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Neoclassical resonant transport of a mirror cell
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The neoclassical resonant plateau transport in a mirror cell is studied theoretically. The analytical
expression for a non-square-well magnetic field is obtained. The analytical result is applied to the
GAMMA10 tandem mirror �T. Cho, M. Yoshida, J. Kohagura et al., Phys. Rev. Lett. 94, 085002-1
�2005��, which consists of several mirror cells in it, and the confinement time due to the neoclassical
resonant plateau transport is determined in each mirror cell. It is found that the neoclassical resonant
transport of ions trapped in the nonaxisymmetric anchor mirror cell and transition mirror cells is
significantly smaller than those trapped in the central cell. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2009547�
I. INTRODUCTION

In a conventional tandem mirror system1,2 the radial
transport is caused by a diffusive process of the second adia-
batic invariant J,3,4 where the process related to the resonant
interactions between the ion azimuthal drift frequency and
the axial bounce frequency leads to diffusion in J, resulting
in a radial transport in a tandem mirror containing nonaxi-
symmetric quadrupole end-mirror cells.

In axisymmetric mirror fields, where the azimuthal drift
velocities are constant and the drift surfaces are circular,
there are no such resonances, so that the second adiabatic
invariant J conserves in the collisionless or collective pro-
cesses, and radial transport stemming from nonadiabaticity
does not occur. In nonaxisymmetric mirror cells such as a
tandem mirror with quadrupole minimum-B end-mirror cells,
the quadrupole magnets closely employed to the central cell
distort the axisymmetry of that cell. In such nonaxisymmet-
ric mirror cells azimuthal drift velocities are not constant but
vary with the azimuth, so that bounce-drift harmonic reso-
nances can occur. While collisions can modify the rate of the
radial transport stemming from the diffusion processes, it is
recognized that their origin is in the basic properties of the
single-particle orbits characteristic of the confining fields.5,6

The main reason that a tandem mirror contains the non-
axisymmetric quadrupole mirror cells is for the magnetohy-
drodynamic �MHD� stability.7,8 However, the quadrupole
mirror cells located at both ends of a tandem mirror can
distort the magnetic-flux tube in the central cell in the case of
the finite plasma pressure,9–11 which enhances the radial
transport even in the axisymmetric central cell of a tandem
mirror. The recent study of a tandem mirror design, there-
fore, is a fully axisymmetric tandem mirror, where a divertor
magnetic configuration is installed around the central cell
midplain for the stability of MHD. The theoretical study of
MHD stability for the magnetic divertor of a tandem mirror
was first carried out by Lane et al. within the long thin
approximation12 and Pastukhov et al. improved the theory to
that without the long thin approximation.13 This design of a
magnetic divertor is a latest problem in improving the stabil-
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ity and radial confinement of the GAMMA10 tandem
mirror14 with the developments in the theoretical study of the
divertor physics.15,16

The analysis of the radial transport effects in a conven-
tional tandem mirror containing nonaxisymmetric mirror
cells is described with a consideration of the motion of the
guiding center of particles, bouncing axially and drifting azi-
muthally in the mirror cells. In the limit of infinitesimal par-
ticle gyroradius �i, the guiding center of the particle would
retain on precise drift surfaces, but this is not quite the case
when the gyroradius is finite. In this case the guiding-center
motion is averaged over the gyrating motion of the local
magnetic field, which in a nonaxisymmetric field has gradi-
ents in three directions, axial, radial, and azimuthal, respec-
tively. Accordingly a particle starting at the midplane in a
mirror cell being reflected, and returning to the midplane will
have its guiding center displaced both azimuthally drift and
radially inwards or outwards from its starting position. This
displacement of the radial direction, defined as �r, is a func-
tion of the magnetic moment � and energy � of the particle
and also of the initial radius r and azimuthal angle � of its
guiding center. For example Bernstein17 and Cohen18 de-
scribed the drift equations for a static magnetic field B as

�r��,�,r,�� =
c

eBR

�J

��
, �1�

where J is evaluated over the trajectory of the guiding center
between the midplane and the turning point zt in a mirror
cell, and described as

J = �
0

zt

dz�2m�� − �B − e���1/2. �2�

In a tandem mirror central cell, contributions to �J /�� in
Eq. �1� will arise only from the nonaxisymmetric transition
regions at the ends because the central mirror cell is axisym-
metric. If we assume the � �plasma pressure divided by mag-
netic pressure� is small in these transition regions, then J can
be evaluated from the vacuum field configuration by expand-
ing the integrand in Eq. �2� in powers of r2, which is the
radius of a vacuum field line. To leading order r is written

18,19
as
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�r =
�ir

Ltr
K��,��sin 2� , �3�

where Ltr is the length of the transition region and �i is the
ion Larmor radius; K�� ,�� is a complicated integral and re-
quires numerical evaluation for particle-orbit tracing in a
magnetic field.

