On the Kernel Functions for Symmetric Domains

By

Kiiti Morita
(Received February 10, 1952; revised April 15, 1956)

The importance of the Bergman kernel functions has been recognized in the
theory of functions of one and several complex variables ([1]). In the present
paper, after proving some general theorems concerning kernel functions, we shall
determine the kernel functions for the four main types of irreducible bounded
symmetric domains?. According to E. Carton [2], any bounded symmetric domain
is expressed as the topological product of irreducible domains, and hence our
results, if the kernel function will be determined for the two exceptional cases,
will yield a complete information about the kernel functions of bounded symmetric
domains by virtue of Theorem 3 below, which asserts that the kernel function
of the topological product of two domains is equal to the product of the kernel
functions of two domains.

The classical Schwarz lemma asserts that if a function f(z) in a complex
variable z is regular in the domain |z]<1 and |f(2)|<{1 in |z|<1, then the in-
equalities

(a) o(f (=), [ (z2)Zp(z1, 22)
) e
— ]ZI 2

hold, where p denotes the non-Euclidean distance in the interior of the unit circle.

In previous papers [6], [7] (cf. also M. Sugawara [11]) we have established
the validity of (a) for any analytic mapping # of D into itself in case D is one
of the matrix spaces included in the four main types of irreducible symmetric
domains. In the present paper we shall therefore prove the validity of (a) for
any analytic mapping f of D into itself in case D is a complex sphere. Our
concern lies, of course, in the deduction of the theorem to the effect that if the
equality sign in (a) holds for every point z, in some neighbourhood of one point,
S is necessarily an analytical homeomorphism. This will be stated as Theorem 8.

In this connection the full group of all analytical homeomorphisms of a
complex sphere Me,, onto itself will be determined. It is to be noted that the
full group of analytical homeomorphisms was determined for every matrix domain
previously ([6], [7], [9], [11]).

As for the relation (b) we shall give a generalization of it in terms of the
Bergman kernel functions (Theorem 4).

1) The kernel functions for the matrix spaces were determined in a recent paper by
J. Mitchell [4]. Our results were obtained in 1944 and quoted in Mitchell {4]; our method
is different from Mitchell’s,
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On the Kernel Functions for Symmetric Domains 191

Finally we shall give some remarks on the Laplacian corresponding to the
Bergman metric. The Laplacian is shown to be invariant under any analytical
homeomorphism of the domain onto itself, and a harmonic function, which may
be considered as a generalization of Poisson’s kernel, will be constructed in terms
of the kernel functions for each of the four main types of irreducible bounded
symmetric domains. The Cauchy formula due to S. Bochner [13] will be obtained
from Poiscon’s integral formula by reversing J. Mitchell’s argument [12].

1. Kernel functions. Let D be a bounded domain in a finite dimensional
complex Euclidean space and let (D) be the class of all functions f which are

regular in D and for which the Lebesgue integral S [f(@)|2dv.= | f|*<eo. Here
D

dv, means the Euclidean volume element at z. Then £(D) is a Hilbert space®.
Since (D) is separable, there exists a complete orthonormal system {¢,|n=1,
2, ---}. Then we define the kernel function of D after S. Bergman by

(1) Koo, D)= 3 ) 90) ;

the convergence is easily verified®. This function is independent of the choice
of a complete orthonormal system {¢.}. For a fixed point v in D, Ky, ¥) as a
function of ~ belongs to £2(D) and

<Pg><x>=§ K, Dydv,, g€ IXD),

D

defines the projection operator of L2(D) upon (D), where L*D) is the class of

all Lebesgue measurable functions f on D for which S |f2dv<eo. In particular
D

we have
Fla)= SDK(.»G, D@ dv,,  feSD).

This is the so-called reproducing property.

Theorem 1. For any function f belonging to (D) and for any positive
number &>0 there exist a finite number of complex numbers a, - - -, as and points
Y1, <+, Ys tn D such that

[, 1r@ 3 adote, Bopav<e 2

Proof. Let us denote by & the minimal closed linear manifold which contains
Kz, y) for every ve D (here Ku(z,y) being considered as a function in »). Then
we have §=(D). Because if F=<¥(D) there would exist a function g such that

2) If, | fu]<C, n=1,2, ---, for a suitable constant C, then {f,} converges to f weakly
in the Hilbert space (D) if and only if {fx} converges to f uniformly in every closed
region in D.

3) Unless otherwise stated, a, ¥, X, Y are generally points or matrices with complex
numbers as coordinates or coefficients.
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192 Kiiti MoriTa

gelxD), g€, and S g7 dv=0 for every f€%,; since Kyz, v)€F we would
P2

have then
a(y)=g o) Tl T =0,
pal

and hence ¢(y)=0. This proves the theorem.
Theorem 2. If we put

ays, y) :[Sn K oz, 51)— Koz, ﬂz)lzdvx]w

= [Ku(ys, 1)+ Koy, ¥2)—Kn(y1, 1) —Kp(ys, 1)1/ .
then d defines a metric of D which induces the topology of D given as a subspace
of the complex Euclidean space. (cf. 15)
Proof. If Ku(w, y1)=Ku(z, §») for every =€ D, we have f ()= f (y.) for every
fe(D), sirce

f )= Lf(@K‘F—(x, Wdv., =12

Therefore we have y1=v,. It is evident that d satisfies the remaining axioms
for metric.

If a sequence {y»} of points of D converges to a point y, of D, then we have
clearly d(¥n, yu)—0.

