X is simple. Similarly the U-character
module of every simple right B-module is simple. By III a) the left A-module
U and the right B-module B form an orthogonal pair to U. Hence by Theocrem
2.8 the left A-module U has a composition series. Thus IV holds.

iv) IV—V is a direct consequence of Theorem 2.8.

v) V—IV. Assume V. Let I be a maximal left ideal of A. Then from
V a) it follows that Ann (/; U) is a minimal right B-submodule of U. Since r:
Chary A~ U where r(a)=a(l), aweChary A, we have Chary (A4/1)~Ann(; U).
Hence the U-character module of every simple left A-module is simple. Similarly
the U-character module of every simple right B-module is simple. From V a) it
follows that 0=Ann(Ann (0; U); A)=Ann (U; A). This shows that U is faithful
as a left A-module. Likewise U is faithful as a right B-module.

vi) I-VI is an immediate consequence of Theorem 2.4 combined with
Lemma 6.2. :

vii) VI—-IV. Assume VI. Then there exist mutually orthogonal primitive
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idempotents ex,s, k=1, ---,m; i=1, ---, »(k) such that 1=, 1 ex,¢ and that Aer,:~
Aer,; if and only if k=/. According to Theorem 6.1 the left A-module U is
decomposed into a direct sum of indecomposable A-submodules Uy ;, k=1, ---,
m; j=1, ---, s(k) such that

S(Uk,5)~ Aex/N(Aex k=1,---,m

where ex=ex,; and N(A) is the radical of A. Let e, ; be the idempotent of B
which induces the projection of U onto Uy,;. Then we have B =2} ¢, ;B where the
sum means a direct sum, and e, ; are mutually orthogonal primitive idempotents.
As is shown in the proof of Lemma 6.2, Ann (S(U); B) is the radical N(B) of B.
We put ex’=e¢, ;. Since Ann (S(U)er’; B)={bles’'be N(B)}=(1—ey')B+e:’N(B) and
U is injective as a left A-module, we have

(48) Chary (S(U)ex’) ~ B/Ann (S(U )ex’; B) ~ ex’ Blew’ N(B) .

Since S(U)er’ =S(Uer') ~ Aer/N(A)ex, we obtain Chary (Aex/N(A)er) = e’ Blew’ N(B).

Now let X be any finitely generated left A-module. Then X is A-isomorphic

. to an A-submodule of U™ for some positive integer n where U@ means a

. direct sum of » copies of the left A-module U. Hence zy(X) is an A-isomorphism

by virtue of Lemma 2.2 and VI a). Thus ny(4) and ny(Aer/N(Ade) are A-
isomorphisms. Therefore from (48) we have

49) Chary (ex’ Bfey’ N(B)) ~ Aex/N(A)ex. .

Since any simple right B-module is B-isomorphic to ey Bfes’ N(B) with some k,
the U-character module of every simple right B-module is simple. This proves
VI-1V.

viii) IV—I1. Assume IV. Then by IV a) the left A-module U and the
right B-module B form an orthogonal pair to U. From Theorem 2.8 and IV ¢)
it follows that B satisfies the minimum condition for right ideals. The left A-
module A and the right B-module U form an orthogonal pair to UU. Hence by
Theorem 2.8 U is also a finitely generated right B-module. Let X be any finitely
generated left A-module. Then X is isomorphic to a quotient module of A™ for
some n where A means a direct sum of n copies of the left A-module A.
Applying Theorem 2.8 to the orthogonal pair (A™, Us™) we see that 7,(X) is
an A-isomorphism. Similarly =y(Y) is a B-isomorphism for every finitely gene-
rated right B-module Y. Since U is finitely generated as a left A-module (resp.
a right B-module), L[ A, U] (resp. R[A, U]) is identical with the class of all finitely
generated left A-modules (vesp. right B-modules). Thus I a) holds. From I a)
and Theorem 2.4 we obtain VI b); that is, U is an injective left A-module and
every simple left A-module is A-isomorphic to an A-submodule of /. Hence by
Theorem 6.1 every indecomposable injective left A-module is A-isomorphic to
an A-submodule of U/ and is finitely generated. Thus I b) holds.

ix) II—VIL If II holds, then U is finitely generated as a left A-module
and as a right B-module, and hence VII holds.

x) VII—II. Let Y be any finitely generated right B-module. We set X=
Chary Y. Then X is finitely generated as a left A-module. Let Y, be any right
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B-submodule of Y. Then the right B-module Y/Y; is finitely generated and
hence 7y (Y/Yy) is a B-isomorphism. Hence we have Yy=Ann(Ann(Yy; X); Y)
by Lemma 2.3. Since Chary (X/Ann(Yy; X))~ Ann (Ann(Yy; X); V)=Y,, we
see that Y, is finitely generated. Thus any B-submodule of Y is finitely gene-
rated and hence Y satisfies the maximum condition for right B-submodules.
Similarly X satisfies the maximum condition for left A-submodules and hence
Y satisfies the minimum condition for right B-submodules in view of the
annihilator relation Yy=Ann (Ann(Y,; X); ¥). Thus II a) holds and hence II
holds.

Remark. The above proof of the implication VII-—II shows that if the con-
dition VII holds for arbitrary rings A and B (with or without the minimum
condition) then A and B satisfy necessarily the minimum condition for left and
right ideals respectively,

7. Isomorphisms between categories of modules

Let A be a ring satisfying the minimum condition for left ideals. Then there
exist mutually orthogonal primitive idempotents ex,;, k=1, ---,m; i=1, ---, 7(k)
such that 1=23 s ex,: and Aex,;= Ae.,; if and only if 2=[. There exist m systems
of matrix units cx,y, k=1, ---, m; i, j=1, ---, v(k) such that ck,u==¢ex,i, Cr,iiCr, 4=
Orr0jscr,s where O and J;; mean Kronecker’s ¢, We set

m

(50) Al=c¢Ae , e:kZ er; ex=¢éx, , k=1,---,m.
c=1

After Osima [24] we shall call A the basic ring of A; as is shown in [24] the
basic ring of A is determined by A uniquely up to an inner automorphism.
Any element ¢ of A can be written uniquely in the form
(51) a= 2 Ci,ubi,iC,1

x,0,4,5

with elements bii,i5 from epAer (bri,i5=Cr,16aC1,11) -

Lemma 7.1. If we regard Ae as a two-sided A-A-module, then Ae is projec-
tive as a left A-module and as a vight A-module, and any A -endomorphism of
Ae s obtained by the left multiplication of an element of A and any A-endomor-
phism of Ae is obtained by the right multiplication of an element of A°. The
simtlar proposition holds for the two-sided A°-A-module ¢A. '

Proor. For each k& and 7 with 1<i<r(k), let us define a mapping a:
Ae— A by

i) =ack 1 , for ze€ Ae.
Then ayx: is clearly an A-homomorphism and we have
m r(k)
> > ak(cr,n)=1.

k=1i=1

Thus Lemma 7.1 follows readily from Lemma 3.3.
Lemma 7.2. Let us set
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Ti(X)=eAR4X, T(Y)=Homuo(eA, Y)
Ry(X)=Homu (Ae, X) , Ry(Y)=AeQRuo Y,

wherve X is a left A-module and Y a left A%module. Then Ty and T. (resp. R
and R.) are isomorphisms between the category of all left A-modules and the
category of all left A%modules such that T,T, and T\T, (resp. R:R, and R\R.)
are naturally equivalent to the identity functor. T and R: are naturally equivalent
for i=1, 2.

Proor. The first part is a direct consequence of Theorem 3.4 in view of
Lemma 7.1. The mapping ez— ¢.. gives an A’ A-isomorphism of eA onto
Hom. (Ae, A) where @u(v)=wzea for x€ Ae. Hence it follows from the proof of
Theorem 3.1 that R; and 7 are naturally equivalent for 7=1, 2.

Turorem 7.3. Let A be a ring salisfying the minimum condition for left
ideals, and let B be another ring. Let V be a two-sided A-B-module and set

T X)=Homu4 (V, X), T(Y)=VQRsY,

where X is a left A-module and Y a left B-module. Then the following conditions
are equivalent.

I. Ty and T. are isomorphisms between the category of all finitely generated
left A-modules and the category of all finitely generated left B-modules
such that 15T, and Th7T. arve naturally equivalent to lhe identity functor.

II. a) B is inverse-isomorphic to the A-endomorphism ring of V by the
correspondence b— , where ¢u(v)=vb, ve V.

b) V is projective and finitely generaled as a left A-module.
c) Every simple left A-module is A-isomorphic to a quotient module of V.

1II. The natural homomorphisms o(X): VQusHomu(V, X)— X, v(Y) Y—
Homa (V, V®sY) defined by the formula o(X)vQ@ a)=a), [v(Y)@)]w)=
v®y where vV, ye Y, ac Homu (V, X), are isomorphisms for any left
A-module X and for any left B-module Y.

In case these conditions hold B satisfies the minimum condition for left ideals.

Proor. 1) I—II. Assume I. Then we see the validity of II a) and II b) in

virtue of Theorem 3.2. II ¢) follows readily from the fact that Hom. (V, X)=<0
for X=<0.

ity II—III. Assume II. Then V can be decomposed into a direct sum of

indecomposable left A-modules Vij, k=1, ---,m; j=1,---,s(k) such that Vi;=~
Aei for j=1,---,s(k). Let ¢, be the idempotent of B inducing the projection of
V onto Vi, and set ¢=3" ¢/ ,. Then ¢'Be’ is inverse-isomorphic to the A-
endomorphism ring of Ve’. On the other hand, Ve’ ~ Ae as left A-modules and
hence the basic ring B'=¢’Be’ of B is ring-isomorphic to A°=eAe.

Since Ve’ =~ Ae and V=V (1—¢)@ Ve, it follows from the proof of Lemma

7.1 that there exist a finite number of elements aw:€ Homa (V, A), vue V, k=1,
--,m; i=1, ---, 7(k) such that

-

o 7(k)

n
>
k=1

aki(ve)=1.

M

i=1

1
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Hence by virtue of Lemma 3.3 and Theorem 3.4 the condition IIT holds.

i) III—1I follows from Theorems 3.2 and 3.4.

CoroLLarY 7.4. Suppose that V satisfies the condition I of :/hearem 7.3.
Then the corvespondences

X—->R(X)={b|Vb& X, be B}, J=R()=V]

between the class of all left A-submodules X of V and the class of all left ideals
J of B are one-to-one and are inverses of each other.

Proor. Since V is projective, there exists an A-isomorphism: V@&ux/~V/.
On the other hand, it is obvious that Hom. (V, X) is B-isomorphic to R(X) for
XS V. Since JER(R.J]) and R,(Ry(X))&X and A, B satisfy the minimum
condition for left ideals, we have /=R, (R.(/)) and X=R,(R:(X)) by Theorem 7.3.