One effect of the quadrupole fields is found from Eq. �3�.
The sin 2� dependence reflects the fact that along lines hav-
ing zero geodesic curvature �those planes where sin 2�=0�,
the radial displacement does not occur. The second effect of
the quadrupole fields arises when the usual situation �fans
displaced azimuthally � /2 from each other, characteristic of
a quadrupole field� is encountered. Here displacements of the
radial direction on subsequent reflections cancel �through the
order �r /Ltr�2�. This cancelation results from the fact that
reflections at each end differ in � by � /2 from the previous
reflection, as far as orientation in the fans is concerned. Ac-
cordingly, for the �n+1�th reflection, we have, relative to the
nth reflection, sin 2�n+1=sin 2��n+� /2�=−sin 2�n, i.e., the
�n+1�th displacement cancels the nth displacement, and so
on. In this cancelation, on average, there could be no radial
transport apart from the influence of collisions or micro-
scopic drifts.

Reality is introduced into the situation by considering
the modifications caused by two effects with which, follow-
ing Ryutov and Stupakov,19,20 one identifies two extreme re-
gimes: regime 1 where ��	1, and regime 2 where ��
1.
Here �� is the amount of a particle azimuthal drift per one
axial bounce motion. In regime 1 radial transport analogous
to neoclassical transport in tokamaks occurs: Collision-
induced change in � and � moves the particles onto adjacent
drift surfaces, leading to radial transport with an equivalent
step size of the order of the banana width of the drift surfaces
per effective collisions. As is the case in the tokamak, this
neoclassical radial transport can be correspondingly larger
than the classical rate of cross-field transport.

Regime 2, where ��
1, corresponds to a regime where
the so-called resonant transport can occur. As noted previ-
ously, when the azimuthal drift per bounce is large enough to
change the sign of the sin 2� term at each bounce, successive
radial displacements will add continuously, which means that
“resonance” occurs. Resultant radial transport can then be
enhanced substantially over the neoclassical rate. Regime 2
can arise when the azimuthal drifts associated with E�B
drifts in radial ambipolar electric fields lead to large ��
values.

II. NEOCLASSICAL RESONANT TRANSPORT
IN THE GAMMA10 TANDEM MIRROR

In this section we extend the neoclassical resonant trans-
port theory18–23 to calculate the ion radial flux in a nonaxi-
symmetric mirror. The diffusion coefficients are necessary to
evaluate the particle loss attributed to the neoclassical reso-
nant transport and some quantities of the particle motion are
required in order to determine those coefficients. First we
describe the basic equations to evaluate these quantities and

24
the magnetic field of GAMMA10. We adopt the paraxial
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approximation to the magnetic field with the flux coordinates
�� ,� ,z�, where the equations of motion are written as �for
example, see Ref. 21�

d�

dt
= −

c

q

��2� − �B − 2q�� ,

d�

dt
= c

��

��
+

c

q

��2� − �B − 2q�� , �4�

dz

dt
= v�, v� = ± � 2

mi
�� − �B − q���1/2

.

Here the magnetic field B is represented by the coordinate
variables as B= ��� ��, z is the coordinate along the mir-
ror axis defined as z=0 at the central cell midplane, c is the
light speed, 2�� is the magnetic flux, i.e., �= 1

2r2B0, where
B0 is the magnetic field at z=0, � is the particle energy, � is
the magnetic moment, q is the charge, mi is the ion mass, and
r is the radial distance in terms of the value at the central
mirror cell midplane. The electrostatic potential � is as-
sumed to be a function of � but independent of � and z. The
curvature of magnetic-field line � is represented by �
=
���+
���, where 
� and 
� are the normal and geode-
sic curvatures with the following relations;


� =
1

2

̂� −

1

2

̂� cos 2� ,


� = 
̂�� sin 2� ,

�5�


̂� =
��� + ���

B0
, 
̂� = −

��� − ���

B0
,

x = ��z�x0, y = ��z�y0,

where �x ,y� are the coordinates of the magnetic-field line
starting at �x0 ,y0� at the midplane in the central mirror cell;
the prime denotes derivatives with respect to z.