Let us suppose that for points y;, j=0,1,2, --+, of D,

[ (e, Gr)— Koo, )P0
Jo
as n—oo. Then we have
S o) K, G dvs — g 9@ Koz, To)dva
D D

for any ge 8x(D). Therefore
g(n) = 9(Yo).

for any g€ 8¥D).
Let z, be a limit point of a subsequence {¥x,} of {y»y. Then z, belongs to

the closure D of D. If we consider an open bounded domain G containing D,
we have

F(yx,) — F(z0)
for every Fe(G). Since ¥A(D)DLG), we have
Fzo)=F(3)

for every Fe8¥G). Therefore 3=z, This shows that the sequence {y.} con-
verges to .

Thus Theorem 2 is completely proved.

Let D be the topological product of two bounded domains Dy and D, Let
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On the Kernel Functions for Symmetric Domains 193

{¢.} and {¢m} be complete orthonormal systems in £2(D;) and 82(D,) respectively.
Then ¢.(x)¢dm(y) clearly belongs to LDy x D,) for every pair (n, m). For any
Sz, y) € ¥(Dix D,) we put

o= ﬁ (@, 3) 9ul) ) dvsdlu, |
1)1 X Dy

Fonla)= S L, ) Iy v

If we fix a point = we have
Siruer=| 17 pidn,

since f(z, %) belongs to £2(D,) as a regular function in ¥, and {¢.(y)} is a complete
orthonormal system. On the other hand, since f(z, v)€ (D, x D,), we have, by
a theorem of Fubini,

SD 77f}i}ll]ﬁn,(n:)l'-’a'zvz: Xgl) ) 1S (2, ) 2dv=dvy .

By a theorem of Lebesgue this is written as follows:

i SD If1n(-'l7>|'_’d?)x=SS1) R If(q,, y)igdvxdvy<+oo .

npe=1

Therefore fa.(z) belongs to (D)) for each m, and we have

S]J if'm(xngdvx: 1%} }anm‘g ,

since

Qnm = S]) _fm (’L‘)(ﬂi{(’lﬁ dv:z .

Hence we have

n=1m=1

SSD |F (o, P dvedvy= S 3 |awl? .
1% Dy

This shows that {@n{2)dm(y)} is a complete orthonormal system in Q2(Dix D).
Thus we obtain the following theorem.

Theorem 3. If D is the topological product of two bounded domains D and
D,, then the Hilbert space R*(D\x D,) is the divect product of the Hilbert spaces
(D) and L(D,), and we have

( 2 ) KD(("'EL fUz), (%/T;?/D)zKﬁl(tl) ?71)[(1)2(952: ’52) ’
where x;, y;€ D;, 7=1, 2.

2. A generalization of the relation (b)

Theorem 4. Let D be a bounded analyitically homogeneous domain in p-
dimensional complex Euclideans space and let f be an analytic mapping of D
into itself. Then we have
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194 Kiiti Morrra

2
(3) K 7@, r)| " O <k 3
0(z)
where 6(3)25)) means the Jacobian of the transformation f with respect to complex
variables z=(z:, ---, z,). Moreover, tf the equality sign in (3) holds for ai least

one point z, then the mapping | is necessarily one-to one and onto. »
In case f is a one-to-one analytic mapping of D onto itself, as is well known,
we have further

(4) 7@, 7 9N (EL) - oo, )

By this transformation law Theorem 4 may be proved as follows: Let
wy= f(2y). Let us denote by ¢ an analytical homeomorphism of D onto itself
such that ¢(wy)=z,. Then the composite g=¢of of two maps f and ¢ is a map-
ping which leaves z, invariant. Therefore, by a theorem of C. Carathéodory and

o L.

¢ i3 a homeomorphism of D onto itself. On the other hand,

oo I e W -

Hence we obtain Theorem 4 by the transformation law (4).

X1, and the equality sign holds if and only if

H. Cartan, we have

3. Let us assume that D is a circular domain in the sense of H. Cartan
with the origin (0,0, ---, 0) as its centre and that D is analytically homogeneous.
Then a theorem of H. Cartan shows that there exists a complete orthonormal
system {@q, @1, @», -+ in the Hilbert space £3(D) such that ¢, is a constant and
¢i(j=1) are homogeneous polynomials of zi, ---, z, with degree >1. Let (D) be
the Euclidean volume of the domain D. Then we have gy=v(D)"/? and hence

K0, 2)=Kn(z, 0)=v(D)?
where 0 means the origin (0,0, ---, 0).
Let T, be a one-to-one analytic mapping of D onto itself which carries the
point y into 0. Then we obtain from (4)

(5) Kol ) =o(D) = 25 - 2o

and K p(x, 7)><0. Thus the determination of the kernel functions is reduced to
the calculation of the Jacobian of the transformation 7.
Remark. From the homogeneity of ¢, defined above we have
Ky(re, yy=Kp(z, ry)
if rx, vye D for a real number ». Since D is a domain of regularity, D is a
complete circular domain. If for any point z of the boundary of D, 7ze D for
every 7 such that 0={r<{1, then Ku(x,%) can be defined for €D, yeD by (1)
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On the Kernel Functions for Symmetric Domains 195

where D is the closure of D, and is continuous for z€ D, ye D. Therefore if F
is a compact set contained in D there exists a positive constant C depending upon
0(a(@))| /]0(a(y)

F such that
0(2) / o(y)

for any two points z, y€ F and for any analytical homeomorphism ¢ of D onto
itself, since if ¢ carries a point ¢ into the origin we have

c< <

Do) /O _ e e
6(1) a(y) ———I{u(fb, a)/Kp(t/, a)

by (4). This leads to the distorsion theorem mentiond in Hua [3], since a topo-
logical product of irreducible domains described in 4 below satisfies the above
assumption.