In case A is semi-simple, any faithful, finitely generated, left A-module V
is projective and satisfies the condition II of Theorem 7.3 where B is defined to
be a ring inverse-isomorphic to the A-endomorphism ring of V. Hence Corollary
7.4 is applicable to the case, and we obtain a theorem of Fitting [8]. Thus
Fitting’s correspondences are, so to speak, restrictions of isomorphisms between
the categories of all left A-modules and of all left B-modules. The correspond-
ences given by Weyl [31, Chap. III] in connection with the representation theory
of full linear groups coincide with Fitting’s.

The following theorem shows that the notion of basic rings holds an important
position in our theory.

TueorEM 7.5. Let A and B be two rings satisfying the minimum condition
Jor left ideals. Then there exists an isomorphism between the categories of all
(finitely generated) left A-modules and of all (finitely genevated) left B-modules
if and only if the basic rvings A° and B°® of A and B are isomorphic.

Proor. The “only if ” part is actually proved in the proof of Theorem 7.3.
The “if ” part follows readily from Lemma 7.2.

8. The complete family of dualities between categories of modules

Let A and B be two rings satisfying the minimum condition for left and
right ideals. Let D=(D;, D,) be any duality between the categories 0t and M.
Here .M (resp. DViy) means the category of all finitely generated left A-modules
(resp. right B-modules). Then by Theorem 1.1 we may assume without loss of
generality that

Dy(X)=Chary X, DJY)=Chary Y, for Xe. M, YeDu

where U is a two-sided A-B-module. By Theorem 6.3 U satisfies each of the
condition from I to VII of Theorem 6.3. By using the notations in §7 we set

Ab=¢Ae, B'=e Be , where e=3ler,, e¢=>¢, .
k

k

Then A% and B° are basic rings of A and B respectively. Let us put
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D X)=Charwe X', D,Y)=Charee Y, for X’ e.oM, Y eMyo

E(X)=Charve X, EWY")=Charp. Y, for XeM, Y eDiyo
F(X")=Charew X', Fy(Y)=Charyy YV, for X’'€.M, Yeis
PiX)=eAR4X, PX)=AeRi0X", for Xe.M, X’ e
Q(Y)=YQusBe , QuY)=Y QueB, for YeMs, Y ey,

Then by Theorem 6.3 (D)9 D)), (Ey, E,), (I, Fy) are dualities between the re-
spective categories, while P; and @: are isomorphisms between the respective
categories by Lemma 7.2.

- We shall write Th~7, if two contravariant (or covariant) functors 7 and
T, are naturally equivalent. Then we can easily prove the propositions that

(52) Ri~R,and T.~T, imply T\Ri>~=T,R.,
(63)  TeRi~1, RiTy~~1, i=1,2 and R, ~R, imply Th>~T:.

Turorem 8.1. The following diagram is commutative:

Dy
)

Aﬂ))’t [P tlj

7|7 2, oo
- M

PN — 5Y
D‘)() :
where “ commutative” means that the composites of functors indicated by arrows
are mnaturally equivalent if they arve defined over the same category and have
values in the same category. In particular,

(54) D, ~Q.,D\°P; , Dy~ P, D, .

We shall first note that the following lemma holds.
Lemma 8.2. There exists a natural equivalence @ from P, to F.Dy; that is, a
family of A°-isomorphisms
9(X): eAQ.+X— Char.y (Chary X)

defined by the formula [0(X)(ex)|(a@)=alex) for x€ X, a€Chary X gives a natural
equivalence.

Lemma 8.2 is proved easily (directly or by appealing to a result in [3, p.
120]) and is omitted here. If we apply Lemma 8.2 to the case with U replaced
by Ue’, we see that Py~ D,E,. Likewise Qi~FED,, @~ D\°F;. Hence the
diagram

Dy

A (_______________—-) M »
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is commutative. In view of the formulae (52) and (53) we obtain Theorem 8.1.

Tueorem 8.3. The family of all the equivalence classes of dualities between
AM and My is in a one-to-one correspondence with the family of all the equivalence
classes of dualities between M and Mpo, and hence with the factor group of
the group of all automorphisms of the ring A° modulo the subgroup of all inner
automorphisms. Here we assume, of course, that there exists at least a duality
between MM and Dy (or N and DVigo). ’

Proor. The first part is a direct consequence of Theorem 8.1. Let D=
(Dy, D,) and E=(FE;, E,) be any two dualities between 100 and Muo. Since B° is
a basic ring, D, and E, satisfy the assumption of Theorem 4.2. Hence the second
part follows readily from Theorem 4.2.

Tueorem 8.4. Let A be a quasi-Frobenius ring. Then there exists a duality
between 1AM and Mu of and only if the basic rings of A and B are isomorphic.

Proor. In this case A-character modules define a duality between I and
Py (cf. §14 below). Hence there exists a duality between M and My if and
only if there exists an isomorphism between the categories M. and Piy. There-
fore the theorem follows at once from Theorem 7.5.

9. Similarity of algebras

Let K be a commutative field. Throughout this chapter, by an algebra over
K we mean one which is of finite rank over X; thus K can be identified with a
subring of the center of any algebra over K (in this paper a ring is assumed to
have a unit element). Let A and B be two algebras over K. Then by a duality
between the categories M and W, we shall mean a duality D=(D,, D,) such
that the condition (K) below is satisfied:

K) If [ XX, 9g: YY" (X, X e, Y, Y eIy) are defined by f(v)=xx,
g()=yx with a fixed element & in K, then Di(f)y)=yr, Dy¢)(w)=rx.

By an isomorphism from 40 to s we shall mean an isomorphism satisfying a
similar condition as (K).

Let A be an algebra over K. We set

J(X)=Homx (X, K), J(Y)=Homx (Y, K) for Xe.M, YeM.

where X and Y are considered respectively as a right K-module and as a left
K-module in forming Homx (X, K) and Homk (Y, K). Ji(X) and /(YY) are con-
sidered as a right A-module and a left A-module respectively by the formulae

(aa)w)=alaz),  (aB)y)=B(ya)

where € X, ye Y, a€ A, ae i(X), e .(Y). A left A-homomorphism f: X—
X7 can be considered as a right K-homomorphism. We define /i(f): i(X)—
JX) by A(f)=Homx (f,1); Ji(f) is a right A-homomorphism. Similarly, for a
right A-homomorphism ¢g: Y— Y’ (Y, Y eM4) g is defined to be Homx (g, 1);
L) is a left A-homomorphism. Now we define a natural homomorphisms

v(X): X LX), w(Y): Y= LL(Y)
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by putting [»(X)(@m)a)=a(z), [(Y)®BR)=R(y) where z€ X, ye Y, ae i(X), BE
5(Y). Then »(X) and »(Y) are respectively a left and a right A-isomorphisms.
Hence J/=(/i, J.) is a duality between .M and 9M.,. Since the representations of
A in K defined by taking X and Ji(X) as representation modules are equivalent,
J(X) (resp. Ju(Y)) is called the dual representation module of X (resp. Y).

Thus there exists always a duality between .M and M.. Hence for any
two algebras A, B over the same field K there exists a duality between .9 and
My if and only if there exists an isomorphism from I onto Wt. Therefore
from Theorem 7.5 we obtain at once the following theorem:.

Tuaeorem 9.1. Let A and B be two algebras over a commulative field K.
Then the following conditions are equivalent.

1° There exists a duality between M and M.

2°  There exists an isomorphism from O onto »IM.

3°  The basic algebras of A and B are isomorbhic as algebras over K.

Tueorem 9.2, Let A be an algebra over K and AY the basic algebra of A.
Let | be the duality between I and MNa which is defined by means of dual
representation modules. In the commutative diagram

R —)
Je
el . olfo
JUR) —— ) LT
LO

given in Theovem 8.1 with B= A, the duality J° between M and M40 is equivalent
to the duality defined by means of dual representation modules.

Proor. Let J¥=(/i*, L*) be the duality between .9 and Mo defined by
means of dual representation modules. In view of Theorem 8.1, if we prove
that ,*P,~@Q./;, we can conclude that /,*~@,/.P, and our Theorem 9.2 follows
immediately.

Let X be any finitely generated left A-module. Since there exists a natural
isomorphism from Pi(X) to eX, we have only to prove that there exists a natural
equivalence @ consisting of

(ﬁ(X): Homg (@X, K) — [HOI‘I‘IK (X, K)]e
where e=3 ex, is defined by (50). Since any right K-homomorphism f of eX
&

into K can be extended to a right K-homomorphism ¢ of X into K and (¢e)(z)=
¢(ex)= f(ex) holds for any extension ¢ of f and for any » in X, the existence
of @ is obvious. Thus Theorem 9.2 is proved.

Two algebras A and B over the same field K are said to be similar if there
exists an isomorphism between the categories I and M. In view of Theorem
9.1 our notion of similarity is identical with ¢ similarity ” in the sense of Osima
[24], and for central simple algebras it is equivalent to the classical notion of
similarity. '
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Tueorem 9.3. Suppose that the basic rings of two rings A and B salisfying
the minimum condition for left and right ideals are isomorphic. Then if A has
one of the properties listed below, B has also the same property:

(1) quasi-Frobenius, (2) generalized uni-serial, (3) uni-serial,

4) primary-decomposable, (5) primary, (6) weakly symmetric,

(7) almost symmetric, (8) semi-simple, (9) simple.

Proor. Let T5: M- M and T,: sM— M be isomorphisms between the
categories such that 7.7 and 7,7, are naturally equivalent to the identity
functor. If A is quasi-Frobenius, then, since any projective A-module is injective,
T.(B) is injective and hence B is injective as a left B-module, and consequently
B is quasi-Frobenius by Theorem 14.1 below. Similarly we can prove by using
isomorphisms 7, and 7', that if A is generalized uni-serial, so also is B. As for
the properties (6) and (7) the theorem is proved by Osima [23]. For the remaining
properties the theorem is known or easily proved.

Turorem 9.4. Suppose that two algebras A and B over the same commultative
field K are similar. If A is symmetric, so also 1S B.

Proor. It is sufficient to prove that an algebra A over K is symmetric if
and only if its basic algebra A° is symmetric. This proposition is proved by
Neshitt and Scott [21] for the case where K is algebraically closed and by Osima
[23] for the case where K is arbitrary. Here, as an application of our theory,
we shall give a simple proof to this proposition. As will be shown later (§14),
A is symmetric if and only if the duality between .1t and M4 defined by means
of A-character modules is equivalent to the duality defined by means of dual
representation modules. Hence the above proposition follows immediately from
Theorems 8.1 and 9.2.

