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Acoustic properties were investigated for four tungsten bronze (TB) uniaxial ferroelectric crystals,
i.e., (Sro1Bag39)sNbjgO39 (SBN61), Cu-doped (K sNags);.0(Sro.75Bag 25)4.5Nb1g039 (KNSBN:Cu),
K5 goLiz goNby( 12050, and Ky 74115 i7Nby 44030 of which the spontaneous polarization is directed
along the polar ¢ axis. Large acoustic anisotropy between the two elastic constants C; and Cs3 have
been observed from all samples. Cs; exhibits a significant softening on approaching the diffuse
phase transition temperature from high-temperature side while C;; does not show any substantial
change in the same temperature range. This softening is accompanied by substantial growth of
hypersonic damping, appearance and growth of central peak (CP), and slowing down of the relevant
dynamics of CP represented by the reducing half width. All these results indicate that the lattice
motions along the ¢ axis couple strongly to the one-component order parameter of the polar
nanoregions (PNRs) or precursor polar clusters which form and grow below a certain temperature
in the paraelectric phase. The inverse dielectric constant measured along the ¢ axis of SBN61 and
KNSBN:Cu can be described by two linear regions divided by a crossover temperature at which the
change in the magnitude of dipole moments and the strength of the dipole couplings are expected
due to the formation of PNRs. C3; of SBN61 becomes continuously softened upon cooling even
when the temperature crosses the Burns temperature 7 at which PNRs begin to appear. It may
suggest that additional relaxation process other than that of PNRs may exist at high temperatures
above Ty and couple to the longitudinal acoustic waves propagating along the polar axis. Recent
observation of a single-particle relaxation at high temperatures and its transformation into a
collective relaxation of PNRs by dielectric spectroscopy [Belous et al., J. Appl. Phys. 102, 014111
(2007)] might be related to the anomalous acoustic behavior of SBN61 observed above T3. © 2008

American Institute of Physics. [DOI: 10.1063/1.3021107]

I. INTRODUCTION

Relaxor ferroelectrics (RFEs) have been an intense re-
search subject for a few decades owing to the high applica-
bility in various fields as well as their complex structural and
dynamical propertles 3 RFEs exhibit several common fea-
tures such as a diffuse frequency-dependent dielectric per-
mittivity of which the maximum temperature 7, follows the
Vogel-Fulcher relationship,4 the absence of structural phase
transition,5 and a formation of polar nanoregions (PNRs) at a
certain temperature, the so-called Burns temperature (75),
which is normally higher than 7,, by a few hundred degrees.6
Among them, the exact nature of PNRs has been considered
as the central problem in the fundamental understanding of
RFEs since PNRs are believed to be responsible for the com-
plex dynamics and many unique properties of RFEs.”® The
existence of T at which PNRs begin to appear is correlated
with many unusual properties of RFEs such as the deviation
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of the dielectric constant from the high-temperature Curie—
Weiss law,” appearance of diffuse elastic scattering from
x-ray and neutron scatterings,()"O deviations of the index of
refraction and the volume of the cubic cell from high-
temperature hnear behaviors,”!"'? occurrence of acoustic
emission s1gnals, 3 ete. However, Ty should not be consid-
ered as a usual phase transition temperature since there is no
structural change in the crystal on a macroscopic or mesos-
copic scale.

The microscopic origin of the formation of PNRs is not
fully understood at the moment. The lattice disorder intro-
duced into the perovskite structure by chemical substitution
or lattice defects has been suggested to be one of the key
ingredients for the formation of PNRs.? Recently, it was sug-
gested from first-principle-based simulations'* that PNRs are
predominantly pinned to the quenched chemically ordered
regions (CORs), which are formed by the two different cat-
ions with dissimilar valence states occupying the perovskite
B sites. Due to the different valance states, these short-range
CORs may induce charge disorder and thus become the
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TABLE I. The composition of the investigated TB crystals, their maximum temperatures (7,,), the real part of
the complex dielectric constant at 7, measured along the ¢ axis (e.), and crossover temperatures (7.s,)-