Figure 1 shows the GAMMA10 magnetic field profile
along the z axis, where GAMMA10 consists of several mir-
ror cells. The midplane of the minimum-B anchor cell is
located at z= ±520 cm. There are mirror cells called transi-
tion mirror cells next to the anchor mirror cell. The midplane
of each transition mirror cell is located at z= ±365 cm and
z= ±673 cm. These transition mirror cells are labeled as
“Transition Mirror Cell No. 1” and “Transition Mirror Cell
No. 2.” The normal curvature 
� and geodesic curvature 
�

are designed to be symmetric and antisymmetric, respec-
tively, around z= ±520 cm to suppress the neoclassical trans-
port shown in Fig. 1�b�. The variables � and � characterizing
the magnetic-field line of GAMMA10 are defined in Eq. �5�
and are shown in Fig. 1�c�. A circular magnetic-flux tube
starting at the midplane in the central cell �z=0 cm� is trans-
formed into an elliptical shape in transition mirror cell No. 1

and first recircularized at the midplane in the anchor cell
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�z=520 cm�, transformed next into an elliptical shape in
transition mirror cell No. 2, and then recircularized again at
the midplane in the plug/barrier end cell �z=880 cm�. The
axial profiles of the magnetic field and the anticipated elec-
trostatic potential � are shown in Fig. 1�d�, where the axial
profile of � is assumed to be constant, except for the plug/
thermal barrier mirror cells24–30 located at both ends of
GAMMA10. The shape of the magnetic-flux tube and the
names of the mirror cells in the nonaxisymmetric region are
shown in Fig. 2.

III. NEOCLASSICAL RESONANT PLATEAU
TRANSPORT IN A MIRROR

The conventional method of neoclassical resonant trans-
port assumes that the axial length of a nonaxisymmetric
magnetic field is much shorter than that of an axisymmetric
central cell, so that the magnetic mirror field is approximated

FIG. 1. Schematic diagram of the GAMMA10 tandem mirror. �a� Plots the G
shown. �b� is the axial profiles of normal curvature 
� �dashed line� an
magnetic-field line passing through at �=� /4 at z=0. �c� is a magnetic-field
the axial profiles of the magnitude of the magnetic field �solid line� and ant
by a square well. However, it is difficult to apply this as-
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sumption to the nonaxisymmetric magnetic-field-like anchor
mirror cells or transition mirror cells in GAMMA10. So the
conventional neoclassical resonant plateau transport theory is
extended to be applicable to the nonaxisymmetric magnetic
field in this section.

We assume that �� is defined as the displacement of
radial coordinate � during an ion one-bounce axial motion in
a mirror cell �from z=zstart to z=turning point 1, back to zstart,
to z=turning point 2, and back to zstart�, and �� is defined as
the displacement of azimuthal coordinate � per ion one-
bounce axial motion. Anchor mirror cells and transition mir-
ror cells are designed to be the nonaxisymmetric structure
around the midplane in each mirror cell; the ions confined in
those mirror cells are the cause of the large radial drift. Es-
pecially the ion that drifts at the amount of ��=k�, k=1, 3,
5,…, in the azimuthal direction per one-bounce axial motion
comes under the strong influence of the nonaxisymmetric
magnetic field and drifts radially. We call the ion satisfying
this condition of ��=k� a “resonant ion.”

A10 coils with magnetic-field lines. The labels of each mirror cell are also
desic curvature 
� �solid line�, where these curvatures are those of the
which passes through at x=y=1/	2 cm at the central cell midplane. �d� is

ted electrostatic potential �dashed line�.
AMM
d geo

line
Integrating Eq. �4�, ��, and �� in the zeroth-order orbit,
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�� = −
c

q



orbit

dz

v�


̂���2� − �B − 2q��sin 2� � 0,

�6�

�� = 

orbit

dz

v�
�c

��

��
+

c

q

̂��2� − �B − 2q���

� 

orbit

dz

v�
�c

��

��

 .

Here the zeroth-order orbit is that neglecting �B drifts com-
pared with E�B drifts �i.e., orbit of O�1� in Eq. �10��.

Now we adopt a new coordinate system �� , �̄ ,�� to de-
rive the neoclassical resonant diffusion applicable to the an-
chor mirror cell and transition mirror cells in GAMMA10. In
this coordinate system �=const on the same magnetic-flux
tube, and an axis � is taken as the closed drift orbit of the
resonant ion with �, �, as shown in Fig. 3. We take

�� , �̄ ,��= �� ,� ,z� at the starting point of an ion under con-

sideration, so that � and �̄ are constant along the zero-order
orbit of a resonant ion with �, �. Therefore, the resonant

FIG. 2. Nonaxisymmetric region of the GAMMA10 tandem mirror. �a� is a
birds-eye view of the coils in the nonaxisymmetric region. �b� is a magnetic-
flux tube which is circular at the central cell midplane z=0 cm. The black
stripe is along the magnetic-field lines. �c� Plots the axial profile magnetic-
field line curvatures and magnitude of the magnetic field. The label “Tran-
sition Mirror Cell No.1” is located in the region of 280 cm� �z��445 cm,
“Anchor Mirror Cell” in the region of 445 cm�z�595 cm, and “Transition
Mirror Cell No. 2” in the region of 595 cm�z�755 cm.
condition in this coordinate is as follows:
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��̄��,�k,�� = 0, �7�

where �k is a resonant energy which is a function of � and �,

but independent of �̄ because the electrostatic potential � is
assumed to be a function of � only. Using the Taylor expan-
sion, ions near the resonant energy satisfy