10. Tensor products of dualities for modules over algebras

Let A and B be two algebras over a commutative field K. In case A and
B are similar (cf. §9) we shall write A~ B; in particular, if a two-sided A-B-
module U defines a duality between M and M, we write A~B [U]. The
purpose of this section is to prove the following theorem.

Tarorem 10.1. Let A, B, P and Q be algebras over a commutative field K.
If A~B U] and P~Q [V], then

i) AOP~B®Q [UDV],

i) AQxP~B@xQ [URxV].

Here P and Q may be algebras (not mecessarily of finite rank) over K which
satisfy the minimum condition for left and right ideals, while A and B must be
of finite rank over K.

For the sake of simplicity we shall assume in the following that P and @
are of finite rank over K and that @ means the tensor product over K. We
shall begin with some lemmas.

Lemma 10.2. If A~B [U] and P~Q [V], then APP~BPQ [UD V],
where U@V is regarded as a two-sided A® P-B®D Q-module by setting av=vb=0,
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pu=uq=0 for ac A, beB, peP, geQ, ucU, veV.

Proof is obvious.

Lemma 10.3. If U is a faithful, finitely generated, left A-module, and V a
faithful, finitely generated, left P-module, then UQV is a Taithful lefi AR P-
module.

Proor. Let {aili=1,---,7} and {p;]j=1,---,s} be K-bases of A and P
respectively. Under the representations of A and P obtained by taking U and

V' as representation modules, let @i—Ly(as), i=1,---,7 and p;— Ly (p;), =1,
-+, s where Ly(a:) are m by m matrices with coefficients in K and Ly.(p;) # by
'n matrices with coefficients in K. Then {Ly(a)|i=1, ---,#} and {L-(p,)|7=1,

--., s} are linearly independent systems with respect to K since U and V are
faithful. Hence {Ly(aa)@ Lv(py)li=1, ---,7; j=1,---,s} is also independent
where @ means the Kronecker product of matrices. Therefore UR V is faithful
as a left A® P-module.

Lemma 10.4. If A, B, P and Q are semi-simple algebras over K and A~ B [U],
P~Q [V], then AQP~BRQ (URQ V]

Proor. 1) We shall first assume that A, B, P, Q are simple algebras.
Then there exist division algebras R and 7 such that A, B and P, @ are full
matrix rings over KR and 7 respectively: A=K, B=(R)n; P=(T),, Q@=(T)s.

Let G be any Frobenius algebra over K. Then we have clearly G~G [G].
Let G be a direct sum of %k copies of the right G-module G; then G® can be
considered as a left (G)r-module, and hence G® is a two-sided (G)r-G-module
and (G~ G [G®]. If we denote by (G®) a direct sum of j copies of the left
(G)-module G®, then O(G™) can be considered as a two-sided (G)x-(G),-module
and (e~ (G); [O(GH)). Applying this result to the case G=R, G=T and
G=RQT (it is well-.known (and is easily proved) that R® T is a Frobenius
algebra) we obtain

A~B [R™)],  P~Q (T,
AQP~BRQ [*(RQT)™)].

Let up put U*=0(Rm), V*=((T); then we have U*Q V¥~ O((RQ T )mn)
as two-sided AQ P-B ® @-module. Therefore we have

A~B[U*], P~QI[V*, AQP~BRQ[U*QV*].

Since B and @ are simple algebras, there exist a B-isomorphism o¢: U~U*
and a @Q-isomorphism 7: Va V* Hence by Theorem 4.2 there exist a ring-
automorphism # of A and a ring-automorphism ¢ of P such that o(6(a)u)=as(u),
(e p)v)=pr(v) where ac A, uelU, peP, veV. By our convention concerning
dualities for modules over algebras we have ru=ux, rv=ve for uelU, veV,
re K. Hence 0(v)=k, ¢(x)=k for re€ K.

Let {a:|i=1, ---,k} and {p;]j=1, ---,1} be K-bases of A and P respectively.
Then we can define an automorphism ¢ of A® P by putting

DS k(@ @ ps) =2 £u(0(a) @ ¢(p3)) .
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For this ¢ we have
(6 @o)NplOw)=cl(e@T)(w)], for ccAQP, welURV,

where e @Q@r: UQ V-U*Q@ V* is a B& Q-isomorphism defined by (6 @) (u® v)=
o(u) ®@t(v). Since AQP~BRQ [U*® V*], by Theorem 4.5 we see that AQ P~
BRQIUVI

ii)y Let A=A, P --- @A, and P=P, P --- P, be direct-sum decompositions
of A and P into simple subalgebras respectively. As is easily seen from the -
part vii) of the proof of Theorem 6.3, we obtain the following direct-sum
decompositions:

B:Bl@"'@Bra U=U1(“B"‘®Ur, Ai~ B [Ui],
Q=0:®--- D, V=Vi®---@®Vs, Pi~Q;[Vj].
According to i) we have AiQP;~B:i®Q; [U:Q V;]. Hence by Lemma 10.2 we
have
2(AQP)~Z (Bi®Qy) [X (U@ V)]

where >, means a direct sum. Therefore AQP~B®®Q [U® V]. This proves
Lemma 10.4.

We shall now proceed to the proof of Theorem 10.1.

Proor or Turorem 10.1. Suppose that A~B[U] and P~Q [V]. As before
the radical of an algebra R will be denoted by N(R). We shall first prove

(55) Ann(N(A)QP+AQNP); UQ V)=Ann (N(A); U)QAnn (N(P); V).
To prove this, let {u:]i=1, ---, m} and {v;lj=1, ---, n} be K-bases of U and V
respectively such that Ann (N(A); U)=§T1Km, Ann (N(P); V)zéKI}j. Let w=
S k(i@ us) (ki€ K) be any elementl—of Ann ((N(A)®P+A€8}N(P)); U v).

Then (® Dw=0 for any element » of N(A). Hence we have 0=3 rilvus @vj)

=3 (S ko) @vy. Therefore 3 kyau.=0, and hence we have ry=0 for i >7.
i i

Similarly we have ;=0 for j>s. Thus (55) is proved.

On the other hand, we can prove the following relation by making use of
K-bhases of A and P similarly as above:

(56) (AQ P)/(N(A)@ P+AQN(P))~ AIN(A)Q PIN(P) .

As before we set A= A/N(A), P=P/NP), S(U)=Ann{NA); U)=
Ann (N(B); U), S(V)=Ann (N(P); V)=Ann (N@); V).

Let X be any simple left 4 ® P-module and let &: X—»U® V be any AR P-
homomorphism. Then, since N(A)@P+AQNP)SNARP), by (56) X may
be considered as a left A® P-module. Then a: X—U® V is also considered as
an A ® P-homomorphism of X into S(U)QS(V) since [N(A) @ P+AQ N(P)]a(X)
=0 (cf. (55)). On the other hand, since A~B [U] and P~Q [V], we have
A~B[SWW)] and P~Q [S(V)] as is shown in the proof of Lemma 6.2. Hence
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we have AQP~BRQ [S(U)RS(V)] by Lemma 10.4. Therefore Charsanesay X
is a simple right B® @-module and consequently Charygr X is a simple right
B® @-module.

Thus the U® V-character module of every simple left A ® P-module is simple.
Similarly the U® V-character module of every simple right B® Q-module is
simple. According to Lemma 10.3, U® V is faithful as a left A ® P-module and
as a right B® @-module. Therefore by Theorem 6.3 we see that AQP~
BQQ [URV]. This proves the part ii) of Theorem 10.1 in case P and Q are
of finite rank over K. In case P and @ are not necessarily of finite rank over
K, by an easy modification we see the validity of ii) of the theorem in this
general case. Thus Theorem 10.1 is completely proved.

As an immediate corollary we obtain Osima’s result [24]:

Cororrary 10.2. If A~B, P~Q and L is a field which contains K as a
subfield, then AQP~B®Q and Ar~ Br.

11. Completely indecomposable modules

Recently E. H. Feller [7] has extended the notion of completely indecompos-
able modules, which is introduced by E. Snapper [26] for modules with a com-
mutative ring as operator domain, to the case of modules with a non-commuta-
tive ring as operator domain. In this section it will be shown that the notion
of completely indecomposable medules is closely related with the notion of injec-
tive modules.

Let A be a ring (commutative or non-commutative). A left A-module X is
said to be completely indecomposable if the following conditions a) and b) are
satisfied:

a) X satisfies the minimum and maximum conditions for left A-submodules
and every left A-submodule of X is indecomposable.

b) There exists another ring B such that (i) X is a two-sided A-B-module,
(i) X satisfies the minimum and maximum conditions for right B-submodules
and (iil) every right B-submodule of X is indecomposable.

Feller's definition is given by taking A as right operator domain of X. In
case A is commutative, the condition b) is automatically satisfied with B=A4 if
the condition a) is satisfied; this is the case treated originally by Snapper [26].

Feller [7] has proved the following theorem as a generalization of the main
theorem of Snapper [26] under an additional assumption that any left A-submodule
of X (resp. X’) is a right B-submodule (resp. B’-submodule) and any right B-
submodule of X (resp. right B’-submodule of X’) is a left A-submodule of X
(resp. X7). Our first remark is to show that this additional assumption is re-
dundant.

Treorem 11.1. Let X and X’ be left A-modules which are completely inde-
composable. Let m and w' be the annihilator ideals of X and X' in A respectively:
m={alac A, ax=0 for ve X}, w'={alae A, a’=0 for =’ €X’}. Then X and
X’ are A-isomorphic if and only if m=n.
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To prove this theorem (under an additional assumption stated above), Feller
proves the following theorem (which is also a generalization of Snapper’s theorem
[26]): If a left A-module X is completely indecomposable, then, for any left
ideal 7 of A containing the annihilator ideal m, any left A-submodule X; of X,
any right ideal J of B containing n and any right B-submodule Y, of X, the
annihilator relations

Ann (Ann (7; X); A)y=1, Ann (Ann (Yy; A); X)=Y,,
Ann (Ann (J; X); B)=7, Ann (Ann (Xy; B); X)=X, .

hold where n={blbeB, #b=0 for x€ X}. In this case A/m (resp. B/n) satisfies
the minimum and maximum conditions for left (resp. right) ideals. We now
apply Theorem 6.3 to this case. Then we see that X is injective as a left A/m-
module and as a right B/n-module. Our second remark is to prove the following
theorem.

Tuarorem 11.2. Let X be a left A-module and m the annihilator ideal of X
in A. Suppose that X satisfies the minimum and maximum conditions for left
A-submodules. Then X is completely indecomposable as a left A-module if and
only if 1) A/m is a completely primary ving satisfying the minimum condition
Jor left ideals and 1) X is an indecomposable, injective, left Afm-module which
has a composition series.