4. The four main types of irreducible bounded symmetric domains are
as follows (cf. [2]). )

I. Aew,m: The set of all matrices Z of type (s, m2) such that E0®W—Z'Z is
positive definite (n>n1).

II. ©w: The set of all symmetric matrices Z of order » such that EW—Z'Z
is positive definite.

III. fw: The set of all skew-symmetric matrices Z of order 2 such that
E®—Z'Z is positive definite.

IV. Meuy: The set of all matrices Z of type (n, 1) (i.e. n-dimensional vectors)
such that

|\Z'Z|1<1, 1=2Z'Z4|2'Z|>0.

Here E™ denotes the unit matrix of order » and we mean by X’ and X the
transposed and the conjugate matrix of X respectively.

If we denote by ~ the analytical equivalence (the existence of an analytical
homeomorphism), then we have

) Aoy ~Bwm ~Lu~May  2) My ~ Mayx M
3 Ae,n~Lw 1) Se ~ M

5) Nearny ~ Mesy 6) Ly ~ Moy

7 Wy ~ Wee,my

and there are no other relations than these as is easily seen. The relation 6) is
overlooked in E. Cartan’s paper [2] and this is shown by the following corre-
spondence:

21 0 21412, z3+iz, 254125
2y —(z1+i2.) 0 Z—izg —23-+izy
My 2 Z=] . =3el
® : < —(z3+22y) —(z5—1zs) 0 21—12 3e%w
26 —(z5+i25) —(—23+izy) —(21—122) 0
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196 Kiiti Morrra

5. The kernel functions of the irreducible domains.

Theorem 5. The kernel functions for the four main iyvpes of irreducible
bounded symmetric domains are as jfollows :

(6) KX, Y)=0Qa,m)"" det. (EO Y X)=tm for Aen,my;
(7) KX, Y )=v(G)"! det. (EM_Y X )~(+D | for Sey;
(8) KX, Y)=v )t det. (EM—Y'X)- -1 for Lm);
(9) KX, V)=0MWMw)A-2Y'X+Y Y - X X)" for My .

Here X and Y are arbitrary points of each domain.

6. Proof of Theorem 5 (I). Let A€¥Uem,m). Then the transformation T
which carries A into the zero matrix is of the form

(10 W=N{Z—AYE™—A'Z) M, ,
where N4 and M, are positive definite Hermitian matrices of order # and m such
that N2,=EMW—~AA | M>,=E™—A’A. Then dW=NE®—ZA\1dZ(E™ —
A’Z) 1M, and the Jacobian of T is calculated as follows:
HTAZ))_
0(Z)
Thus we have (6) by (5).
For the case &uy or ¥my we have M =N, and the Jacobian of 74 is
det (N;YE®—A'Z)~+D or det (NJU(E™ —A’Z))~(=D |
and we have (7) and (8) by (5). (cf. [5], [6], [7], [10]).

det (MEX(E("‘) ._74’2))—-(n+'m) ,

7. The complex spheres. For the case M y(2=>4) we shall proceed similarly.
Theorem 6. ZLef U, U,, U, U, be respectively real matrices of type (n, n),
(n, 2), 2, n), (2, 2) such that

(B NG D b
U UJ\ 0 —E®)\U; U, 0 —E®)°
(11b) det. U>0 .9
Then the transformation defined by »
—;(Z’Z—}—l) %—(Z’ZH)‘ -
(12) W=qU.Z + U,| . . (1, HUZ+ Uy
zz- (Z'Z—1) ;—(Z’Zé—l)/

is a one-to-one analytic mapping of My onto stself and, conversely, any one-to-one
analytic mapping of My onto itself is of this form.
This theorem will be proved in 13.

4) The condition (11b) is missing in Hua’s paper [3].
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On the Kernel Functions for Symmetric Domains 197

For two points X and Y of My we define
KX, V)=1-2YX+Y'V-XX .

Then we have

(13) (X =YY (X—Y)|<|Ky(X, Y)
for any two points X and Y of My, and in particular,
KX, Y)=<0.

Let AeMemy. Then KA, AYEW 4 (AA —AA’)? is a positive definite real
symmetric matrix and hence there exists a uniquely determined matrix H4 of
order = such that H, is a positive definite real symmetric matrix and Hi=

KA, A)E™ +(AA’ —AA’):. We have

(14)  HA=AQ-A'A).
Now let us put

Uw e
(15) U,.1=< A A)

U® g

A g
H+AA +AA —(A+A) —i(A—A)
1 4@y i l@aran faa—aa
oA, Ay Ty 2
—HA =) L (AA-AA) 1- ; (A’ A+A"A)

Then this matrix satisfies the conditions (11a) and (11b) as is verified by (14) and
the definition of Hs;. The transformation corresponding to this matrix is

1 i — J—
16 = / NZ—AZ' Z— A},
(16) w Z A){(HA+AA +AA) }
and it can also be written as follows:

1 N —
16) W=-——" - (Hs+AA —AANZ—-A)—A(Z—AY(Z—-A)} .
(16) oz A Tt WZ—4)—A(Z—AY(Z—A)}
This transformation carries A into the zero vector. Thus we may consider it as

T, in the notation of 3.