��̄��,�k + ��,�� � �̄���� + ¯ , �8�

where �̄������̄�� ,�k ,�� /��.
The drift kinetic equation for ion distribution function f

in the steady state is described as

�̇
� f

��
+ �̄

˙ � f

� �̄
+ �̇

� f

��
= − ��f − fM� , �9�

where � is the effective collision frequency, fM is a local
Maxwellian defined as fM =n����mi /2�Ti����3/2 exp�−�
−q���� /Ti����, and the dot symbol means the derivative
with respect to time t. Equation �9� means that the distribu-
tion is constant along the ion drift orbit in the steady state.

We adopt the following ordering:

�̇

�
� O�1�,

�̇

�
� O���, �̄

˙ � O���, ��� � O��� ,

�10�

where �� is an ion axial bounce time �i.e., time of axial one
round trip�, and � is a small expansion parameter. According

to the above ordering, Eq. �9� reduces to �̇��f /���=0 in the
zeroth order of � so that the distribution function f is con-
stant along the drift orbit without �B drifts and collisions,

i.e., f = f�� , �̄ ,� ,��, independent of the coordinate �.
The first-order equation in � of Eq. �9� is

�̇
� f

��
+ �̄

˙ � f

� �̄
= − ��f − fM� . �11�

Bouncing averaging Eq. �11� along zeroth-order drift orbit �

FIG. 3. Schematic diagram of the orbits of resonant ions. The magnetic-flux
tube in the nonaxisymmetric region of GAMMA10 is shown with the
magnetic-field lines shown as black stripes. Particle orbits are shown as
solid closed curves, where a resonant ion started at some spatial point and
comes back again at the same initial point after at least two axial bounce
motions.
we have
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��̇�
� f

��
+ ��̄˙ �

� f

� �̄
= − ����f − fM� . �12�

Here,

��̇� =
1

��

 d�

�̇
�̇, ��̄˙ � =

1

��

 d�

�̇
�̄
˙ �

�̄����

��

,

�13�

��� =
1

��

 d�

�̇
� .

During ion bounce motion along its guiding center ze-
roth orbit, ions feel �B drifts and collisions so that the dis-
tribution function changes from the Maxwellian distribution

as f = fM�� ,� ,��+�f�� , �̄ ,� ,��,

��̇�
� fM

��
+

�̄���� − �k�
��

��f

� �̄
= − ����f . �14�

In the GAMMA10 tandem mirror with the usual quadrupole

magnetic field ��̇� is written as

��̇� =
a��,�,��

��

sin 2�̄ . �15�

Therefore Eq. �14� is written as

a sin 2�̄

��

� fM

��
+

�̄���� − �k�
��

��f

� �̄
= − ����f . �16�

Fourier expansion of the distribution function �f

=�m�fm exp�im�̄� we obtain

�f =
a

2

� fM

�� � exp�2i�̄�

2�̄���� − �k� − �����i
+

exp�− 2i�̄�

2�̄���� − �k� + �����i
� .

�17�

In order to calculate the ion radial flux, we define the conti-
nuity equation of the total ion number N in a tandem mirror

as
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−
dN

dt
=� � � d�d�dz

B /

4�Bd�d�

mi
2�v��

� · �

=
/

d�d�
/

4�d�d�

mi
2 � dz

�v��
� · � . �18�

Here,

� · � � = �
k=1,3,5,…

�f�̇ , �19�

where �k=1,3,5,… in Eq. �19� means the sum on a resonant
energy of �k. Transformation of Eq. �18� represented by

�� ,� ,z� to the coordinates �� , �̄ ,�� is given by

−
dN

dt
=
/

d�d�̄
/

4�d�d�

mi
2

�� Bd�

��� · � �̄ � � ���v��
� · � . �20�

Recalling that � is taken along the zeroth-order guiding cen-

ter orbit of the resonant ion, the transformation to �̄, where

�
˙

=0 along the zeroth-order orbit, is given by

�̄ = � − c
�����

��
t ⇒ � �̄ = � � − � ��c

�2����
��2 t� .

�21�

So,

��� · � �̄ � � ���v�� = � � � � � · � ��v��

= B · � ��v�� = B
d�

dz
�v�� = B��̇� .

