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The known conditions for the metrizability of topological spaces are described 
generally in terms of open coverings. The following theorem, which will be 
established in the present note, is of some interest in view of this fact. 

Theorem 1. In order that a T1-space X be ?1'letrizable it is necessary a?2d 
sufficient that there exist a countable collection {n·r.} of locally fin£te closed coverings 
of X satisfying the condition: 
( 1) For any neighbourhood [J of any jJoint x of X the1'e exists some i such that 

Sex, tJi)CUI). 
As usual, by "dim X-;;;n" we mean that every finite open covering of X has 

an open refinement of order ~n+ 1. Then, in connection with Theorem I,ve 
obtain the following theorem. 

Theorem 2. In order that a TrsjJace X be a metrizable sjJace with dim X:5,n, 
it is necessary and sufficient that there e:'0ist a countable collection {Wi} of locally 
finite closed coverings of X satisfying the condition (1) in Theorem 1 and the 
conditions (2), (3) and (4) below: 
(2) tJ'i={F(al,"" ai)\a"EQ, v= 1, "', i}, where F(al, "', ai) may be empty. 
(3) F(al,"', ai-l)='-"{F(al, "', ai-I> r)lrEQ}. 
(4) The order of tJi does not exceed n+1 for each i. 

An application of Theorem 1 and a related result of Theorem 2 will also be 
given. 

1. To prove Theorem 1 we shall first state some lemmas. 
Lemma 1. If {Fa,} is a locally finite closed covering of a T1-space X, then 

{Int F~} is also a covering of X, where Int A means the interior of a set A in X. 
Lemma 2. If {Ga,} is a locally finite closed covering of a T1-space X and Ga, 

are open sets of X, then there exists a closed covering {Ha,} of X such that Ha, 
are open sets and 

Ha,CGa" and Ha,~H(3=O for a~{3. 

Lemma 3. Let {I-fa,} be the covering described in Lemma 2. If we put 
Ma,= Int (Ha,), then {Ma,} is a locally finite closed covering of X such that Ma, 
are regular open sets and Ma,~M(3=O for a~{3 . 

A locally finite closed covering of X having the property described in Lemma 

1) sex, iYi) means the union of the sets of iYi containing the point x. 
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3 will be called a grating of X. 

Lemma 4. Let {Mit} and {N(3} be two gratings of a Trspace X. Then 
{M~.--..,N~} £s also a grating of X. 

These lemmas can be proved easily (d. [4]). 
2. Proof of Theorem 1. Let {flit} be a countable collection of locally finite 

closed coverings of a Tl"space X satisfying the condition (1) in Theorem 1. 

By Lemmas 1, 2 and 3 there exists a grating ~JL={M(a, i)laEJ21 } such that 
~J1i is a refinement of flit. for i= 1, 2, .... . Let us put 

@i={W(al,"', tXi)la)!EwQ'.I, ))=1,2, "', i} 
where 

i _______ _ 

Weal, "', ai)= n M(a)!, ))), M(a'.J, )))E9Jc'.J . 
'.J=l 

Then by Lemma 4 ~i is a grating of X and is a refinement of 9JCI and @l-l for 
£=1,2, ..... 

Let us put 

Vn(X)= Int (S(x, W n » . 

Then for anyVn(x) we can find, by the condition (1), an posltlve integer 
m=m(x, n»n such that Sex, Wm)CVn(X). We shall prove that if '~,~(y)~ Vm(X)~~O, 

then we have Vm(Y)CVn(x) . 

We first note that 

Y E Sex, 915nL) , 

since otherwise we would have W(al,"', a m ).-----.. we 131 , ... , em)=o for any 
Weal, .. " O:m)3x and any Weel, .-. ~, e?n)3Y, and hence Sex, Wm)~ Weel, .. " (3?n)=O, 

which would lead to a contradiction that Vm(x).-----.. V,n(Y) = 0 . 

Let yE:. W({31, "') (3llt). Then we have 

XEW({31, "', (3n) , 

since if x$W(e-;,-: "--;-{3?J we have W(al,"', a n ).--.., W({31, "', (3n)=O for any 
Weal, ... , an) such that XEW(al, ... ,-a1~)' and hence Vn(:{;)~W({3~-,-··-:, 1310)=0, 

which contradicts the fact that yES(x, ~m)~ W(E~-;-::-:--:--{3l1~)CVn(X)~ W(El, .-. " en,). 

Therefore we have S(y, ~m)CS(X, W n ) and hence Vm(Y)CVn(x). Thus we 
have proved that if ~n(Y)~ VlIl(:l:)~O, then Vm(y)CVn(x). 

Since {Vn(x)} is clearly a basis of neighbourhoods at x and Vn+1(x)CVn(x) 

for n= 1, 2, .... , by a theorem of A. H. Frink [1] we see that X is metrizable. 
This proves the "sufficient" part of Theorem 1. Since the "necessary" part is 
obvious by a theorem of A. H. Stone, Theorem 1 is completely proved. 

3. As an application of Theorem 1 we shall prove the following theorem 
due to J. Nagata [8]. 

Theorem 3. Let {Aro} be a locally finite closed covering of a Trspace X. If 
each Aal is metrizable, then X is also metrizable. 