8. To prove directly that the transformation (16) is a one-to-one analytic
mapping of My onto .itself we may utilize the following equalities for the
transformation (16):

W - A Avim
an W W= Kz aFA @A),
18) KW, W)- | Ky(Z, D)2 =Ko(Z, Z)Ks(A,A) .
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198 Kiiti MoriTa

Indeed, if Ze My, then we have | W W<l by (13) and (17), and since Ky(X, X)>0

for any point X of M, it follows from (18) that Ku(W, W)>0 and consequently
we have WeWMwu,. If we consider the transformation 7~ which is obtained from
(16) by replacing A by —A, then T-. is shown to be the inverse of (16). Hence
the transformation (16) is one-to-one and onto. At the same time we see that

My is analytically homogeneous.

9. Let V be a real orthogonal matrix of order # and let # be a real number.
Then the transformation defined by

19 W=e¥VZ
is a one-to-one mapping of My onto itself, which will be denoted by Ty, It
holds that

(20) TV,oTA:TA*TV,g s for A*= TV,eA .

We need the following lemma.

Lemma 1. If A, B are two points of WMwy, then there exists a transformation
Ty o such that

T"aBA:(aly 1/ -——Ta;),)o, Tty O)’ 3 Tl’,ﬂBZ(bly b2) b'dy b»b Oy Tty 0)/ )

where « and «, are real numbers.
Proof. If we put a;=4;+1/ —1x; with real numbers 4;, u;, there exist two

real orthogonal matrices 77 and 7% such that

A a0
Ae 1 0 a,

T =0 0}, det. Ty=1,
Zn tn 0 0

where «; and . are real numbers. If we write

T = (cos g sin 19)

© \—sinf cosé
we have
AvFzu a,
Avtipty Ty
el'T, = O
0
If we have

I) 1/ b 1
b’ bn

(198)
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On the Kernel Functions for Symmetric Domains 199

by

we apply the above process to (

by’

Thus for the proof of (13), (17), (18) it is sufficient to prove them for
A=(ay, 1/ —1ay, 0, ---,0) and Z=B=(by, by, by, 04,0, ---,0) .

); then we can prove the lemma.

In this case the matrix U, and the transformation (16) are calculated as
follows:

1
Uj= -
T Ky (A, A2
1+C¥1?—-CL’22 0 . O N "'"2051 0
0 l—a_l‘z‘l‘aqg O Za/)
c Ky(A, A)/2
X 0 : e _ 0
Ko(A, A2
—2a, 0 : 0 Tl a—ay? 0
0 2a, : 0 l—a?4ay?
wl:ffu(é, A){(l-—&lz‘azg)(zr—“1)‘27;0’10»’2(32"Z.afz>"a’l(z_‘A)/(Z_A)}
@ {w=, é gyt —an) (1 - —aa i) e (Z—AY (Z— )

o, oA, A2
J KD(Z, A) J

where A=(ay, 1/ —1a,,0, ---,0).

].:3;4‘)"'7”7

10. The image C of B by the transformation (21) is of the form (¢, ¢, ¢3, €4,
0,---,0). Hence if we put

AO:(alx s, 0: 0)/ ’ Bi):(bl:bZ:bB,bi)/ > CO:(cl: Cy, C3, 6'4)/ )

we have Cy=T4,-B,. Thus the general case is reduced to the case n=4, since

KD(B; ;‘D:KO(BO, :4—0), C/C:CO/COn (B_A)I(B_'A):(BD_AO)/(BO—AO)> etc.
As is stated in 4, M is analytically equivalent to e,.. The transfor-
mation t:

21
. 2 211z, 23+i2
©2) My Z=| = ——>( 1z 2zt .*)=3e91(2,2>
23 —23 112y 2112
2y

establishes this analytical equivalence.
By 7, the transformation (21) for z=4 is brought into the form
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200 Kiiti MorITa

23) PW=N-1Y(Z—W(ED A 3)- N,

where N is a positive definite real symmetric matrix such that %2=E® %Y, and
B=rZ, W=W, A=1A. Here we have

(24) Ky(Z, Z)= det. (E®—-3'3),
(25) (Z—AY(Z—A)= det. (3—N) , W' W= det. 20,
(26) Ky(Z, A)= det. (E®»—-U'3),

@) EO-F3=[RHEO W) (EO-TWHHE-AZ)] .
Thus we see that the equalities (13), (17) and (18) hold for #»=4, and consequently
for any n2>4, as is seen from (23)-(27).

11. Proof of Theorem 5 (II). The Jacobian of the transformation (21) at
the point Z=B=(b,, b,, bs, b4, 0, - -+, 0) is equal to

5’(%)] S (i) /e T (o
e - KA, A)=912Ky (B, A)-(-9
[ |y - A, Aye-ortcB, Ao,
where W=t(w., w., ws, wy), 3=1(21, 24, 25, 24) and B=cBy=1(by, b,, by, b,Y. Hence
we have for (21)

ATAZ)]  _ D
[ oo ]z,.B”K"(A’A)’K“(B’A) ,

since the Jacobian of the transformation (23) is given in 6, and is equal to

Ko(A, AKy(B, A).
According to the consideration in 9 we have generally
oTAZ)) Hnsofr (7 A
: =Ky(A, ArK(Z, A)™ ,
(28) 02 o(A, AR )
for any points Z and A of M.
Hence we obtain

— 1 —_—
X, V)= KX, V)™
KX, V)=, o0 S KX, T,

from (28) and (5). Thus (9) is established.