�22�
Therefore,
−
dN

dt
=
/

d�d�̄
/

4�d�d�

mi
2 
 d�

2�̇
� · ���, �̄,�,�� =

/
d�d�̄

/

4�d�d�

mi
2 
 d�

2�̇
B · � �

�

��
����, �̄,�,�� · � �

B · � �
�

= �
k=1,3,5,…

�
0

�

d�
�

����0

2�

d�̄
/

4�d�d�

mi
2 
 d�

2�̇
�f�̇
 = �

k=1,3,5,…
�

0

2�

d�̄
/

4�d�d�

mi
2 �f

a sin 2�̄

2
. �23�
Here Eqs. �13�, �15�, and �19� are used to obtain Eq. �23�.
With Eq. �23� the radial particle flux ���� in a nonaxi-
symmetric mirror cell, averaged over the magnetic-flux sur-
face, is defined as
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���� �
1

2�Lm
�

k
�

0

2�

d�̄
/

4�d�d�

mi
2 �f

a sin 2�̄

2
. �24�

Here Lm is an axial length of the nonaxisymmetric mirror
cell, and the different resonances are assumed nonoverlap-
ping and contributing independently to the flux. Taking the
limit ���→ +0, the radial flux is obtained as

���� = −
�2

2mi
2Lm

�
k
� d��a2��,�,��

��̄���

� fM

�� �
�=�k��,��

.

�25�

Here,

� fM

��
= �1

n

�n

��
−

3

2Ti

�Ti

��
+

�k − q�

Ti
2

�Ti

��
+

q

Ti

��

��

 fM . �26�

Equation �25� is similar to Eq. �5� of Myra and Catto.23 Both
equations will lead to the same result under the problem such
that a tandem mirror has an axisymmetric central cell with a
nonaxisymmetric mirror located at both ends of the device.
However, Eq. �25� can be applied to the ions trapped in the
transition region of GAMMA10, as shown in Fig. 2, where
the magnetic-flux tube is fully nonaxisymmetric and does not
have an axial symmetry, in the case of which the �B drifts
should be evaluated along the closed drift orbits of resonant

particles with �� , �̄ ,�� coordinates in the transition of
GAMMA10.

The diffusion coefficient of neoclassical resonant plateau
transport is defined as

Dj = � mi

2�Ti

3/2

�
k
� d�Ak�Wk

Ti

 j

exp�−
Wk

Ti

 , �27�

where Wk and Ak are described as

Wk = �k��,�� − q����, Ak =
�2

2mi
2Lm

a2��,�k,��

��̄����,�k,���
. �28�

The radial flux of neoclassical resonant diffusion is written
with the diffusion coefficient in Eq. �27� as

���� = − �D0
�n

��
+

n

Ti
�D1 −

3

2
D0
 �Ti

��
+

nq

Ti
D0

��

��
� . �29�

To determine the flux of Eq. �29�, the diffusion coefficients
in Eq. �27� are required. The actual orbit calculation is car-
ried out in the GAMMA10 magnetic configuration to obtain
the neoclassical diffusion.

IV. APPLICATION TO THE GAMMA10 TANDEM
MIRROR

The analytical formulation obtained in Sec. III to evalu-
ate the neoclassical resonant plateau transport in a nonaxi-
symmetric magnetic field is applied to the GAMMA10 tan-
dem mirror. In this section the numerical calculation is
carried out for the neoclassical resonant transport in the non-
axisymmetric magnetic-field �anchor� mirror cell and transi-

tion mirror cells in GAMMA10.

Downloaded 22 Dec 2009 to 130.158.56.122. Redistribution subject to 
A. Resonant energy

We assume that the electrostatic potential � is constant
along the magnetic-field line and its radial profile is de-
scribed as

���� = �0�1 −
�

�0

 . �30�

Here �0= 1
2L�

2 B�z=0�, and L�=20 cm.
First we examine the neoclassical resonant transport for

each nonaxisymmetric mirror cell of GAMMA10. The quan-

tities a, �k, and ���̄ /��k in Eq. �28� are obtained by Eq. �6�
as follows. The radial step size a is calculated by

�� = − 
 d�

�̇
� c

q

̂���2�k − �B�z� − 2q�����sin 2��

= ak��,�k,��sin 2�̄p, �31�

where �̄p is the coordinate determined by each nonaxisym-
metric mirror. The resonance condition is described as

��̄��,�k,�� = 
 dz

v���,z,�k,���c
�����

��
� − k� = 0,

�32�
k = 1,3,5,… ,

where v��� ,z ,�k ,��= �2/mi��k−�B�z�−q������1/2 with hy-
drogen ion mass mi and charge q. The resonant energy �k is
obtained by Eq. �32� as a function of � and �, and the axis �
is also determined by Eq. �32�. Expression �32� leads to the

following energy derivative of ��̄�� ,�k ,��:

�̄����,�k,�� � −
1

mi

 dz

v�
3/2��,z,�k,��

�c
�����

��
� . �33�

Figure 4 shows the resonance lines of k=1 in the veloc-
ity �� ,�� by a bold curve, where �0=300 V and �0