Proor. The “only if ” part is already proved above. The “if ” part follows
readily from Theorem 6.3. Indeed, if we let B be a ring which is inverse-
isomorphic to the A/m-endomorphism ring of X and regard B as a right operator
domain of X, then by Theorem 6.3 X is injective as a right B-module and, since
A/m is completely primary, X is indecomposable as a right B-module.

Proor or Tureorem 11.1. Theorem 11.1 is now a direct consequence of
Theorem 6.1 in view of Theorem 11.2. Indeed, if m=m’, then the semi-simple
parts of X and X’ are simple A/m-modules and hence A/m-isomorphic (because
simple left A/m-modules are all A/m-isomorphic since A/m is a primary ring) and
consequently X and X’ are A/m-isomorphic by Theorems 11.2 and 6.1. The
“only if ? part is obvious. Thus Theorem 11.1 is proved.

The following corollary, which is due to Feller [7], is an immediate con-
sequence of Theorem 6.3 in view of Theorem 11.2.

Cororrary 11.3. If X is a completely indecomposable left A-module, then
B/n is inverse-isomorphic to the A-endomorphism ring of X and Alm is isomorphic
to the B-endomorphism ring of X.

12. Dualities for modules over a commutative ring with minimum
condition

Throughout this section A is assumed to be a commutative ring with the
minimum condition for ideals. We shall begin with a lemma.

Lemma 12.1.  Every indecompogable, injective, left A-module is finitely gene-
rated.
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Proor. Since A is commutative, A is primary-decomposable. Hence it is
sufficient to treat the case where A is primary (and hence completely primary).
In this case, by Snapper (26, Corollary 9.4] there exists a faithful left A-module
€ which is completely indecomposable. By Theorem 11.2 @ is an injective left
A-module. Since € is completely indecomposable, @ has a composition series
and hence is finitely generated as a left A-module. Since A is completely
primary, every indecomposable injective left A-module must be A-isomorphic to
& by virtue of Theorem 6.1. Thus Lemma 12.1 is proved.

Now we shall prove the following theorem.

TueoremM 12.2. Let A be a commutative ring satisfying the minimum con-
dition for ideals. Then there exisis a one-to-one correspondence between the family
of all the equivalence classes of dualities for the category of all finitely generated
left A-modules and the set of all ring-automorphism of A with period <2.

Proor. Let U be an injective left A-module such that s(k)=1, k=1, ---, m
(in this case 7(k)=1 since A is commutative) in the notations of §6 (in particular,
cf. part vii) of the proof of Theorem 6.3). Then the A-endomorphism ring of
U is isomorphic to A by virtue of Lemma 12.1 and Corollary 11.3. Hence any
left A-module V such that V-character modules define a duality for .t must
be A-isomorphic to U. Here . means the category of all finitely generated
left A-modules as before.

Let 6 be a ring-automorphism of A with period <2. If we define a new
multiplication of elements of U with elements of A by putting axu=0(a)u for
uel, a€ A, then the new left A-module U* defines likewise a duality for ..
Hence U* is A-isomorphic to U as is observed above. Any A-isomorphism o
of U onto U¥* satisfies the relation: w(au)=0(@)w(u) for ue U, ac A when o is
considered as a mapping from U to U. This relation shows that o is a semi-linear
(A, 0)-isomorphism of U onto itself.

Therefore any ring-automorphism # of A with period <2 defines a duality
for 49 which assigns to each finitely generated left A-module X the semi-linear
(U, 6)-character module; this is seen by Theorem 5.2. Conversely, Theorem 5.1
shows that any duality for .t is equivalent to a duality defined by means of
semi-linear (U, #)-character modules. According to Theorem 5.3, two dualities
defined by means of semi-linear (U, #)-character modules and semi-linear (U, §")-
character modules are equivalent if and only if #=¢". Thus our Theorem is
completely proved.

13. Some remarks concerning dualities and isomorphisms

The following theorem has been used tacitly (cf. the proof of Theorem 9.3).
Here we shall state it explicitly for the sake of completeness.

TueoreM 13.1. Let A and B be two rings satisfying the minimum condition
for left and right ideals. Let D=(D:, D.) (vesp. Ty and T.) be a duality (resp.
isomorphisms) between the categories N and Ms (resp. I and D such that
ToTy and T.T. are naturally equivalent to the identity funcior). If Xe M and

Vol. 6, No. 150]
(41)



124 Kiiti MoRritTa

Y=D\(X) (resp. Y=T(X)), then Y is projective or injective according as X 1is
injective or projective (resp. projective or injective).

Proor. Suppose that X is injective and Y=D,(X). Then there exists a
finitely generated, free, right B-module Y, such that Y,/Y; is B-isomorphic to ¥
with some Y, S Y,. We set Chary Yo=X,, Ann(Y;; Xy)=X, where we assume
that D is defined by U-character modules with a suitable two-sided A-B-module
U. Then X~X;. Since X is injective, X; is a direct summand of X, and
hence Y, is B-isomorphic to a direct summand of ¥,. Thus ¥ is projective. By
Theorems 1.1 and 2.5 we see that if X is projective then D,(X) is injective. As
for 77 and T. the theorem is obvious.

As is observed in §9, in case A is an algebra of finite rank over a com-
mutative field the dual representation modules define a duality between .9 and
M.. For this case Theorem 13.1 is proved by Nagao and Nakayama [19].

In this chapter we have discussed dualities and isomorphisms exclusively for
the categories of all finitely generated left or right modules. If we restrict our-
selves to narrower categories, the situation is different. For example, we have
the following theorems in which A and B are assumed to be arbitrary rings and
U is a two-sided A-B-module.

Tueorem 13.2. In order that U-character wmodules define a duality beftween
the categories L*[A, U] and WHB, U] it is necessary and sufficient that mwv(A)
and wy(B) be isomorphisms, where we denote by L*[A, U] the class of all left
A-modules which are finite divect sums of left A-modules each A-isomorphic to a
divect summand of either A or U and W*[B, U] is the class of right B-modules
defined similarly.

Turorem 13.3. Suppose that B is inverse-isomorphic to the A-endomorphism
ring of U by the correspondence b— ¢» where $u(u)=ub. Then the funciors T1(X)
=Hom. (U, X), TAY)=UQsY are isomorphisms between the category of all left
A-modules which are finite divect sums of left A-modules each A-isomorphic to a
dirvect summand of U and the category of all left B-modules which arve finite
direct sums of left B-modules each B-isomorphic to a direct summand of B, and
17,71y and ThT. are naturally equivalent to the identity functor.

These theorems are easy to prove, and the proof is omitted. The corre-
spondence given by Curtis [4] may be viewed as one given in Theorem 13.3.

CHAPTER III. APPLICATIONS

14. Quasi-Frobenius rings

As an application we obtain the following well-known theorem (cf. Nakayama
[20], Ikeda [11], Ikeda and Nakayama [12], Eilenberg and Nakayama [6], Morita
and Tachikawa [17]). '

Tueorem 14.1. Let A be a ring satisfying the minimum condition for left
and right ideals. Then the following statements are equivalent.

-1, The A-character modules define a duality between the category M of all
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Jinitely generated left A-modules and the category WMa of all finitely generated
right A-modules (i.e. ma(X) and =(Y) are isomorphisms for Xe .M, YeMa).

II.  For every simple left A-module X and for every simple right A-module
Y, we have

X =Char4 (Char X) , Y~ Chars (Char, Y) .

II.  The A-character module of every simple left A-module and that of every
simple right A-module are simple.

IV. For every left ideal I of A and for everv righl ideal ] of A the annihi-
lator relations

I=Ir(D),  J=r(())

hold where 7(S)={zlax=0 for every ae S}, US)={xlza=0 for every acS} for
a subset S of A.

V. A is injective as a left A-module.

VI. A is a quasi-Frobenius ring.

Proor. From Theorem 6.3 it follows readily that I, II, III and IV are
equivalent. Likewise I—-V holds by Theorem 6.3. Now assume V. Then for
any primitive idempotents ex, e; of A, Aer i1s A-isomorphic to Ae; if and only
if their semi-simple parts (which are simple left ideals in this case) are A-
isomorphic, by virtue of Theorem 6.1. Thus every simple left A-module is A-
isomorphic to an A-submodule of A. Hence by Theorem 6.3 we see again that
V-1 holds. Since V—I is valid, V implies that A is injective as a right A-
module. Hence the above proof for V—1I shows at the same time that V—VI
holds. Finally assume VI. Then we have »(N)=I(IN) as is shown in Nakayama
[20, p. 9] where NV is the radical of A. If e: is a primitive idempotent of A, the
A-character module of Aex/Nex is A-isomorphic to exwr(N)=exl(N), and ed(N) is
simple by the definition of quasi-Frobenius rings. Thus VI—III is proved (this
proof is the same as given in Morita and Tachikawa [17]).

Tureorem 14.2. If A and P are quasi-Frobenius vings and they arve algebras
over a field K one of which is of finite rank over K, then AQx P is also quasi-
Frobenius.

Proor. This theorem is due to Nakayama [20]. If we put B=A, U=A,
Q=P, V=P in Theorem 10.1, we obtain at once AQP~AQQP [A®P], which
shows by Theorem 14.1 that A® P is quasi-Frobenius.

Now let A be a quasi-Frobenius ring and U an injective left A-module such
that every simple left A-module is A-isomorphic to an A-submodule of U. Let
a ring B be inverse-isomorphic to the A-endomorphism ring of U by the corre-
spondence b— ¢y; then U is considered as a two-sided A-B-module by the formula
ub=¢(x). Then B is also quasi-Frobenius by Theorems 8.4 and 9.3. Since A is
quasi-Frobenius, U is a projective left A-module and every simple left A-module
is A-isomorphic to a quotient module of U. Let us set

67 Dy(X)=Chary X, D2(Y)=Charu Y, for Xe. M, YeNy .
(58) Ty{X)=Homa (U, X), To(Y)=UQ:»Y, for Xe.M, Ye M.
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Then by Theorem 6.3 D=(D,, D,) is a duality between 9 and Mz, and by
Theorem 7.3 7, and 7, are isomorphisms between M and M such that 771
and 7,7, are naturally equivalent to the identity functor. Since B is quasi-
Frobenius, the functors £, and E, defined by

(59) E(Y)=Chars Y, EXY")=CharyY’, for Ye, M, Y ey
form a duality between »M and M. Since there exists a natural isomorphism
Homa (U®:r Y, U)~Homus (Y, Hom. (U, U)) where Ye M, and Hom. (U, U) is
isomorphic to B as a two-sided B-B-module, D;7: is naturally equivalent to F,.