12. A generalization of Schwarz’s lemma. Now we shall prove:

Theorem 7. Any one-fo-one analytic mapping of M., onto itself is of the
Sorm TiTy .

To prove this it suffices to show that such a transformation leaving invariant
zero vector is Ty .

Let Z be a matrix of type (7, 1) and let us put

2

@9 N(Z):{‘?Z+V@F:TQ/ z;z}“ ,

[Sci. Rep. T.K.D, Sect, A
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On the Kernel Functions for Symmetric Domains 201

Lemma 2. N has the norm-property, z.e.,
(30) N(Z+Z)EN(Z)+N(Zy),  NQRZ)=|2]-N(Z)
for a complex number A, and we have
Moy = {ZIN(Z)<1} .
For any two points A, B in My we have

N(A)+N(B)
G NI NayNB)

where K=T4(B). Here we note that N(T4(B))=N(Ts(A)). These relations may
be proved similarly as in 10 by reducing the problems to the case n=4. For
the case n=4 we shall utilize the transformation r which is defined for every
vector of dimension 4 by (22). Then we have

N(Zr"Zz):nBl_‘g'z“
where 3;=tZ;, 7=1,2 and ||3|| means the norm of the square matrix 3. There-
fore we have (30) by the property of the norm ||3]l. The relation (31) can be

proved from the corresponding relation for e,. (cf. [5]).

Therefore, if we put
y 1 1+N(K)

*(A, B)=
P4, B)=, logl_N(K>,

where K=T4(B), we have
p*(A, B)=p*(B, A)
p*(A, C)=p*(A, B)+p*(B, C)
o*(0 A, cB)=p*(A4, B)

for any three points A, B, C of My and for any analytic homeomorphism ¢ of
My onto itself.

Thus p* is an invariant metric in M. Now Theorem 7 is a direct con-
sequence of Theorem 8 below.

Theorem 8. For any analytic mapping f of Muy into itself we have
o (f(X), FYNZp™X, Y) .
Moreover, if the equality

o (S (20, F(Z)=0"2Z1, 2)

holds for a point Zy and for every poini Z in some neighbourhood of a point Z,,
then f is a homeomorphism of M, onto itself and is of the form TiTy 4.9

5) A similar theorem as Theorem 8 was proved for W¢n, m), Smy by M. Sugawara [11]
and the author [6], and for 8¢y by the author [7]. A more satisfactory formulation was
given for the case of hyperspheres e, 1y in the appendix of {7].
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Proof. We have only to prove the theorem for a mapping f such that
f(0)=0; the general case is immediately reduced to this special case. Let us put

g:1(Z)
W=Ty,of (L)=g9(Z)= ) y
ga(Z)
and
PHZ)= go3(Z)+1i925(Z)
Sbj(Z)zg‘U—l(Z)—ing(Z) s .7=11 2» e, M.

where m———l:g] Then we have

m

2102+ gmer(D)PN(9(Z))* .
(32) o

3 AL+ lgamar 2SN G

Here these expressions are stated for the case #=2m-1 and the term
|gam+1(Z)|? should be omitted in case z=2m; this remark will not be repeated in
the following.

Let Zy be an arbitrary point of M, distinct from the origin. Then by
Lemma 1 we have

P(Zo)=N(9(Z))=N(f(Z)) ,

(33) 491(20):0 fOr j>1,
$3(Zo)=0 for i>1,
Game1(Zy)=0 in case n=2m-4+1

for a suitable T%... If we consider a function

h(t)zqol(t - 7\77125 Zo) ,

k() is regular in the domain [£|<1 and 72(0)=0, |A(#)|<1l. Therefore we have
lg(®]<|¢] by classical Schwarz’s lemma and hence N(f(Zy)) = |¢1(Zy)| <N(Zy). This
proves the first part of the theorem.

To prove the second part, let £ be an analytic mapping of M, into itself
such that f(0)=0 and N(f(Z))=N(Z) for every point Z of a neighbourhood N of
a point Zy=<0. If we choose a suitable 7,5, we have (33) for a point Zin Il and
for the mapping f. Then we have further

<z>1( tzV%?)Z)Zt
for every £ such that |#|<{1. From (32) we get
(¢ )= =] o e )| =M (7 (f wiz 7))
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This shows that

N(fEZ)=N@Z)=tN(Z) for “]<N2.Z) -

If we put

P(Z)= lim L2

-0 t
then the above consideration shows that
NP(Z)=N(Z)

for every peint Z in U, and N(P(Z)SN(Z) for any point Z in Meny.

Theretore by the same argument as in [7, pp. 54-55] the second part of the
theorem is proved if we can show that a linear mapping f of My into itself
such that f(0)=0 and N(f(Z))=N(Z) for every point Z in some neighbourhood
of Z, is necessarily of the form Ty, Let f be such a mapping. Let

O Z)=02—2Z Z+ |2/ Z|* .

Then we have @(; Z)=@(4; f(Z)) by the similar argument as in the papers
{61, 171, since @(4; Z) is irreducible as a polynomial in 4 with coefficients in R(x,
e, ®my Y1, + 07, Yu) Where zx=ax--2yx and R is the field of real numbers. Therefore
we have

ZZ=f(Z) f(Z), |ZZ=|fZ) fZ)].
Since f is linear we can write f(£)=UZ with a constant matrix U of order #.
Each of the functions f(Z) f(Z) and Z'Z are regular functions in zi, ---, 2z, and
| F(ZY f(Z)|=|Z"Z], and hence there exists a constant real number § such that
FZYf(Z)=e¥Z'Z. ~We have therefore U'U=e¥E®_ On the other hand,

U U=E®™. Hence if we put V=e-%U, V is shown to be a real orthogonal
matrix. Thus f=e®VZ, and the proof of the theorem is completed.