=100 eV. The quantities BM, BA, and BT are the magnetic
fields at the mirror throat of the anchor mirror cell, at the
anchor mirror cell midplane, and at the transition mirror cell
midplane, respectively. The vertical axes in Figs. 4�a�–4�c�
are the kinetic energies and the horizontal axis is the kinetic
energy perpendicular to the magnetic-field line. The arrows
in each figure are plotted for the purpose of the relation to
Figs. 5 and 6, which is described later in this section. The
resonant ions trapped in the anchor mirror cell in Fig. 4�a� do
not depend on � so much, because the ion bounce time �� is
a function of � but not of � in the parabolic magnetic axial
profile such as the anchor mirror cell. The resonant ions
trapped in the transition mirror cell in Figs. 4�b� and 4�c�
depend on �−�BT for deeply trapped ions, where the gradi-
ent of the magnetic-field axial profile �dB /dz� is approxi-
mately constant around the ion turning point, while shallow
trapped ions has a different dependence on � from the
deeply trapped resonant ions due to the change of magnetic-
field axial profiles around the ion turning point.

Figures 5�a�–5�c� plot the radial shift �� of the resonant
ions per one-bounce axial motion, where the radial shifts

along the direction of the lines with arrow correspond to the
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resonance lines along the lines with arrows in Figs.
4�a�–4�c�, respectively. The radial shift �� is calculated by
the drift motion of resonant ions �Eq. �31��. That is, resonant

ions which started at ��ini , �̄ini ,zini� come back again at the

same spatial point ��ini+�� , �̄ini ,zini� after the one axial
round trip in a mirror cell. The amount of the radial shift ��

is proportional to sin�2�̄ini+��, as shown in Eq. �31�, so that

����̄ini� is expanded in the Fourier series of �̄ini. Figure 5

shows the amplitude of �� proportional to sin�2�̄ini+��,
where � is constant. It is found that the shallow trapped
resonant ions has a larger radial shift than the deeply trapped
resonant ions in a mirror cell.

Figure 6 plots the magnitude of ����̄ /��k�, where the
radial shifts along the direction of the lines with arrow cor-
respond to the resonance lines along the lines with arrows in
Figs. 4�a�–4�c�, respectively. As seen in Eq. �25� the radial

¯

FIG. 4. The regions of resonant ions in the velocity space �� ,�� are plotted.
�a� is the resonant ions trapped in the “Anchor Mirror Cell.” �b� is the
resonant ions trapped in “Transition Mirror Cell No. 1.” �c� is the resonant
ions trapped in “Transition Mirror Cell No. 2.”
particle flux is inversely proportional to ���� /��k�. So Fig. 6

Downloaded 22 Dec 2009 to 130.158.56.122. Redistribution subject to 
shows that the deeply trapped resonant ions contribute to the
radial transport rather than the shallow trapped resonant ions
in each mirror cell.

B. Diffusion coefficients

The diffusion coefficients given in Eq. �27� are deter-
mined as follows:

Dj = �
k
� d�

�0
�Wk

Ti

 j

D̃k,

D̃k = �0� mi

2�Ti

3/2 �2

2mi
2Lm

a2�r,�,�k�

��̄���r,�,�k��
exp�−

�k − q�

Ti

 .

�34�

Here �0=�0 /Bcc with magnetic field Bcc at the central cell

FIG. 5. The regions of resonant ions in the velocity space and radial shift
�� of resonant ions per one axial bounce. �a� is a radial shift of the resonant
ions trapped in the “Anchor Mirror Cell.” �b� is a radial shift of the resonant
ions trapped in “Transition Mirror Cell No. 1.” �c� is a radial shift of the
resonant ions trapped in “Transition Mirror Cell No. 2.”
midplane of GAMMA10 under consideration. Integrating
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Eq. �34� numerically, the magnitude of the diffusion coeffi-
cient is determined. Please note that Eq. �34� gives the dif-
fusion coefficients resulting from the resonant ions trapped
in a mirror cell with axial length of Lm.

Figure 7 shows the diffusion coefficient D0 on the flux
surface �= 1

2 �1 cm�2Bcc as a function of ��th in the case of
Ti=200 eV. The diffusion coefficient resulting from resonant
ions trapped in the central cell is inserted in Fig. 7�d� as a
reference,21 where the resonant ions pass from the mirror
throat around z�−750 cm to another mirror throat around
z�750 cm in Fig. 1. Contributions to D0 from different reso-
nances �k=1–19� are shown together. Here ��th is an azi-
muthal displacement by E�B drifts per half-period of ion
bounce motion, defined as

��th =
Lsys

�Ti/mi�1/2c
��

��
, �35�

where Lsys is the axial length of the GAMMA10 tandem
mirror �i.e., length from a plug at the left side �z
=−960 cm� to another plug at the right side �z=960 cm��.
The coefficient D1 has the same dependences on k and ��th