Thus we have proved the following theorem.
Tueorem 14.3. The diagram below ts commulative:

D

e —
T D2 /}'
E.
701, "
1 2 El
e
M

where D;, Ey, T, are defined by (57), (58), (59).

Let A and B be two algebras of finite rank over a commutative field . Let
U and V be two-sided A-B-modules satisfying the conditions of Theorem 6.3;
{J-character modules and V-character modules define respectively dualities be-
tween M and Mx. By the convention stated in §8 we assume that su=wux,
v=uvr for xe K, uc U, veV. Let (w1, ---, un) and (v,, ---, v,) be K-bases of U
and V respectively, and let

a(”'{y T, u‘ﬂl):(ul) Tty um)LU(ﬂ) E) a(vly DY ?)n)::(vl, Tty 7)7;)[4)/((1) >

U1 251 1 U1
(; )bz]?u(b)(f ) ( )bzRv(b)( : >
Um, Um, \Un Un

Suppose that m=n and the representations b— Ry(b), b— Rv(b) of B are
equivalent. Then there exists a non-singular matrix P such that Ry ()=
PRy(b)P~, be B. If we define a K-isomorphism t of U onto V by putting
(t(sy), - -+, t(un))=(vy, - -, va)P’, then t(ub)=t(u)b for beB, uelU. Hence by
Theorem 4.2 there exists an automorphism 6 of A such that r(f(a)u)=
ar(u), ue U. Since alt(uy), -+, TUn))=(1, -+, va)Lr(@)P’, we have Ly(0{a))=
(P Ly(a)P’.

In case A is a Frobenius algebra, B=A4, U=A and V is a two-sided A-A-
module such that the V-character module of any finitely generated left or right-
A-module X is A-isomorphic to the dual representation module, we have Ly{a)=
S(a), Ru(a)=R(a), Lv(a)=R(a), Rv(a)=S(a) where a— S(e¢) and a— R(a) mean
the left and the right regular representations of A respectively. Thus ¢ coincides
with Nakayama’s automorphism (cf. Nakayama {20, p. 3]).

According to Nakayama [20], a Frobenius algebra is symmetric if and only if
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Nakayama’s automorphism is inner. Therefore we obtain the following theorem
by Theorem 4.2.

Turorem 14.4. A quasi-Frobenius algebra is a symmelric algebra if and only
if the two dualities between M and M., one defined by means of A-character
modules and the other by means of dual representation modules, are equivalent.

15. Regular pairings

In a recent paper [4] C. W. Curtis has introduced the notion of regular
pairings; his research has its origin in Weyl’s paper ([30], cf. also [3], chap. III])
on the centralizer of a finite group of collineations. In this section we shall dis-
cuss regular pairings from our standpoint.

Let A be a ring, and let U and V be a right and a left A-modules respec-
tively such that they are paired to A by a function (v, u):

wlav, u)=ao(v,u), o, uc)=wv,u)a - for wel, veV, ac A,

and o is additive with respect to each variable. In case V and U form an
orthogonal pair to A with respect to w and the additive group A, generated by
w(v,u) for all veV, uel contains an idempotent ¢, such that a=aey=eya for
all ae A,, Curtis [4] calls the system (V, U, w) a regular pairing. In this case
we have

w(v, u(1—ep) =0, u)(1—ey) = w(v, 1)es(1—ey)=0 for veV, uelU

and hence u(1—ey)=0 for all we U; similarly (1—e¢y)v=0 for all ve V. Smce A
is shown to be a direct sum of two-sided ideals Aey(=Ay) and A(l—¢,), we may
assume without loss of generality that Ay,=A; this assumption shall be made
throughout this section. Then V and U are faithful as A-modules. Indeed,

there exist a finite number of elements vie V, use U, i=1, ---, » such that
n
(60) > ws, )=1.
i=1

Hence for a=<0, a€ A we have av(><0, u;a=<0 for some 7, j since a=>3 w(av:, #:)
=3 w(vi, u:a).

Let B be the ring of all A-endomorphisms « of U such that there exists an
A-endomorphism a* of V satisfying w(a*(v), u)=w(v, a(u)) for all ue U, ve V.
We shall consider B as a left operator domain of U; U is a two-sided B-A-
module. Curtis calls B the centralizer of U relative to A. The correspondence
u—u o, u) defines an A-endomorphism of U for veV, w'elU. As is proved
by Curtis, this endomorphism belongs to B; we shall write o’(»’, v) for this
endomorphism. Thus

(61) w (u’, Vu=u'o, u) , u, '€, ve V.
Then we have clearly o’(bu, v)=>bw’(u,v) for ue U, ve V, be B, and o’ is additive
with respect to each variable. Hence for any element « of U we have

(62) u=>3, o’ (u, v)us ‘
and the correspondence u— o’(u,v:) is a B-homomorphism of U into B. Let B,

Vol. 6, No. 150]
(45)



128 Kiiti Morira

be any subring of B which contains 1 and w’(x,v) for all #uelU, ve V. Then,
since the implication II—1I in Lemma 3.3 remains valid if B there is replaced
by any subring of B which contains 1 and B:(v) for all veV, i=1, ---,n, we
have the first part of the following theorem:.

Tueorem 15.1. Let (V, U, ) be a regular paiving. Then U is a finitely
generated, projective, left By-module and A is inverse-isomorphic to the By-endo-
morphism ving of U. V is By-isomorphic to the By-character module of U.

To prove the second part, let 8: U— By be any By-homomorphism. If we
set vo=13 v:iff(u1), we have Bu)=PL > w(vy, u))=PRS, o’ (u, viu)=13, o' (u, v:)B(us)
=o'(u, X viBu))=w’(u, vy). Hence V= Chary, U and the second part of Theorem
15.1 is proved.

For ve V, be B we define vb by the formula w(b, u)=w(v, bu) for all ue U.
Then V becomes a two-sided A-B-module and we have

(63) vo'(u, v)=wl, u)v’ uelU, v,v'eV,

since
oo (u, v'), u' )=, o', v )u )=, uo@’, u’)=w@, )o@, u')=w(w(v, u)v’, u’)

for all w'eU. 1If o'(u,v)=0 for all "€ V, then for all ve V we get w(, v’ =0
and hence w(v, #)=0, and consequently z=0. Similarly, if o’(’,v)=0 for all
uw' e U, then we have v=0. Thus U and V form an orthogonal pair to B with
respect to .

Following Curtis [4], let us denote by o(V, Y) the left ideal of A generated
by w(,y) for all ve V, ye ¥ where Y is any left By-submodule of U. Then we
have

(64) o(V, V)={alUaZ Y, ac A},

because if Ua&Y then a= 3 o, wma) € o(V,Y), and conversely ww(v,y)=
o (u,vyye Y for yev.

Lemma 15.2. Let I and I’ be left ideals of A. Then we have

1) o(V,UD=I,

2y Ul and UI’ are By-isomorphic if I and 17 are A-isomorphic.

Proor. Let « be any element of /. Then we have a=(3 w(vi, u))a=
% w(vi, wia).  Since wia € Ul, this relation shows that IS w(V, UI). The converse
relation w(V, UI)< I being obvious, we obtain 1). Now suppose that there exists
an A-isomorphism 6: I=1'. If X xwa:;=0 for vie U, a;el, =1, ---, m, then we
have, for any element v of V, o, 3 ©:0(a)=> o, 2)0(a:;) =03, o, vi)a)=0
and hence > 2:0(a:;)=0. Hence, if we set

(X wia;)=> wb(as,

where a;€ U, a;€l, j=1,---,n, ¢ defines a single valued mapping from UI to
UI’. Since ¢ is an A-isomorphism, ¢ is one-to-one and onto. Thus ¢ is a By
isomorphism of UI onto Ul’.

Turorem 15.3. Let (V, U, w) be a regular paiving. Suppose that B, satisfies
the minimum condition for left and vight ideals and U is finitely generated as a
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right A-module. Then A is a quasi-Frobenius ring if and only if U and V are
Jinitely generated and injective as By-modules. Here By is a subring of B which
contains 1 and o(u,v) for all uelU, ve V.

Proor. Suppose that A is a quasi-Frobenius ring. Then, since V and U
form an orthogonal pair to A with respect to w, V and U are A-isomorphic to
the A-character modules of each other by Theorems 2.8 and 14.1. By Theorem
15.1, V'is a finitely generated, projective, right B,module. Hence by a theorem
of Cartan and Eilenberg [3, p. 107} U is an injective left By-module. Similarly,
V' is injective as a right By-module. Thus the “only if ” part is proved.

To prove the “if ” part, suppose that U and V are injective as By-modules.
Since U has a composition series as a left By-module, it follows from the relation
1) of Lemma 15.2 that A satisfies the minimum condition for left ideals. Let
{e:li=1,---,m} be a maximal set of primitive idempotents of A such that Ae;
and Aej; are not A-isomorphic for i=<j (cf. §7). Let L; be any minimal left
subideal of Ae;. Then L; is the unique minimal left subideal of Ae;. To prove
this, suppose that there exists another minimal subideal L of Ae; such that
Li=><L;. Then we have UL;~UL;=0; because if there exists an element =z
contained in UL.~ULy, then for any element v of V we have w(v, 2) € Li~Li=0
by Lemma 15.2 and hence »=0 by the orthogonality of w. Since UL: and UL/
are contained in the indecomposable injective left By-module Ue;, this is a
contradiction. Thus L; is the unique minimal left subideal of Ae:.

We shall next prove that L;=L; implies Aes= Ae;. Suppose that Li~L;.
Then by Lemma 15.2 UL; and UL; are B,-isomorphic, and hence the semi-simple
parts of UL, and UL; are By-isomorphic. Since the semi-simple part of Ue,
(resp. Uej) coincides with that of UL; (resp. UL;), we see by Theorem 6.1 that
Ue; and Ue; are By-isomorphic. Therefore Ae; and Ae; are A-isomorphic.

The above considerations are applied equally well to V and the right ideals
of A. Hence A is a quasi-Frobenius ring. This completes the proof of Theorem
15.3.

TreoreM 15.4. Let (V, U, ») be a regular pairving. Suppose that A satisfies
the minimum condition for left ideals. Then the set Ny={blbUS UN(A), be By}
is a nilpotent two-sided ideal of By and NyU=UN(A). If e: and e; are primitive
idempotents of A, then UeJUN(A)e: and Ue;JUN(A)e; are By-isomorphic if and
only if Uey and Ues are By-isomorphic.

Proor. Since it is obvious that Ny UZ UN(A), it is sufficient to prove that
UNAYEN,U. Let uelU, reN(A). Then o'(u,rv)eN, for any veV since
o’ (u, r)u’ =ulro(, u’)) for w e U. Hence wur=23 urw(, u)=2> o' (u, rvoui€ NoyU.
Thus the first part is proved. The second part follows immediately from the
fact that U is a projective left By-module and N, is nilpotent (cf. [18]).