13. Proof of Theorem 6. If we express the transformation 747}, in the
form (12), we have

U, U, 1
4 = -
% (4 v)=%@ a
H,+AA +AA . —(A+A4) —i(A—A) v 0
“(A’_}”Z’) :' 1-—]——1(A’A+:4“’A) . j (A'A——_AT/I) ..... e
X : 2 2 : cosf sinf
o o 1l o
—i(A— A é(A’A—A’A) 1——~%7(A'A+A’A) * —sinf cosf|

up to a factor 1. Hence det. U;=Ky(4, A)-Y(1—]A’A|?)>0.
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On the other hand, since the set $ of all matrices of the form (34) induces
the full group of analytical homeomorphisms of My onto itself by Theorem 7,
$ is a subgroup of index 2 in the group & of all matrices U satisfying (11a) as
is seen from the arguments in Siegel’s lectures [8, §48]. Therefore any matrix
U satisfying (11a) can be written in the form

T, 0
(o 1)
where K,=U_4 and U, is a matrix defined for A€M,y by (15) and 7 and T
are real orthogonal matrices of order 2 and 2 respectively®; this factorization
is unique since K4 is a positive definite real symmetric matrix. Moreover if U
astisfies (11b), then we have det. 75=1 and hence U must be of the form (34).
Thus any one-to-one analytic mapping of My onto itself has the form (12)

with real matrices Uy, U,, U, U, satisfying the conditions (11a) and (11b), and
Theorem 6 is proved hereby. The Jacobian of the transformation (12) is

1
[(1, 2)

2 ZZ+O\YVT™
U,Z+ U[ 2 )} .
ZZ(Z’Z—l)
Remark. If we denote by ©, the set of all orthogonal matrices contained in
9, then 9, is a maximal compact subgroup of 9 and the correspondence

0. A— KD

gives a homeomorphism of My onto the left coset space of § modulo e such
that if Ue 9 induces a transformation ¢ of M) onto itself then @(o{A))= UK 1Dy.
The correspondence
. A-— K,
gives a homeomorphism of My onto the space consisting of all positive definite
symmetric matrices of 9 such that ¥(s(4))=UK.,:U’ (for the case wm,my the
.. . .-, . - . . _l rt

positive definite Hermitian matrix corresponding to K4 is given by (NA N3 A) ,

M;'A” Mt
cf. [6]. (cf. Siegel [8]).

14. The invariant metrics. Let D be any irreducible symmetric domain
given in 4. Then the group of all one-to-one analytic mappings of D onto itself
which leave the zero matrix invariant is irreducible as a group of linear trans-
formations. From this it follows by a well-known lemma of 1. Schur that an
Hermi‘gian metric of D which is invariant under any one-to-one analytic trans-
formation of D onto itself is unique up to a constant factor. Thus the Bergman
metric

6) This expression can also be shown by the fact that the group ® induces the group
of linear fractional transformations of real ¢, onto itself, our original proof was carried
out by this method.
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(35) dst=23 9 log Kn(z, 2) dz; dzs,
Ak az,azk

associated with the kernel function is essentially the unique invariant Hermite-
Ké&hler metric for these domains, and is calculated as follows.

(36) 2n+m) trace [(E@—Z'Z)-1dZ (E™—ZZ)-dZ] , for New,md
(37 2(n+1) trace [(E™W—Z'Z)-\dZ/(E™W—ZZ')'dZ), for Sey ,
(38)  2(m—1) trace [(E™W—Z'Z)'dZ (E™—ZZ)'dZ], for Qe ,
(39)  4nKy(Z, Z)2dZ'[K(Z, Z)EW —2ZZ' )+ A E™ —ZZ)ZZ (E™ —Z2Z))dZ,
for Mey .

The direct proofs for the invariance of the metric (36), (37) and (38) are
already known. As for (39) we can proceed as follows: from (16) we see the
invariance of the metric

ds*=Ky(Z, Z)2dZ (H;+ 27 —22')dZ

which is easily shown to be equal to (39) divided by 4.
The volume element derived from (35) is equal to Ku(z, z)dv, up to a positive
constant factor, since D is homogeneous.

15. The Laplacian and harmonic functions. Let D be any bounded domain
in p-dimensional complex Euclidean space. Then (35) can be written as follows:

ds*= (le‘ - ’dedéL’ - 'd21;>G(d21‘ . ‘dedEL' . ‘dgp) ,
where

/0 T N . 0%log Kn(z, z)
6=(3 o). T=@m, Te=""%52"

Hence the first order differential parameter and Laplacian of the metric (35), when
D is considered as a Riemannian space, are expressed as follows:

aio =3 5 (1950 58 Y oy,

Z] 0z aZj 0z;,
_ N I f w5 qu 7 < T Ti_a_‘e.)]]
do=(det T) ]li]% z___“ .l ((det T Jazk )+ 03; (det T) ]5Zk }' ,

“where T-'=(T%) and TFi=T% .
If we denote by A({,) the determinant of the minor matrix obtained from
T by removing two rows j, [ and two columns &, m, and by Aj; the cofactor of
Ty in T, then we have ‘

B -] SR VA i

a Tlm
6 3 j mak .
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where &/ % means 1 or —1 according as (7 —2)(k—m) is positive or negative. Hence

é 04_”_ 6Tlm .