FIG. 6. The regions of resonant ions in the velocity space and a quantity

����̄ /��k� of resonant ions per one axial bounce. �a� is ����̄ /��k� of the

resonant ions trapped in the “Anchor Mirror Cell.” �b� is ����̄ /��k� of the

resonant ions trapped in “Transition Mirror Cell No. 1.” �c� is ����̄ /��k� of
the resonant ions trapped in “Transition Mirror Cell No. 2.”
that are essentially similar to those of D0 except that typi-
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cally D1�3D0. For large k, the resonant diffusion is small
because the large rotation in the nonaxisymmetry region
smoothes out the nonaxisymmetry. The resonant diffusion
coefficients Dj in Eq. �34� at an ion temperature are obtained

by summing up numerical integration of D̃k over �k for each
k. These diffusion coefficients are plotted by solid lines in
Fig. 7.

Figure 8 shows the diffusion coefficient D0 on the flux
surface �= 1

2 �1 cm�2Bcc for several ion temperatures in each
mirror cell. The diffusion coefficient resulting from resonant
ions trapped in the central cell is inserted in Fig. 8�d� as a
reference.21 It is found that D0 decreases with Ti due to the
decrease of the population of resonant ions except for the
central cell in Fig. 8�d�, where the population of resonant
ions is proportional to �k /Ti

3/2exp�−�k /Ti�d�k
1/2. Figure 8�a�

shows the diffusion coefficients D0 resulting from resonant
ions trapped in the anchor mirror cell, which is similar to the
case of transition mirror cell No. 1 in Fig. 8�b� and transition
mirror cell No. 2 in Fig. 8�c�. The coefficient D1 has almost
the same dependences on Ti and ��th that are essentially
similar to those of D0 except that typically D1�3D0 for Ti

=200 eV, and D1�1/2D0 for Ti=2 keV in each mirror cell.
The dependence of diffusion coefficients on the ion tem-

perature of the anchor mirror cell and transition mirror cells
is contrary for the case of the central mirror cell because the
resonant energies �k in the anchor and transition mirror cells
are much smaller than that in the central mirror cell.

C. Ion confinement time

Finally we evaluate the confinement time �� attributed
to the neoclassical resonant plateau transport in each mirror
cell in GAMMA10. The ion radial flux given by Eq. �29�
leads to the loss of total number N of ions in GAMMA10,
where

N =� � � nd�d�dz

B
. �36�

With Eqs. �23� and �24�,

−
dN

dt
= 2�Lcc���

cc� + 4�LA���
A� + 4�Ltr1���

tr1�

+ 4�Ltr2���
tr2� . �37�

Here Lcc, LA, Ltr1, are Ltr2 are the axial lengths of the central
cell, anchor mirror cell, transition mirror cell No. 1, and tran-
sition mirror cell No. 2, respectively. The particle fluxes
���

cc�, ���
A�, ���

tr1�, and ���
tr2� are the neoclassical particle

fluxes, which are calculated by Eq. �29� on the flux surface
�=�core with the relation of Dj �� radially in Eq. �34� by
using the diffusion coefficient D0 shown in Fig. 8 and the
coefficient D1. The radius �core is the core region of plasma
in the radial direction, which is given as �core

= 1
2 �10 cm�2Bcc. We assume that the axial and azimuthal dis-

tributions of ion density and temperature are uniform, and so

the radial ion density n��� is given as
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n��� = n0 exp�−
�

�n

 , �38�

and the ion temperature Ti��� is given as

Ti��� = Ti0 exp�−
�

�T

 , �39�

where �n= 1
2 �20 cm�2Bcc and �T= 1

2 �20 cm�2Bcc so that
�core /�n=�core /�T= 1

4 .
In order to find which mirror cell is responsible for the

ion radial confinement, the radial confinement times �� re-
sulting from the radial diffusion in each mirror cell are de-
fined as

��
tr1 �

N

2�Ltr1���
tr1�

, ��
A �

N

2�LA���
A�

,

�40�

��
tr2 �

N

2�Ltr2���
tr2�

, ��
cc �

N

2�Lcc���
cc�

,

where N is the total ion number confined within the core
region ���core of the tandem mirror given as

N =� dz

B�z��0

�core

n���2�d�

�
�Lsys�n

Bcc
n0�1 − exp�−

�core

�n

� . �41�

Figure 9 plots the confinement time �� for various cases of
ion temperatures Ti��core� on the flux �=�core in each mirror
cell as a function of radial electric field ��th. The confine-
ment time resulting from resonant ions trapped in the central
cell are inserted in Fig. 9�d� as a reference.21 The ion radial
confinement times resulting from resonant ions trapped in
the anchor mirror cell �Fig. 9�a��, in transition mirror cell No.
1 �Fig. 9�b��, and in transition mirror cell No. 2 �Fig. 9�c�� as
well as that in the central cell �Fig. 9�d�� in the GAMMA10
are obtained as a function of radial electric field and ion

temperature. The results made it clear that the neoclassical
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diffusions in the anchor mirror cell and transition mirror cells
are sufficiently smaller than that in the central mirror cell.
The resonant ions in the anchor mirror cell and transition
mirror cells have a lower energy than that in the central cell
because the anchor and transition mirror axial lengths are
much shorter than that of the central cell. The amount of �B
drift leading to the neoclassical resonant transport is small
due to the low energy of resonant ions in the anchor cell and
transition mirror cells, so that the neoclassical resonant trans-
port in GAMMA10 is important mainly in the central cell.