Crystal Composition T, (2 kHz) €. (2 kHz) Teross
SBN61 (St 61Bag 39)sNb;005 ~341 K 50 900 630-680 K
KNSBN:Cu® (KosNag )1 0(St0.75Bag 25)4 sNb 10050 ~420 K 19 200 ~530 K
KLN-a K goLi3 5Nb 012030 ~725 K° 2150

KLN-b K, 74Li3 67Nb 1 14030 ~705 K ° 1140°

“Doped with 0.04 wt % of CuO.
"Measured at 10 kHz.

source of quenched random fields in RFEs. However, clear
relationship between PNRs and CORs is still far from clear
understanding, and more thorough experimental and theoret-
ical efforts are necessary in order to reveal whether the com-
positional heterogeneity is prerequisite to the formation of
PNRs." In the case of tungsten bronze (TB) uniaxial relaxor
crystals such as strontium barium niobate [Sr,_Ba Nb,Oq
(SBN)], quenched random fields are expected to arise from
random empty positions on the A-sites of unfilled structure.'®
Depending on the cation ions and their site occupancies, TB
crystals show various interesting phase sequences, among
which the ferroelectric phase transition from high-
temperature tetragonal 4/mmm to low-temperature tetrago-
nal 4mm symmetry has been the most extensively studied. In
contrast to the quasicontinuous nature of the order parameter
of cubic perovskite RFEs due to the multiple easy directions
in the cubic primitive cell,"” the direction of the order param-
eter of the tetragonal uniaxial TB RFEs such as SBN is di-
rected along the fourfold polar axis, which can be modeled
by the one-component Ising spins.18

Due to the random directions of polarizations of PNRs,
macroscopic polarization cannot be observed in the ergodic
relaxor phase above T,, under the zero-field-cooling condi-
tion. However, since the square of the local polarizations of
PNRs is not zero, several physical properties coupled to
PNRs via electrostriction may show abnormal behaviors
when PNRs begin to appear at T. The appearance of PNRs
can also be noticed from changes in acoustic properties, i.e.,
the sound velocity and the corresponding elastic constant at
TB.19 High-temperature acoustic anomalies near 7 of many
lead-based perovskite relaxors have been investigated by
Brillouin light scattering technique.zo_26 The Brillouin fre-
quency shift (vg) of the longitudinal acoustic (LA) waves,
corresponding to the elastic constant C;;, first shows a typi-
cal hardening and then exhibits a substantial softening on
approaching 7,, upon cooling starting from high tempera-
tures above Tp. This softening has been accompanied by a
significant increase in the hypersonic damping as well as the
appearance and growth of the central peak (CP), indicating
that the dynamics of PNRs is strongly coupled to the acous-
tic waves in RFEs. From these acoustic anomalies, important
information about the dynamics of PNRs could be derived
such as the temperature dependence of the relaxation time
and its distribution, acoustic dispersion, etc. In contrast to
these detailed information on the acoustic properties of cubic
perovskite RFEs, there has been no report on the acoustic
properties of uniaxial RFEs in a high-temperature range cov-
ering T. The temperature dependence of several elastic con-

stants of Sty ¢;Bay39Nb,Og (SBN61) has been studied by
Brillouin scattering in a limited temperature range.27 It was
shown that the LA mode propagating along the polar ¢ axis
and the corresponding elastic constant Cs3 exhibit a substan-
tial softening on approaching the diffuse ferroelectric phase
transition temperature accompanied by a significant increase
in the hypersonic damping as well as in the integrated inten-
sity of CP. The detailed temperature dependence of the CP
has recently been studied by broadband Brillouin scattering
and revealed that CP has two components among which the
CP component in a narrower frequency range appears due to
the formation and growth of PNRs starting from TB.28 Pre-
liminary Brillouin scattering study on
(Ko.sNag 5)1.0(Srg75Bag25)4.sNb1gO39 doped with 0.04 wt %
of CuO (KNSBN:Cu) has been reported by Siny et al.” vy
corresponding to Cs; of this crystal shows a steplike anomaly
at the phase transition temperature and has been ascribed to
the electrostrictive coupling between the order parameter and
the strain. The purpose of the present study is to investigate
the acoustic properties of SBN61 in a widest temperature
range including T and to find correlation between the for-
mation of PNRs and the sound velocity propagating along
the polar axis. For comparison, acoustic behaviors of three
other TB ferroelectric single crystals, KNSBN:Cu,
K goLi3 oNbjg 12039 (KLN-a), and K, 74Li307Nb;44039
(KLN-b) have been investigated and compared. Special at-
tention has been paid to the comparison between C;; and Cs;
since they are believed to represent the acoustic anisotropy
inherent in these uniaxial TB single crystals.