S pE =R (S S (D AL

Since for j=</,

0 sz, % ij

(1P FAGLY) o P (- DM R ALY, =0,

Lo
we have

5045

J=1 62]
Therefore we obtain
Theorem 9. The first order differential parameter and Laplacian for the
metric (35) are given by

-0p 8¢ ; Op 0
= 2] -
(40) (e, §)= 2 21‘[ T bz, azk—*'T 07, sz}
» 0% | iy 0% )
(41) ‘Z:' kz‘:l{ az]azx—FT 62;’6’2;;; ’

and these are invariant under any analytical homeomorphism of D onio itself.”
The second part of the theorem follows readily from the invariance of the
metric (35).
Let us put
7"1)(.’2}, y>: UOg (KD(Q:: %)Kﬂ(y) §>I{D(Q;’ @)KD(XI’ 5))]1/2

for ,y€D. Then

(42) rolz, ¥)=7(y, ) >0 if a=<y; 7o, 2)=0,
(43) 7b(%, y):fp(av: oY) for any analytical homeomorphism g,
(44) (e, )0 logKue, )

67’16% T B0

7o(z, y) is a distance function (not satisfying the triangle axiom) and satisfies the
condition

. 71)2(77: y)
(45) lim { 2 Tirla)ys—ws)(Ge—zx) }

From (41) and (44) we obtain
Theorem 10. If we consider Xz, y) as a function in v, then
(46) ’ dr*(z, y)=2p ,
47 4log Kp(x, z)=2p .

7) Thus formulae (41) holds for any Kihler metric.
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Let us put

(48 Hiz, y):({{'{)ﬁ‘?}% zzi_{ﬁlfé)"/j))q )

Then by (46) we have for a fixed ye D
1 1 1
49) T - 4 = 2P .
(49) o (= g B B g dB )= 2

Here we shall consider H as a function in .
For an analytical homeomorphism o, if we put z=0%, y=0j, we have

. =~ [0a(P)] 7%
H(z, v)=H(oZ, 09)=H(Z, 2
(@, 9)=Hio?, o)) =HG, D) 7
On the other hand
4. H(w, y) =45 H(o%, 6§)=[45 H(Z, §)] 80@)\_“0
&)
Therefore
(50) Hz, y)" {4 H(z, y)} = HE, )" {45 HE, 1)} .
If D is a circular domain with the origin (0, ---, 0) as its centre, we have at
=0
» P _
(51) Hie, y) {4 H(w, 1)}=24" 3, 3 TyeO)yifie

where y=(y, ---, ¥). To prove this, let {¢{>(z)|y=1, ---, p} be the set of linear

homogeneous functions belonging to the complete orthonormal system constructed
in 3, and let

¥4
co,-m(w):g anpve,  A=(an).
Then we have at =0

oH Py oH. 2

. s N 1 . _ .

— = ¢ : e : =p(DYA'A|
A e N PR B E O R B

oH_ : 0H :

617]_7 ﬂp a:EJ-’ Yo

(Tw)=v(D)A'A .

Hence we get ,(51)'
Therefore we have at 2=0

»
(52) ! gm- 2q{q S Tjk(())yﬂk—?} .
H jiE=1
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Let D be now one of the irreducible domains described in 4. Let By(D) be
the set of all boundary points ¥ of D such that

(53) ?’Y:EO") , in case D= al(n,m) s
(54) Y'Y=FE® , in case D=y,

(55) Y'Y=E® or the eigenvalues of ¥’Y are all 1 except one which is zero
according as » is even or odd, in case D=, ,

(56) Y'Y=1, |YY|=1, in case D=Mu.

Then it is easily shown that By(D) is transformed onto itself by any analytical
homeomorphism of D onto itself, and that the group &y(D) of all analytical
homeomorphisms of D onto itself leaving the origin invariant is transitive on

By(D).

Let us put
o in case D=W(w,m) ,
n-+97
; s in case D=Gq,,

(B7) qn= 1
o or 2-61%) , according as n=2m or n=2m+1, in case D=8,
é , in case D=Mew .

Then we obtain the following theorem from (52) and (36)-(39).
Theorem 11. For Y eBy(D) we have

AH (X, Y)=0,
that is, Hy(X,Y) is a harmonic funclion in X for Xe€ D, where

KD(X, Y—)KQ(Y, X) >‘1D

Hu(X, Y)=v(D)i» ( o 5

and D is one of the irreducible domains Am,m), Sy, Lnyy, M.
For the case Ne,», J. Mitchell has proved Theorem 11 in a recent paper [12]
by determining an explicit form of the Laplacian.