Indeed, let {fliiro} be a countable collection of locally finite closed coverings 
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of the subspace Aw such that it satisfies the condition (1) and i\ii+l,w is a refine­
ment of i\iiw for i= I, 2, .. ... If we put 1ft = '-;;'f'iiw, then Zri is a locally finite 
closed covering of X and {Ui} satisfies the condition (1). Hence X is metrizable 
by Theorem 1. 

4. Let Q de a non-empty set. For any two sequences a, f3 of elements 
from g: a=(al, a'}., ... ), (3=({31, {3'}., ... ) we define pea, (3) as follows: 

pea, $)= ~ , if ai = (3'i for i<h and aJ.;",-~(3),: , 

pea, {3)=O, if at={3{ fori=1,2, ..... 

The set of all sequences of elements from Q determines a metric space by the 
distance function pea, (3); this space shall be denoted by N(Q). We shall call 
N(Q) a generalized Baire's zero-dimensional space, since N(g) is known as Baire's 
zero-dimensional space in case g consists of all the natural numbers. As is 
observed previously [6], N(SJ) is a complete metric space and dim N(Q)=O. 

5. We now turn to the proof of Theorem 2. The necessity of the condition 
of Theorem 2 is easily proved by repeated application of l6, Theorem 9.4] (d. 
[2]). To prove the sufficiency of the condition of Theorem 2, let {t\il} be a 
countable collection of locally finite closed coverings of X satisfying the conditions 
(1) to (4). Then by Theorem 1, X is metrizable. 

The set of points a=(al, 0'2, ... ) of N(g) (d. § 4) such that 
00 

n F(ar, "', ai)~O 
i =1 

shall be denoted by P. For any point a= (aI, a''}., ••• ) of P we put 

f(a)= n F(al, "', at) . 
i~l 

It is seen that fea) consists of only one point. Thus f defines a single valued 
Hlapping of Ponto X. From (4) it follows that for each point x of X the inverse 
image f-l(X) consists of at most n+l points. It is easily verified also that for 
ACX, f-I(A) is compact or separable according as A is compact or separable. 
It is obvious that f is continuous. 

We shall show that the mapping f is a closed mapping. For this purpose, 
let A be any closed subset of P. We denote by Veal, "', at) the set of points 
7=(1'1,1':>., •.. ) of N(g) such tnat rj=aj for j=l, 2, "', i. Then Veal, "', a'i) 

is open and closed in NUJ), and its diameter does not exceed Iii. Since 

A= '-' {A~ V({3)I{3Eg}, feAr---. V({3»cF({3) 

and i\il ={F({3)I{3} is locally finite, we have 

f(A)= '-.-/{f(A~ V({3»\{3Eg} . 

Therefore for any given point Xo of fCA) there exists some element al of Q such 
that xoEf(A~ Veal»~. By an inductive process we can find a point a= (aI, a':>., ••• ) 

of N(Q) such that 

xoEf(Ar---. Veal, "', ~», for i= 1, 2, .... 
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Hence we have 
= = 

xo~ n f(.A~ V(a;'~-:~· ~. , ai~»)C n F(al. "', al) . 
i=l i=l 

Therefore xo=f(a) and a=(al, az, '" )EP . 
On the other hand, A~ Veal, "', ai)~O. This shows that aEA. Hence we 

have :1,'0= fCa), aEA. This shows that fCA) is closed. Therefore f is a closed 
mapping. 

Thus we have shown that if the condition of Theorem 2 holds then the 
condition of Theorem 4 below holds also, and furthermore \ve have proved the 
"only jf " part of Theorem 4. 

Theorem 4. Let X be a ?netric space. Then we have dim X-s;.n 7f and only 
z/ there ext'st a subspace P of N(12) for suitable 12 and a closed continuous map­
ping f of P onto X such that for each poz"nt x of X the inverse image f-l(x) 
consists of at most n+ 1 points. 

6. Therefore, if we prove the "if" part of Theorem 4, Theorems 2 and 4 
are proved completely. However, the "if" part of Theorem 4 follows readily 
from Theorem 5. 

Theorem 5. Let f be a closed continuous ?napping of a metric space X onto 
another metric space Y such that for each poi'ni y of Y the inverse irnage f-l(y) 
consists of at most m+ 1 points. Then we have 

dim Y< dimX+m . 

This theorem is proved by W. Hurewicz for the case where X and Yare 
separable. In view of [6, Theorem 9.4] and [7, Theorem 2.6] or [6, Theorem 
8.6], it is readily seen that the proof given in [5] or [3] remains valid for our 
general case with no or slight modification. 

Adden in proof. As another application of Theorem 1 we have a simple 
proof of. a theorem of S. Hanai (d. his paper forthcoming in Proc. Japan Acad. 
1955). Our results, combined with this theorem, yields at once the theorem: In 
order that a Trspace X be metrizable it is necessary and sufficient that there 
exist a subspace P of N(Q) for suitable Q and a closed continuous mapping f of 
P onto X such that f-l(x) is compact for each point x of X. 
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