Il. EXPERIMENT

SBN61, KNSBN:Cu, and two KLN single crystals were
grown by the Czochralski method, and the detailed sample
growth conditions can be found elsewhere.”” The composi-
tions of the four investigated TB crystals, their dielectric
maximum temperatures (7,,) evaluated at a certain probe fre-
quency, the absolute values of the real part of the complex
dielectric constant at T, measured along the ¢ axis (€.), and
crossover temperatures which will be discussed in Secs. III
and IV are listed in Table I. Platelet samples were cut along
several crystallographic axes from single crystals and pol-
ished to optical quality. A Sandercock-type six-pass tandem
Fabry—Pérot interferometer has been used to measure the
Brillouin spectra of these single crystals. Either a backward
scattering geometry or a special right-angle scattering geom-
etry (called 90A scattering) (Ref. 31) was used for the mea-
surement of the Brillouin spectrum. The phonon wavevector
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FIG. 1. Two Brillouin spectra of SBN61 at room temperature measured at
the two scattering geometries where the wavevector of the probed phonons
is parallel to the polar ¢ axis.

was set to be along either the polar ¢ axis or a axis when the
backscattered light was monitored in order to obtain Cs3 or
C;. In the 90A scattering geometry, the Brillouin spectrum

was obtained at the @(cc)b scattering geometry, where & and
b denote the directions of the incident and scattered lights in

the plane perpendicular to the ¢ axis. @ and b were inclined
by 45° with respect to the tetragonal a and b axes, and the
phonon propagation direction was along the tetragonal a(
=b) axis. In addition, the crystal plate was rotated by 90° in
the way by which the phonon propagation direction was set
to be along the tetragonal ¢ axis. The former was used to
probe C;; and CP while the latter to probe Cz;. Two free
spectral ranges of 75 and 30 GHz were used for the back-
ward and 90A scattering geometries, respectively. The wave-
length of the laser beam was either 532 or 488 nm. All the
Brillouin spectra were recorded during the cooling process.

lll. RESULTS

Figure 1 shows two Brillouin spectra of SBN61 at room
temperature measured at the two scattering geometries where
the wavevector of the probed phonons is parallel to the polar
c axis. In this case, the corresponding elastic constant of the
LA mode is Cs;. The Brillouin frequency shift vy is deter-
mined by the sound velocity V and the phonon wavevector ¢,
which can be expressed by the following equation:

V. 2nsin(6/2
_av _2nsin(62)

2 A M

Vg
In this expression, n denotes the refractive index correspond-
ing to the polarization of the incident light, 6 the scattering
angle, and N\ the wavelength of the incident laser beam. The
magnitudes of the wavevector g are 1.67X 107 and 5.57
X 107 m~! for the 90A scattering and backscattering geom-
etries, respectively, from which the large difference in vz of
the LA waves shown in Fig. 1 can be justified. The sound
velocity of the LA mode can be calculated from the mea-
sured vg and the reported value of the refractive index.”” The
measured spectrum was fitted by the Lorentzian function
convoluted by the Gaussian instrumental function resulting
in accurate values for the vz and the full width at half maxi-
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FIG. 2. The temperature dependence of the vz and the FWHM of the Bril-
louin doublet of SBN61 arising from the LA waves propagating along the
polar ¢ axis measured at the backward scattering geometry.

mum (FWHM) of the Brillouin doublet arising from the
acoustic waves.