16. Poisson’s integral.

Theorem 12. Let a function f(X) be regular in D and continuous on D, and
let D be one of the domains Ninny, Sy Lmy and Meuy. Then we have

58) f(X)=S§BO(D)HD(X, Y £(Y )dur |

where duy means the Euclidean volume element for the set B(D) divided by the
total volume of By(D).
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J. Mitchell [12] proved this theorem for the case D=, » by using Cauchy’s
formgla.due to S. Bochner [13]. Here we shall proceed in a different way.
As is shown by Bochner [13] and Mitchell [12], we have

d,d { € det Y“ndylldylz' ° 'dy‘_’l' c dy’)m )
17 =
¢! det )r_mﬂ)/zd.l/ndf/lz' Ay dyys - - - Ay,

2 3\ (41
o ) () ()

i H:Zn n.’n(n+3)’/‘2$‘n(n41)/2

for D= New,n
for D=7a;,

where

o 1120 (=1t
e <2nz')7z(n+])/2

3

For the other cases we have
j ¢t det Y‘“"‘)/Zdym tee d?/md?/za‘ . d?/n—] R

duy=
) l an( Y’ Y)—n/?'dyld? PR d]/n

for D=8, n=2m ,
for D=Mewy

where C,! and c»? are non-zero constants such that

duy=1.
stm .

Then duy is invariant under any transformation of &u(1).
that Au(X, Y)dur is invariant under any analytical homeomorphism s of D onto

We shall prove

itself, that is,
(59) HJ)(UX, O'Y)d/,ta—(y):Hj)(X, Y)d,d)’ .

In the following we shall restrict ourselves to the case D=My; the other

cases can be treated similarly.
Let ZeBu(May). Then |Z’Z|=1 and hence

(60) (Z—AY(Z—A)=(Z Z)K(A, Z),
and consequently we have from (17)

W W=(Z'Z)Ky(A, Z)K((Z, A)-*,
(This shows at the same time that

fOr A e 9}?(11), Ze 580 (?D?(n)

(61) W=T(Z)

for the transformation 7. defined by (16).
T4 carries Bpy(Mmy) onto itself.) Hence by (28) we obtain (59) immediately.

From (59) it follows that

62) S%D(D)wa, oY)f(aY)de:S%(D)Hm, Y) £ (oY )dur .

On the other hand, a monomial ¥,"1y,"2---y,"% goes over into —y,"1y,"2
by a transformation Y—e®Y with #==/>, ; where 3 ;>0 and 7; are non-negative

.. .ynfn
integers, and duy is invariant under this transformation. Therefore we have
if 37>0.

719,72 o Yp :0’
S%(D)yl Y2 Yn'na@py
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Since S% D) duy=1 and by a theorem of H. Cartan a regular function on D can
0

be expanded into a uniformly convergent (on D) series of homogeneous polynomials,
we see that if f(X) is regular on D, (58) holds for X=0, and consequently we
obtain (58) for any X € D by virtue of (62).

In case f(X) is regular in D and continuous on I, we have therefore

f(tX)—S%O(D>H1;(X, ) S X )dus
for any real number # such that 0<#<{1. Letting £—1, we see the validity of
(58) for such a function f(X). Thus Theorem 12 is proved.

Remark. In cases where the notation of square roots appears, the value is
to be obtained by analytic continuation from a suitable initial value at a suitable
point (cf. [13]).

17. The Cauchy formula of Bochner can be obtained from Theorem 12 by
reversing Mitchell’s argument. As an example, we take up the case D=N¢,n)
which is treated by Bochner and Mitchell. In this case we can write (58) as
follows:

f(Y) det (E——X/Xyz dyn s dymz
By Dydet (E—X' Y det (E—Y' Xy det¥»

©3) f(X)zcnS

If we put
F(Z)=f(Z) det (E—X'Z) det (E—X'X)™

for a point Xe€ D, then f(Z) is regular in D and continuous on D. Therefore
we have by (63)

(64) JX)= f<X>=cn§%u(D) a&‘{ﬂfﬁi dyuds- - din

This is the Cauchy formula due to Bochner [13].
Similarly we have for a function f regular in D and continuous on D, (cf.

(13D

. f(Y) =

65 X)=c," - A [ g QYpn =) ,
(65) f(X)=c S D) det ( Yo7 dyndys,- - dy, for D=G,,
(¥

By(D) det (Y —X)-1/2 AY1o- - @Yn-rn,  for D=, n=2m;
X —

66)  F(X) =c,sS

y — 2 . . f(Y) ) . -] " —
oD Jeo=e S%Uw) =Xy (y—x ) W for D=, .
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Appendix

In a previous paper “On isometric transformations in spaces of matrices”
(in Japanese with English summary), Rigake (Science) vol. 3 (1948), we obtained
the following results:

Let f be an isometric transformation in the space consisting of all matrices
of type (n, m), n=>m2>=2 (case 1), or of all symmetric matrices of order = (case II),
or of all skew-symmetric matrices of order 2 (case III), or of all Hermitian
matrices of order 7 (case V), where the distance between Z, and Z, is defined

as the square root of the greatest eigenvalue of (Zi—Z,)(Zi—Z). Then f is
written in the following form:

I A2)=UZV+C, UZV+C (or UZV+C, UZV+C in case n=mn1)
II. AZ)=U'zZU+C, UZU+C;
.  f(Z2)=trZU+C, U'ZU-+C (or U'Z*U+C, U'Z+*U+C in case n=4)
V. f(@Z)=U-ZU+C, —UZU+C, U ZU+C, —U-ZU+C,

as the case may be; here U, V are constant unitary matrices and C is also a
constant matrix and Z* means the matrix obtained from Z by interchanging its
(1, 4)-element with its (2, 3)-element.

Analogously to these results we can prove the following theorem.

Let f be a transformation of the set of all matrices of type (», 1) into itself

such that N(f(Z)—f(Z.))=N(Z,—Z,), where N(Z) is defined by (29). Then we
have

Iv. f(Z)=e®VZ+C, e¥VZ+C

where V is a constant real orthogonal matrix and # is a constant real number.
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