V. SUMMARY AND DISCUSSIONS

The electrostatic potential is assumed to be �=���� in
this paper. That is, the axial dependence of � is not taken
into account in Sec. IV, though the analytically obtained Eq.
�25� is applicable to the case of �=��� ,z�. The main reason
for neglecting the axial variation of � is that � is desirable to
be constant along z in the nonaxisymmetric region experi-
mentally, as shown in Fig. 1�d� in order to avoid the ions and
electrons coming from the central cell from being reflected
by the electrostatic potential in the nonaxisymmetric region.

Figure 5 shows that the radial shift of shallow trapped
ions is larger than that of deeply trapped ions, while Fig. 6
reveals that more population of deeply trapped resonant ions
exists than that of shallow trapped resonant ions. In other
words, the resonant ions with a turning point close to the
midplane of a mirror cell have a wider resonant region in the
velocity space, and the resonant ions with a turning point
close to the mirror throat have larger radial shifts. If there is
an electrostatic potential of well-type, that is minimum at the
midplane, in a mirror cell, the ions with higher energy have a
turning point at each axial position. The higher-energy ions
mean the lower population of Maxwellian ions so that neo-
classical resonant transport is relatively small in the case of a
well-type electrostatic potential. Hill-type electrostatic po-
tential enhances the neoclassical resonant transport of ions
coming from the central cell of GAMMA10 much more than

FIG. 7. Diffusion coefficient D0, where contribution to
D0 of each resonance k satisfying the resonance condi-

tion ��̄=��−k�=0 is plotted. Here the contribution of
the resonant ions trapped in the “Anchor Mirror Cell”
in �a�, trapped in “Transition Mirror Cell No. 1.” in �b�,
trapped in “Transition Mirror Cell No. 2” in �c�, and
trapped in the “Central Cell” in �d� to D0 are plotted,
respectively. The solid lines are the diffusion coefficient
D0 summing up each diffusion of ions with the reso-

nance condition ��̄=0.
that of ions trapped in each mirror cell.
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As a summary calculations are made of the neoclassical
resonant transport in the anchor mirror cell and transition
mirror cell in the GAMMA10 tandem mirror. The diffusion
coefficient and confinement time are evaluated. The results
are summarized as follows.

The analytical formulation of neoclassical resonant pla-
teau transport which is applied to an arbitrary magnetic mir-
ror configuration is developed with the use of the coordina-

tion system �� , �̄ ,��. This formulation reduces to the
conventional theory by Ryutov and Stupakov19,20 in the limit
Downloaded 22 Dec 2009 to 130.158.56.122. Redistribution subject to 
of a square-well magnetic field. The radial ion loss attribut-
able to the neoclassical diffusion is evaluated by applying the
theory of neoclassical diffusion to the nonaxisymmetric
magnetic-field anchor mirror cell and transition mirror cell in
GAMMA10. The ion radial diffusion and confinement time
of the anchor mirror cell, transition mirror cell, and central
mirror cell in GAMMA10 are obtained as a function of the
radial electric field and ion temperature.

The results made it clear that the neoclassical diffusions
resulting from the resonant ions trapped in the anchor mirror

FIG. 8. Diffusion coefficient D0 for
various ion temperatures Ti. Here in
the calculation of ��th of horizontal
axis, given in Eq. �35�, Ti=200 eV is
assumed. �a� is “Anchor Mirror Cell,”
�b� is “Transition Mirror Cell No. 1,”
�c� is “Transition Mirror Cell No. 2,”
and �d� is the “Central Cell,”
respectively.

FIG. 9. Ion radial confinement time
��. �a� is ��

A resulting from the radial
transport of resonant ions trapped in
the “Anchor Mirror Cell,” �b� is ��

tr1

from “Transition Mirror Cell No. 1,”
�c� is ��

tr2 from “Transition Mirror Cell
No. 2,” and �d� is ��

cc from the “Central
Cell,” respectively.
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cell and transition mirror cell are sufficiently smaller than
those trapped in the central mirror cell, because the resonant
ions trapped in the anchor mirror cell and transition mirror
cell have a much lower energy than those trapped in the
central cell.
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