Figure 2 displays the temperature dependence of the vp
and the FWHM of the Brillouin doublet corresponding to the
LA waves propagating along the polar ¢ axis measured at the
backward scattering geometry. vp decreases continuously
upon cooling from the highest measurement temperature of
about 873 K. T of SBN61 is known to be about 750 K
estimated from the linear birefringence study.12 vp becomes
smaller continuously with decreasing temperature even when
crossing T. A slight change in the slope of vz seems to be
noticeable near T. The softening of vz becomes more sub-
stantial below a certain temperature of 7°~450 K below
which the integrated intensities of CPs increase® and the
FWHM of the LA mode in Fig. 2 also grows significantly.
This temperature is similar to the one at which the intensity
of the second harmonic generation signal suddenly increases
upon cooling.33 vy and the FWHM of the LA mode show a
minimum and a maximum, respectively, at the temperature
near 7,,. Below T,,, vz hardens and the FWHM decreases
with lowering temperature.

The Brillouin spectrum of SBN has also been measured
at the 90A scattering geometry. Two sample orientations
have been used where the direction of the phonon wavevec-
tor is along either the tetragonal ¢ or a axis in each geometry.
The advantage of the present scattering geometry is that the
sound velocity can be obtained without the knowledge of the
refractive index of the single crystals.34 The sound velocity V
is related to the Brillouin frequency shift vz as

Novp
V2

V= (2)
where A\ is the laser wavelength in vacuum. The elastic stift-
ness coefficient Cj; is related to the corresponding sound ve-
locity V and the density of the crystal p according to the
following equation:

Cij = sz . (3)

From Eq. (3), C;; and Cs; have been obtained using the
theoretically calculated density of SBN61 (p=5.3 g/cm?)
based on the reported lattice parameters,35 and the results are
summarized in Fig. 3. The intensity of the Brillouin doublet
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FIG. 3. The temperature dependence of C;; and Cj; elastic constants of
SBN61 measured by the 90A scattering geometry.

due to the TA mode becomes very weak near 300 K, below
which we could not obtain reliable data for C;;. Although the
measurement temperature range for obtaining C;; is rather
limited, it is clear that the LA waves whose wavevector is in
the plane perpendicular to the polar axis do not show any
substantial change near the diffuse ferroelectric phase transi-
tion, in contrast to the LA waves propagating along the polar
¢ axis of which the corresponding elastic constant C33 expe-
riences a significant softening on approaching 7,,.

vp’s of the LA waves of KNSBN:Cu propagating along
the two directions parallel and perpendicular to the tetrago-
nal ¢ axis are shown in Fig. 4(a). The FWHM of the LA
mode whose phonon wavevector is parallel to the ¢ axis is
displayed in Fig. 4(b). Similar to the case of SBN61, acoustic
anisotropy is clearly seen in this TB uniaxial crystal. The
change in vy of the LA waves due to the temperature change
from 600 to 400 K is approximately 0.8 and 4 GHz for the
phonons propagating along the a and c axes, respectively.
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FIG. 4. (a) The temperature dependence of v’s of the LA waves of KNS-
BN:Cu propagating along the two directions parallel and perpendicular to
the tetragonal ¢ axis. (b) The temperature dependence of the FWHM of the
LA mode whose phonon wavevector is parallel to the ¢ axis.
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FIG. 5. The inverse dielectric constant of KNSBN:Cu measured long the ¢
axis and the fitted results denoted as two lines along with the fitting param-
eters and the temperature ranges used for the fitting procedure:

Regarding the change in the hypersonic damping, the
FWHM begins to increase at about 530 K upon cooling. The
complex dielectric constant of KNSBN:Cu was reported in
our previous study.36 The inverse of the real part of the di-
electric constant, 1/€’, measured along the polar ¢ axis
shows two linear regions in the paraelectric phase, and the
crossover temperature is approximately 530 K. This is illus-
trated in Fig. 5 which shows two linear regions in 1/€’ as
well as their fitting results using the Curie—Weiss law of €’
=C/(T-T,), where C and T, are the Curie constant and the
Curie temperature, respectively. Two linear regions in the
inverse dielectric constant has also been observed in SBN60
single crystals, which showed a crossover behavior at 630—
680 K.*" It is interesting to note that this temperature is close
to Tp.