Now we shall prove the following theorem.

Turorem 15.5. Let (V, U, ») be a regular pairing. Then the following three
conditions are equivalent.

1. (U,V, ') is a regular paiving.

1I. a) U is a finitely generated, projective, right A-module.
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by @: V—-Hom. (U, A) is an A-isomorphism.

III. a) The functors TV X)=UQ.X, T«(Y)=Homx (U, Y) are isomorphisms
between the category of all left A-modules X and the category of all left
B-modules 'Y such that T.T. and T\T. are naturally equivalent to the
identity fonctor.
by @: V—Homu (U, A) is an A-isomorphism.

Here ®: V—Homu (U, A) is the A-homomorphism defined by [00)u)=w(, 1);
@ is a monomorphism.

Proor. i) I—II. Assume I. Then the additive group generated by w’(#, v)
for all ue U, ve V coincides with B since U is faithful as a B-module. As is
proved by Curtis [4] and in Theorem 15.1, A is inverse-isomorphic to the B-
endomorphism ring of U by the correspondence a— ¢o. where go(u)=ua. Since
it follows from (63) that o'(ua,v)=w’(x, av’) forue U, v' € V, A is the centralizer
of U relative to B. Applying Theorem 15.1 to the regular pairing (U, V, 0’) we
see that U is finitely generated and projective as a right A-module. Similarly
as in the proof of Theorem 15.1 we can prove the validity of II b).

i) II—III. Assume II. Let C be the A-endomorphism ring of U. For
veV, ceC, we have [@@)cl(uw)=0w)cu)=wlv,cu) for ueU. If we put vc=
&-(@(v)c), then we have w(vc, u)=o(v, cu). Hence we have B=C. On the other
hand, in virtue of Theorem 15.1 U is a finitely generated, projective, left B-
module. Therefore the validity of III a) follows from Theorem 3.4.

iii) II—II is a direct consequence of Theorem 3.2.

iv) II—I. Assume II. Since U is a finitely generated, projective, right
A-module, it follows that there exist a finite number of elements u;*e€ U, ¢;€
Hom. (U, A), j=1,---,m such that u=> u;*es;u) holds for any element # of
U. Since @ is an A-isomorphism, if we set v;*=0"Y¢,;), then we have u=
S ufos*, u). By (61) we get u=3 o’(u;*, v;¥)u. Since U is faithful as a left
B-module, this relation shows that 3 o’(us*, v;¥)=1. Thus (U, V, w’) is a regular
pairing.

Cororrary 15.6. Let (V, U, w) be a regular pairing such that (U, V, ") is
also a regular paiving. If A is a quasi-Frobenius ving, so also is B.

Proor. As is proved in ii) of the proof of Theorem 15.5 B coincides with
the A-endomorphism ring of U. Hence by virtue of Theorem 7.5 the basic
rings of A and B are isomorphic. Therefore by Theorem 9.3, B is quasi-
Frobenius.

The results obtained by Curtis [4] are related with ours as follows. In case
A is quasi-Frobenius, the condition II b) of Theorem 15.5 is always satisfied
since in this case U and V form an orthogonal pair to A and II b) holds by
Theorems 2.8 and 14.1. Thus Proposition 5 of [4] follows immediately from our
Theorem 15.5. Our Corollary 15.6 is also a generalization of Theorem 6 and its
Corollary in [4]. By our Theorems 8.4 and 9.3 we see that Theorem 7 of [4] is
true without the assumption that the ring % is commutative. We have stated
Theorem 15.4 as a supplement of Curtis’'s Theorem 4 in [4].

Finally we shall prove the following theorem.
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Tueorem 15.7. Let U be a finitely generated, faithful, projective, left B-
module and V the B-character module of U. Suppose that V is faithful as a
right B-module, and let A be the B-endomorphism ring of V. Then V is a left
A-module and U can be considered as a right A-module, and (V, U, w) forms a
regular paiving if we choose w suttably.

Proor. We set o'(u,v)=v(u) for ue U, ve V. The mapping v— v w' (u, v)
defines a B-homomorphism and hence there exists a unique element (v, )
of A such that @, wv=v'w(u,v). Since o @ o@, n), v)=w W, o w)yv)=
w' (u, v o' (u, v))=w W, v (U, v)=w (o @, v, v), we have s w@’, u)=w' (e, v )u
for w,u'elU, veV. By the proof of Lemma 3.3 there exist a finite number of
elements ure U, va€ V, i=1, - -+, m such that Sy, 2:)=1. Suppose that w(v, u,)
=0 for all »veV. Then we have w(,uv’ =0 for all v,v7eV, and hence
vo’(ug, v')=0 for all »,2°e V. Therefore w'(u, v')=0 for all v’€ V since V is
faithful as a right B-module. Therefore we conclude that #,=0. Similarly we
can prove that if w(vg, #)=0 for all e U then vy,=0. Since it is easily seen that
aw(v, u)=wlav, 1), o, wja=wl, na) and that o is additive with respect to each
variable, (V, U, w) is a regular pairing.

16. The ‘endomorphism rings of faithful modules over a quasi-Frobenius
ring

Let A be a ring and U a right A-module. Let B be the A-endomorphism ring
of U; we shall consider B as a left operator domain of U.

TuroreM 16.1. Suppose that U is a direct sum of two right A-modules U’
and U’ such that U’ is finitely generaled and projective as a right A-module
and as a left C-module and that any C-endomorphism of U’ is obtained by the
right multiplication of an element of A where C is the A-endomorphism ving of
U’. Then any B-endomorphism of U is obtained by the right multiplication of
an element of A and U 1s a finitely generated, projective, left B-module.

Proor. From the assumption it follows in virtue of Lemma 3.3 that there
exist a finite number of elements u € U’, a € Hom. (U’, A), t=1, -+, n such
that 3 a/(u/)=1. If we define a;€Hom. (U, A) by setting au(u’)=ai’'(u’) for
wel’, aw)=0 for w’eU’, then we have 3 a(ws/)=1. Hence Theorem
16.1 follows immediately from Lemma 3.3.

Tueorem 16.2. Let U be a dirvect sum of two vight A-modules U’ and U’’
such that the conditions below are satisfied where C is the A-endomorphism ving
of U’ and we regard U’ as a two-sided C-A-module:

1) U’ is injective as a rvight A-module and as a left C-module, and any
C-endomorphism of U’ is obtained by the right multiplication of an element of A.

2) For any right ideal I of A with I=< A there exists a non-zero A-submodule
of U’ which is A-homomorphic to All, and for any left ideal ] of C with J=<C
there exists a non-zero C-submodule of U’ which is C-homomorphic to C/].

Then any B-endomorphism of U is obtained by the right multiplication of an
element of A. Furthermore, if U’ is obtained from A and U’ by taking finite
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direct sums, submodules and quotient modules, then U is an injective left B-
module.

Proor. Let a be any B-endomorphism of U. If we denote by ¢ the idem-
potent of B which induces the projection of U onto U’, we have a(e’u)=e’(aln))
for any element # of U. Hence « induces a B’-endomorphism of U’ where
B'=¢'Be’. By assumption we may assume that C=pB’. Hence by assumption
we can fAnd an element ¢ of A such that a(e’w)=("u)a for any element u of U.
Let &' (uw)=alu)—ua. Then a’ is also a B-endomorphism of U and «/'(e’u)=0-for
all uelU. We shall prove that «’=0. For this purpose, suppose that there
exists an element uy, of U such that a/(#¢)=wu:><0. Then by Theorem 2.4 we
can find an element B of Chary- (22, A) such that B(z;)=><0. Since U’ is injective,
B is extended to an A-homomorphism #* of U into U’. Hence there exists an
element b, of B such that bye=pF*w) for e lU. Thus we have B(u)=bu;=
bl (uy))= ' (Byty)=0 since byree € U’. This is a contradiction. Therefore the first
part is proved.

Next we shall prove the second part. Let V be the U’-character module
of /. Then V is a left C-module and is decomposed into a direct sum of two
left C-modules V7 and V' such that V'’ is C-isomorphic to the left C-module
C. Moreover, B is considered as a right operator domain of V and any C-
endomorphism of V is obtained by the right multiplication of an element of B;
this is seen by Theorem 2.4. Hence by Theorem 16.1 V is a projective right
B-module. Since U is considered as the U’-character module of the left C-module
V, by a theorem of Cartan and Eilenberg [3, p. 107], U is injective as a left
B-module.

In case A satisfies the minimum condition for right ideals, Theorems 6.3 and
7.3 enable us to state the above theorems in the following forms.

TreorEM 16.3. Suppose that U is decomposed into a divect sum of two right
A-modules U’ and U” such that U’ is a finitely genevated, projective right A-
module and every simple right A-module is A-isomorphic to a quotient module of
U’. Then any B-endomorphism of U is obtained by the vight multiplication of
an element of A and U is a finitely generated, projective, left B-module.

Tueorem 16.4. Suppose that U is a dirvect sum of two finitely generated right
A-modules U’ and U’ such that U’ is injective as a right A-module and such
that every simple right A-module is A-isomorphic to an A-submodule of U’. Then
any B-endomorphism of U is obtained by the right multiplication of an element
of A and U is an injective left B-module.

For the case U’=A the first part of Theorem 16.1 is proved by Nesbhitt and
Thrall [22], and the first part of Theorem 16.3 is proved by Nesbitt and Thrall
[22] and by Osima [24]. The first part of Theorem 16.4 is proved also by Tachi-
kawa independently.

The following theorem is a generalization of a theorem of Nesbitt and
Thrall [22] and is due to G. Azumaya; it is proved similarly as in Nesbitt and
Thrall [22] in view of the fact that projective modules over a quasi-Frobenius
ring are injective (cf. Theorem 14.1).
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Tureorem 16.5. Let A be a quasi-Frobenius ring. Then any faithful right
A-module contains a divect summand which is A-isomorphic to Ae where e=3 ex,,
is defined by (50), §7. ’

Now we are in a position to establish the following theorem.

Tueorem 16.6. Let A be a quasi-Frobenius ring. Let U be «a finitely gene-
rated, faithful, right A-module, and let B be the A-endomorphism ring of U; we
shall consider B as a left operator domain of U. Then U is finitely generated,
projective and injective as a left B-module. The ring B is a quasi-Frobenius
ring if and only if U is projective as a right A-module, and if this is the case
the basic rings of A and B are isomorphic.