Cy; and C33 of KLN-a and KLN-b single crystals are
shown in Fig. 6(a) and 6(b), respectively. For the calculation
of the elastic constants, the reported refractive indices of
KLN were used.*® The approximate ferroelectric phase tran-
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FIG. 6. The temperature dependences of C,; and Cx; elastic constants of (a)
KLN-a and (b) KLN-b single crystals.
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sition represented by the minimum temperature of Cs;z is in-
dicated by T.. It is interesting to note that the observed 7. by
Brillouin scattering is lower than the dielectric maximum
temperature  7,, detected by previous dielectric
measurements>" by about 20-30 K. Since 7,, depends on
the probe frequency due to the diffuse nature of the ferro-
electric phase transition as well as to the conductivity con-
tribution, the temperature determined by the minimum of Cs;
should be considered as a true structural phase transition for
these two KLN single crystals. Similar to SBN61 and KNS-
BN:Cu, only Cs; exhibits a significant softening upon ap-
proaching the ferroelectric phase transition from both high-
and low-temperature sides. Cy; shows a slight hardening in
the low-temperature range below 7,,. C33 becomes hardened
upon heating from 7, and then seems to become saturated at
very high temperatures.

IV. DISCUSSION
A. Acoustic anisotropy

The common characteristic of the elastic properties ob-
served from the four examined TB uniaxial ferroelectrics is
that there is a large elastic anisotropy depending on the pho-
non propagation direction. C33 shows a significant softening
on approaching 7,, from both high- and low-temperature
sides while C;; does not display any substantial anomaly in
the whole temperature range. Since the order parameter of
these tetragonal TB ferroelectrics is a discrete one-
component one of which the direction is along the fourfold
polar ¢ axis, strong coupling between this Ising-type order
parameter and the strain arising from the LA waves propa-
gating along the same polar direction is expected. The fluc-
tuating local polarizations affected by the strain field of the
LA waves in turn respond to the elastic system resulting in a
change in the elastic stiffness coefficient.

The C;3; of SBN61 becomes softened upon cooling via
three steps occurring in three temperature ranges divided by
two characteristic temperatures, Tp and T*. Above Ty, Cs3
continuously decreases with lowering temperature, which is
in contrast to the temperature dependence of Cs3(=C},) of all
investigated cubic relaxor perovskites.m_% The possible ori-
gin of this anomalous behavior will be discussed in the fol-
lowing section. Near T, a slight change in the slope of vg
can be noticed from Fig. 2 indicating some change in the
nature of the relevant degree of freedom coupled to the
acoustic waves, probably due to the formation of PNRs. The
existence of T in SBN has been indicated by many experi-
mental results such as the measurements of the strain and the
linear birefringence. 1211 the temperature range between Ty
and T" becomes softened C33 with almost temperature inde-
pendent acoustic damping. Since there is no macroscopic
spontaneous polarization in the paraelectric or ergodic re-
laxor phase between T* and Tj, we expect electrostrictive
coupling would dominate the interaction between the PNRs
and the strain. In this case, the critical part of Css, i.e., the
decrease in Cs; arising from the electrostrictive coupling can
be expressed by g3;(P3)x, Where gs; is the relevant electros-
trictive coefficient, <P§) is the mean value of the squared
local polarization of PNRs aligned in the direction along the
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¢ axis, and y is the susceptibility.40 Fluctuating local polar-
izations appear at T and then gradually grow with decreas-
ing temperature in RFEs. Although the direction of these
polarizations are random, their appearance contributes to the
decrease in the elastic constant owing to the quadratic nature
of the electrostrictive interaction. This decrease would
evolve continuously without substantial change because the
growth of (P%) is very gradual in a wide temperature range
until the interaction between PNRs becomes stronger and
thus the PNRs get long lived and more correlated than at
higher temperatures. Indication to this change in the dynam-
ics of PNRs can be noticed at 7°~450 K from the more
steepened slope in vg, sudden increase in the FWHM of the
LA mode, the increase in the intensity of the second har-
monic generation signal,33 as well as the integrated intensity
of CPs.?® vp and C33 become minimum at the diffuse phase
transition of ~340 K, concomitant with the maximized hy-
personic damping as can be seen in Fig. 2. Significant in-
crease in the FWHM appearing below 7" suggests that the
contribution to the hypersonic attenuation by the order pa-
rameter fluctuations becomes more substantial due to the
stronger intercluster correlations than those between PNRs at
higher temperatures.