Proor. The first part follows readily from Theorems 16.3, 16.4 and 16.5.
Suppose that U is projective as a right A-module. Then by Theorem 16.5 U
satisfies the conditions of Theorem 6.3 (or Theorem 7.3) and hence by Theorems
8.4 and 9.3 the basic rings of A and B are isomorphic and B is quasi-Frobenius.
Conversely, if B is quasi-Frobenius, then U is projective as a right A-module
as is proved by the first part. Thus our theorem is completely proved.

As a corollary to this theorem we obtain the following theorem in virtue of
Theorem 9.3.

Tueorem 16.7. Theorem 16.6 remains true if we replace “a quasi-Frobenius
rving” by “a uni-serial ving,” “ a weakly symmelric ving,” “an almost symmetric
ring” or “a symmetric algebra.”

The following theorem gives a characterization of the endomorphism ring of
a faithful module over a quasi-Frobenius ring.

Turorem 16.8. Let B be a ring satisfying the minimum condition for left
and right ideals. Then B is isomorphic to the A-endomorphism ving of a finitely
generated, faithful, right A-module with a suitable quasi-Frobenius ring A if and
only if there exists an idempotent ¢y of B such that Be, and eB are faithful
injective (left and right respectively) B-modules and such that any e,Bey-endomor-
phism of Be, (vesp. e\B) is obtained by the left (resp. right) multiplication of an
element of B.

Proor. Let A be a quasi-Frobenius ring and U a finitely generated, faithful,
right A-module. If we denote by V the A-character module of U, then the
A-endomorphism ring B of U is inverse-isomorphic to the A-endomorphism ring
of V. In this case (V, U, o) forms a regular pairing where (v, u)=v(u) for
veV, uelU. Hence by Theorem 15.3 V is considered as the B-character module
of U, and U, V are faithful, projective, injective B-modules. Thus the “only if ”
part is proved. Conversely, suppose that Be, and ¢;B are faithful, injective (left
and right respectively) ideals. In virtue of Theorems 15.7 and 15.3 it is seen
that the B-endomorphism ring eBey, of e B is a quasi-Frobenius ring. Hence
the “if ” part is proved.

The following theorem shows the extent to which a faithful module over a
quasi-Frobenius ring can be recaptured from its ring of operator-endomorphisms.

Tueorem 16.9. Let A be a quasi-Frobenius ving such that iits basic ring
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cotncides with A itself. Let U and V be two finitely gemerated, faithful, right
A-modules. Then, for any ring-isomorphism ¢ jfrom the A-endomorphism ring
B of U onto the A-endomorphism rving C of V, there exists a semi-linear (A, 0)-
isomorphism w from U onto V (.e. w(ua)=oww)ia) for ueU, ac A, and 0 is &
ring-automorphism of A) such that obu)=ed)w(w) for uelU, beB.

Proor. According to Theorems 16.3, 16.4 and 16.5, the left B-module U is
finitely generated, faithful, projective and injective. We set

bxv=¢bw for veV, beB.

Then V is a left B-module and moreover V is finitely generated, faithful, pro-
jective and injective as a left B-module. Since the B-endomorphism rings of U
and V are inverse-isomorphic to A and the basic ring of A coincides with A
itself, the left B-modules U and V are B-isomorphic to Be; and Be, where each
of e, and e, is a finite sum of mutually orthogonal primitive idempotents such
that any two of them generate non-isomorphic primitive left ideals of B. Here
it is to be noted that the ring B is semi-primary in the sense that its radical is
nilpotent and the residue class ring modulo its radical satisfies the minimum
condition for left and right ideals. Since Bet& B for i=1,2 and U, V are
faithful as B-modules, the semi-simple parts of the left B-modules U and V are
B-isomorphic. Since U and V are injective as left B-modules and Theorem 6.1
(except statement 3°) holds for semi-primary rings in the sense mentioned above,
we see that U and V are B-isomorphic. Let w: U— V be a B-isomorphism from
U onto V. Then we have

w(bu) =b = w(u) =p(b)w(u) for ueU, beB.

On the other hand, for an element a af A the mapping v— w(w~(v)a) defines a
C-endomorphism of V and hence there exists an element 0(¢) of A such that
o(o~Xv)a)=v0(a). Thus we have w(ua)=w@)f(a). Now it is easy to see that &
is a ring-automorphism of A. This completes our proof.

K. Asano [1] has proved that for two finitely generated faithful right modules
U and V over a commutative uni-serial ring there exists a semi-linear isomor-
phism of U onto V if their operator-endomorphism rings are isomorphic. Even
in this special case our theorem states much more than Asano’s theorem.

Let U be a faithful right A-module. Then for any element ¢ of the center
Z(A) of the ring A, the mapping u—ua defines an A-endomorphism ¢. of U.
The correspondence a— @ is easily shown to give an isomorphism from Z(A)
onto the center of the A-endomorphism ring B of U; we shall identify these
two centers and regard Z(A) as the center of B. .

Tueorem 16.10. Let A be a quasi-Frobenius ring such that its basic ring
coincides with A itself and every ring-automorphism of A leaving its center Z(A)
elementwise fixed is inner. Let U and V be two finitely generated, faithful, right
A-modules. Then, for any ring-isomovphism ¢ from the A-endomorphism rmg
B of U onto the A-endomorphism ving rving C of V such that ¢ is the identity
on Z(A), there exists an A-isomorphism o from U onto V such that w(bu)=¢(b)w(u)
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for ue U, be B.

Proor. By Theorem 16.9 there exists a semi-linear (4, 6)-isomorphism w
from U onto V such that w(bu)=e(b)w(u) for ue U, be B. Let ¢ be any element
of Z(A). Then we have w(@)f a)=w(ua)=onlau)=pla w(u)=awv(u)=wia, and
hence (a)=a. By the assumption of the theorem there exists an element a,
of A such that O(a)=aaa,™'. If we set w’'(u)=w(u)a,, then we have o (ua)=
o’ (w)a, o (bu)=eb)w (u) for ue U, ae A, be B. Thus o’ satisfies the conditions
of our theorem.

CoroLrLary 16.11. Let A be the same as in Theorem 16.10. Let B be the
A-endomorphism ring of a finitely generated, faithful, right A-module U. Then
any ring-automorphism ¢ of B leaving its center elementwise fixed is inner.

Proor. There exists an A-isomorphism o of U onto itself such that w{(bu)=
p(D)o(u) for ue U, be B. Since w is an A-isomorphism of U onto itself, there
exists an element by, of B such that w(u)=0by for every we U and by~! exists.
Hence we have bybu=p(b)byu and consequently @(&)=b,bby* for be B.

As is easily shown, Theorem 16.9 fails to be true if the condition that the
basic ring of A coincides with A itself is dropped. By Lemma 7.2 we can
deduce the following theorem from Theorem 16.9.

Turorem 16.12. Let A be a quasi-Frobenius ring and A'=eAc lhe basic
ring of A where e is an idempotent defined by (50). Let U and V be finitely
generated, farthful, right A-modules. Then the A-endomorphism rings of U and
V are isomorphic if and only if theve exists a semi-linear (A°, 0)-isomorphism of
Ue onto Ve with a ring-automorphism § of A°.

17. QF-3 algebras

An algebra is called a QF-3 algebra if it has a unique minimal faithful
representation. This notion was introduced by Thrall [29] as a generalization
of quasi-Frobenius algebras. In this section we shall show how to obtain QF-3
algebras. We shall first state the following lemma due to Tachikawa [28].

Lemma 17.1. An algebra A is a QF-3 algebra if and only if there exisis a
faithful, projective, injective, left A-module.

~According to Theorem 16.6, if A is a quasi-Frobenius subalgebra of the full
matrix ring (K), over a commutative field X, then the commutator algebra of
A in (K)» is a QF-3 algebra.

TugoreM 17.2. Let A be an algebra (of finite rank) over a commutalive field
K. Let U be a finitely generated, faithful, right A-module such that every
indecomposable projective right A-module as well as every indecomposable injective
right A-module is A-isomorphic to a divect summand of U. Then U is a faithful,
projective, injective, left B-module and B is a QF-3 algebra where B is the A-
endomorphism ring of U and is considered as a left operator domain of U.

This theorem is a direct consequence of Theorems 16.3 and 16.4.

Tugorem 17.3. Let B be a QF-3 algebra and let e, e. be two idempotents
such that Be, and e.B are dual representation modules of each other and they are
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Jaithful as B-modules. If By is a subalgebra of B which contains 1, Be, and
e B, then By is also a QF-3 algebra.

Proor. By the assumption B, contains ¢; and ¢,, and we have Bye;= Be;,
e, By=e,B. Since Be; and e,B are dual representation modules of each other,
Boe; and e,By are also dual representation modules of each other as Bjy-modules
and they are faithful as By-modules. Hence B, is a QF-3 algebra by Lemma 17.1.

Lemma 17.4. Let B be a QF-3 algebra and let {ei, -+, en} be a maximal set
of mutually orthogonal primitive idempotents of B such that Bes is not B-isomor-
phic to Bej for i=<j. Suppose that Be is a faithful injective left B-module where
e=e;+--+en (MEn) and that the dual representation module of Bei is B-
isomorphic to exnyB for i=1,---,m. Let U be a faithful, projective, injective,
left B-module and let A be the B-endomorphism ving of U (which is considered
as a right operator domain of U).

0) Every indecomposable projective or injective vight A-module is A-isomorphic
to a divect summand of the wright A-module U.

1) If = is a permutation of (1, ---,m), then A is a quasi-Frobenius algebra.

2y If {1, ---,m}"{=), ---, wm)}={1, -+, n},% then every indecomposable
divect summand of the vight A-module U is either projective or injective.

3) If Bis a QF-2 algebra in the sense of Thrall [29], then every indecompos-
able direct summand of the right A-module U has a unique maximal A-submodule
and a unique minimal A-submodule (in particular, A is a QF-2 algebra).

" In case any A-endomorphism of U is obtained by the left multiplication of an
element of B, the converses of 1), 2) and 3) are true.

Proor. The left B-module Be is B-isomorphic to a direct summand of the
left B-module U and eBe is isomorphic to the basic algebra of A. By Lemma
7.2 and Theorem 13.1 we see that it is sufficient to treat the case where U= Be
and A=eBe.

We set A=eBe. Then the dual representation module of the left A-module
eBe; (i<m) is A-isomorphic to e«yBe and hence e.uyBe is an indecomposable
injective right A-module, while e;Be is an indecomposable projective right A-
module (i <<m). Therefore 0) and 2) hold. If B is a QF-2 algebra, then e;B is
B-isomorphic to a B-submodule of e.yB with some ¢<m and hence ¢;Be is
A-isomorphic to an A-submodule of the right A-module ¢.¢)Be, and consequently
¢;Be has a unique minimal A-submodule. By consideration of dual representation
modules, we see that 3) holds. 1) is a direct consequence of Theorem 16.8.