Acoustic properties of KNSBN:Cu shown in Fig. 4 ex-
hibit dynamical changes similar to those observed in SBN61.
The addition of K and Na to SBN reduces the number of
vacancies of KNSBN:Cu to half of that of SBN, which in-
creases the Curie temperature and reduces the relaxor behav-
iors. KNSBN:Cu shows a definite structural phase transition
at about 420 K from 4/mmm to 4mm symmetry, but this
transition is diffused to some degree.29’36 The dielectric
maximum temperature depends on the probe frequency
slightly, and the inverse dielectric constant shows a deviation
from the Curie-Weiss law at temperatures close to 7,,. It
should be noted that the inverse dielectric constant exhibits
two linear regions in the paraelectric phase divided by a
crossover temperature of about 530 K. Above this tempera-
ture, vy of the LA waves propagating along the ¢ axis de-
creases upon cooling with a temperature independent hyper-
sonic damping factor. Below 530 K, the FWHM begins to
increase slightly accompanied by continuous decrease in vg
with decreasing temperature. When the inverse dielectric
constant deviates from the Curie—Weiss behavior at about
430 K, vz becomes more steepened and the FWHM shows a
sharp increase. vy attains a minimum at 7,,. The high value
of FWHM in the ferroelectric phase below T,, seems to re-
flect the damping arising from the phonon scattering by
ferroelectric domain walls. Regarding to CP behaviors of
KNSBN:Cu, two-component CPs have been observed, and
both showed substantial increase, i.e., growth of the inte-
grated intensity below ~500 K upon cooling.41

Two KLN single crystals show similar behaviors. Both
KLN-a and KLN-b show a dip in Cs;3 at the phase transition
temperature but no appreciable acoustic anomaly in Cy; ex-
cept slight hardening below T.. Although there has been no
report about the existence of Ty in these systems, several
experimental evidences for the existence of precursor polar
clusters above T, have been suggested for KLLN single crys-
tals, for example, appearance of a strongly polarized central
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FIG. 7. The temperature dependence of the normalized elastic constant Cs3
of SBN61 with respect to the value at 7=750 K.

peak”’42 and deviation of the dielectric constant from the

Curie—Weiss law in the paraelectric phase.39 The appearance
and the growth of CP of KLN-b are accompanied by a sub-
stantial increase in the hypersonic damping of the LA mode
corresponding to C 33.39’42 In addition, the relaxation time es-
timated from the width of CP shows a slowing-down behav-
ior with decreasing temperature. All these results obtained
from the four TB uniaxial single crystals suggest that the
acoustic anisotropy between C|; and Cs; arises from the cou-
pling between the one-component order parameter of precur-
sor polar clusters aligned along the polar ¢ axis and the strain
field arising from the LA waves propagating along the same
direction. Common characteristics to all samples are signifi-
cant softening of Cs3, substantial growth of hypersonic
damping, appearance and growth of CP, and slowing down
of the relevant dynamics of CP represented by the reducing
half width, all of which have been observed on approaching
T,, or T. from high-temperature side and are believed to be
correlated with the evolution of precursor polar clusters.

B. Acoustic dispersion in SBN61

Two C33’s of SBN61 measured from two scattering ge-
ometries, which show slight differences at high tempera-
tures, have been normalized to the value obtained at 750 K
(~Tpg), and Cs3(T)/C33(T=750 K) is shown in Fig. 7. The
temperature dependences of the two normalized elastic con-
stants are almost the same in the temperature range of 400—
870 K. A dispersion starts to appear at about 380 K, becomes
the largest at T, and gradually disappears on lowering tem-
perature. The minimum temperature of Cs3(7) depends on
the wavevector of the LA waves slightly and is located at a
higher temperature for the LA waves having a larger
wavevector and thus a higher probe frequency at the back-
ward scattering geometry. Similar acoustic dispersion has
also been observed in the archetypical relaxor
Pb(Mg,3Nb,,3)O; (PMN) system.”® The onset of the acous-
tic dispersion in PMN was suggested to correlate with cubic
anisotropy.