Suppose that any A-endomorphism of Be is obtained by the left multiplication
of an element of B. Since e; is a primitive idempotent, ¢;Be is indecomposable
as a right A-module. {e:Be|i=1, ---,m} and {e.yBe|i=1, ---, m} are respec-
tively the totality of non-isomorphic indecomposable projective right A-modules
and the totality of non-isomorphic indecomposable injective right A-modules.
Therefore, according as e;Be is projective or injective, we have j<m or j==()
with some i <m. Thus the converse of 2) holds.

5) This condition is satisfied if B is a QF-1 algebra (cf. Thrall [29]).
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Since ¢'B is faithful as a right B-module where ¢ =éra)+ *++ +exm), any
simple right ideal of B is B-isomorphic to the semi-simple part of e.)B with
some 7 <{m, and the latter is B-isomorphic to e;B/e:N' where N means the radical
of B. Therefore for any simple right ideal I of B we have always le=<0.
Hence, if ¢;B has two distinct simple right ideals 7; and ., then e¢;Be has two
distinct simple right A-modules I,¢ and L. Therefore if ¢;Be has a unique
minimal right A-submodule, then e;B has also a unique minimal right B-sub-
module. By consideration of dual representation modules, we see that the con-
verse of 3) holds.

Since the converse of 1) is a direct consequence of Theorem 16.8, our
theorem is completely proved.

Tueorem 17.5. Let B be a QF-3 algebra over a commutative field K and e
an idempotent of B such that Be is faithful and injective as a left B-module.
Then Be is a vight A-module where we set A=eBe, and every indecomposable
projective or injective vight A-module is A-isomorphic to a divect summand of
the right A-module Be. If we denote by B* the A-endomorpeism ring of Be, then
B* is a QF-3 algebra and B may be considered as a subring of B* with the pro-
perty described in Theorvem 17.3. More precisely, let b— L(b)=(A:i;(b)) De the
representation of B in K with degree n determined by the representation module
Be; then B is isomorphic to a subring L(B)={L(®)lbe B} of (K). and if we denote
by L(B*) the commutator algebra of the commutator algebra of L(B) in (K,
L(B) is a subring of L(B*) with the property described in Theovem 17.3.

Proor. The first part is a direct consequence of Lemma 17.4 and Theorem
17.2. Let {uy, ---, #n} be a K-basis of Be. Then we have

bus=3] uslz(b) , for beB,
J
uiazzj‘ u;ra) , for ae A=eBe .
Since  wiut; =3 wrdef(tts) =uere=", urttrilerse), we have ;)= paeuse). An
element C in (K). belongs to L(B*) if and only if CM(eue)=M(eu;e)C for all

j=1,---,n where Mleue)=(urs(eue)). Hence we have, for C=(cipeL(B),
S cordeelu) =3 Auus)cs;.  Thus we have

(65) CL(u5)=3 L{us)css , for CelL(B%),

and L(B*) is defined to be the set of all elements C of (K). satisfying the
relation (65) for all j=1, ---, n.

If ¢’B is the dual representation module of Be, we can find a K-basis {1,
-+, vn} of ¢’ B such that

vib=>" A4;(b)v; for beB.
Then L(B*) is obtained as the set of all elements C=(ci;) of (K). satisfying
(66)  Lw)C=X L), for r=1,---,n.
By the relations (65) and (66) we have
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L(B*)L(e)=L(B)L(e),  L{)L(B*)=L(e")L(B) .

Thus the theorem is completely proved.

According to Theorem 17.5, it is seen that any QF-3 algebra is obtained by
the method indicated in Theorems 17.2 and 17.3.

Lemma 17.6. Let A and B be two algebras over a commutative field K.
Suppose that U and V ave finitely generated left A- and B-modules respectively.
If U and V are projective (vesp. injective), then UQxV 1is projective (resp.
injective) as a left A @x B-module.

Proor. If U and V are projective, then U® V is clearly projective as a
left A® B-module. Suppose that U and V are injective. Then their dual
representation modules J(U) and J(V) are projective and hence J(U)® J(V) is
projective as a right A® B-module. Since the dual representation module of
U®V is A® B-isomorphic to J(U)® J(V), we see that UQ V is injective as a
left A ® B-module. Thus Lemma 17.6 is proved.

Tueorem 17.7. If A and B are two QF-3 algebras over a commutative field
K, then their tensor product AQx B over K is also a QF-3 algebra.

Proor. Let U (resp. V) be a finitely generated, faithful, projective, injec-
tive, left A-module (resp. B-module). Then U® V is faithful, projective and
injective as a left A&® B-module by virtue of Lemmas 10.3 and 17.6. Hence
AQ®RB is a QF-3 algebra by Lemma 17.1.

Finally we shall prove the following theorem?; it may be of some interest in
view of the known fact that an algebra A is uni-serial if and only if the residue
class algebra A/l is a Frobenius algebra for every two-sided ideal [ of A (cf.
Nakayama [20]).

Turorem 17.8. An algebra A is genevalized wuni-sevial if and only if the
residue class algebra All is a QF-3 algebra for every two-sided ideal I of A.

Proor. Suppose that A is generalized uni-serial. If / is a two-sided ideal
of A, then A/ is generalized uni-serial and hence it is a QF-3 algebra. This
proves the “only if ” part.

Conversely, suppose that the residue class algebra A/ is a QF-3 algebra for
every two-sided ideal 7 of A. Let L be any indecomposable left A-module. If
we denote by I the set of all elements o of A such that xL=0. Then [ is a
two-sided ideal of A and L is a faithful left A/I-module. Since A/l is a QF-3
algebra, we see that L is A/I-isomorphic to the unique minimal faithful left
A/I-module. Hence L is A-homomorphic to a primitive left ideal of A. The
same situation prevails for indecomposable right A-modules. Therefore, by a
theorem of Nakayama?, we conclude that A is generalized uni-serial. Thus our
theorem is proved.

6) Added in proof.
7) T. Nakayama, Note on uni-serial and generalized uni-serial rings, Proc. Acad.
Tokyo, 16, 285-289 (1941).

[Sci. Rep. T.K.D. Sect. A.
(56)



Duality for Modules and its Applications to the Theory of Rings. 139

APPENDIX

18. The uniqueness of duality for locally compact commutative groups

Let ®rc be the category consisting of all locally compact commutative groups
and of all continuous homomorphisms. A contravariant functor D from ®rc to
itself is said to be a duality for Grc if the following two conditions are satisfied:

1) D2 is naturally equivalent to the identity functor.

2) D maps the topological space Hom (X, X’) continuously into Hom (D(X’),
D(X)) for any X, X’ in Grc.

Here (and throughout this section) Hom (X, X’) means the topological space
which consists of all continuous homomorphisms of X into X’ and which has
the compact-open topology (i.e. the family of all [C, G] forms a sub-basis where
[C, Gl={a|a(C)EG, e Hom (X, X))} and C ranges over all compact sets of X
and G ranges over all open sets of X”).

Let P be the additive group of real numbers reduced modulo 1 and set

Char X=Hom (X, P) .

For a continuous homomorphism f: X— X’ we define Char f: Char X’ — Char X
by
[Char f & )=a’o f for «’ eChar X’ .
Then Char f is a continuous homomorphism. The natural homomorphism
7(X): X— Char (Char X)

defined by [a(X)@)(a)=alx) for aeChar X is continuous and moreover is a
topological isomorphism. This is the Pontrjagin duality. Furthermore, Char
induces a topological isomorphism of Hom (X, X’) onto Hom (Char X, Char X)
by the correspondence jf — Char f. This fact has been already observed by
Eilenberg and MacLane [5, p. 256]. Thus the Pontrjagin duality is actually a
duality for Grc in our sense. The purpose of this section is to establish the
following theorem.

TursoreM 18.1. There exists essentially a unique duality for ®rc; that is, any
duality D for ®rc is equivalent to the Ponivjagin duality.

Proor. Let D be a duality for @rc. Then there exists a natural equivalence
2 from the identity functor to D?; for each X in ®ic a topological isomorphism
AX): X— D2*X) is defined and the diagram

X__f__% X

B

S DX
is commutative for any continuous homomorphism f: X— X",
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Let us denote by A the additive group of all integers with the discrete
topology. For any locally compact commutative group X we define a continuous
homomorphism ¢.: A— X by the formula ¢.{(¢)=ax for a€ A. Then the mapping

(67) I': X—Hom (A4, X)

defined by I'(x)=¢. is a continuous homomorphism. Because for any compact
set K of A and an open set G of X such that ¢.,€[K, G] where = is an element
of X, we can determine a finite number of open sets Ly, i=1,---,m of A and
a finite number of open neighbourhoods Wi(xy) of z, such that

K%QL@ i LiWied =G,  i=1,---,m,

and hence we have

m
(ﬂre[K, G] for v e ﬂ Wi(-’b‘o) .
i=1
Thus I’ is continuous.
We now apply the proof of Theorem 5.1 to the present case. Let us set

U=D(A).
Since for any positive integer # we have D{(gn)=D(p1)+ +-- +D(p1), D(p)=1
where ¢n: A— A is defined by ex{a)=na, the relation D{(pn)u=mnu holds for any
ue U and for any positive (and hence negative) integer n. Hence the group U*

defined by (39) coincides with U. Since I is continuous, the mapping o: U—U
defined by

w(u)=[{D(A(A)) o AD(A)} o D(pu)o A(A)1)

is continuous (cf. (40)). Since w u)=[D(p.)c (A1), o~ is also continuous.
Hence o is a topological isomorphism. The mapping @,(X)— Hom (X, U) defined
by (42), i.e.
[0, D))= w0t [D(A(A)) 0 A(D(AN] " ° D(py) © A(X)
where ye D(X) and ¢y a)=ay for ae A, is continuous. Since [0,(X)] Y a)=
[D(woa)o AL for a«e Hom (X, U), 0,(X)-* is also continuous. Thus @,(X) is
a topological isomorphism. The ring-automorphism @ defined by (45) is the
identity.
Therefore if we set, for any X in Src,
Chary X=Hom (X, U)

and define Chary f: Chary X’—Chary X by the formula [Chary flla)=a’o f
where f: X— X’ is a continuous homomorphism and «a’€Chary X’, then the
functors D and Charp are naturally equivalent and the natural homomorphism

(X)) X— Chary (CharU X)
defined by [ro(X)(@)(a)=a(z) for x€ X, @€ Chary X, is a topological isomorphism;
the latter fact is seen from (44).
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Now we apply a thecrem of Pontrjagin [33, p. 164], which is easily shown
to be valid for a general locally compact commutative group @, to the present
case. Then we see that U must be topologically isomorphic to the additive group
P of real numbers reduced modulo 1. Thus our theorem is proved.
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