When PNRs form at and grow below T in SBN61, they
can move freely under the strain field by the acoustic waves
and then respond to the acoustic waves, which can be de-
scribed by a relaxation process.43 Since the intercluster inter-
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action becomes stronger between PNRs with decreasing tem-
perature, the mean relaxation time for the response of the
order parameter to the strain field is expected to shift to
larger values and the distribution of the relaxation time
would become broader upon cooling toward Tm.44 Broad-
band dielectric spectroscopic studies have revealed that the
distribution function of the dielectric relaxation time in SBN
also becomes broader with decreasing temperature.45’46 At
high temperatures where the relaxation frequencies of the
ordering quantity are much higher than the frequency of the
LA waves, the order parameter can respond to the strain field
instantaneously contributing to the softening of the related
elastic constant and differentiating it from the infinite-
frequency elastic constant. As the substantial portion of the
distribution of the acoustic relaxation times becomes longer
and comparable to the inverse of the frequency of the acous-
tic waves, many PNRs cannot respond to the elastic system
and do not contribute to the softening of the elastic constant.
The higher the LA mode frequency having larger wavevec-
tor, the higher the temperature at which this process would
occur. Coarsening and stabilization of PNRs due to increased
intercluster correlation observed at 360 K by dielectric
study47 may affect the distribution of the acoustic relaxation
times contributing to the onset of the acoustic dispersion at
similar temperatures as shown in Fig. 7.

C. Acoustic behavior of SBN61 above T

The most noteworthy result of the present study is that
vy becomes larger continuously with increasing temperature,
even when crossing Ty in the case of SBN61. vp’s tend to
saturate at the highest measurement temperatures but do not
show any maximum in the investigated temperature ranges.
In the case of cubic perovskite relaxors, v first increases and
then decreases upon heating, and the maximum temperature
for vy corresponds to Ty approximately.zo_% Linear decreas-
ing behavior of vz upon heating above T is consistent with
the theoretical prediction based on normal lattice
anharmonicity.48 The continuous hardening of C3; upon heat-
ing is quite an unexpected result because the high-
temperature regions above 7 is simply a paraelectric phase
different from the ergodic relaxor phase below 7.

It should be emphasized that, similar to KNSBN:Cu, the
SBN61 also shows two linear regions in the inverse dielec-
tric constant characterized by two different sets of Curie pa-
rameters, which are divided by a crossover temperature close
to TB.37 This dielectric behavior is different from those of
Pb-based perovskite relaxors in which the dielectric constant
shows deviation from the Curie—Weiss law at Tz. The acous-
tic properties of the LA waves propagating along the ¢ axis
show different behaviors when the temperature changes
across the crossover temperature which divides the inverse
dielectric constant into two linear regions. vy displays a con-
tinuous decrease upon cooling while the FWHM, which is
related to the hypersonic damping, is almost temperature in-
dependent in the low-temperature region, i.e., from Ty to T
The change in the Curie parameters at the crossover tempera-
ture may reflect the change in the magnitude of dipole mo-
ments and the strength of the dipole couplings due to the
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formation of PNRs at 7. Recently, broadband dielectric
spectroscopy revealed that a single-particle relaxation per-
sisting up to 900 K and not existing in Pb-based perovskite
relaxors changes into a collective relaxation of PNRs indi-
cating a crossover behavior in the temperature evolution of
the dynamics of SBN and Na-doped SBN % Based on these
findings, continuation of the softening of vz and Cs3 above
Ty in SBN61 observed during cooling, as can be seen from
Figs. 2 and 3, may tentatively be ascribed to the coupling
between the single-particle relaxators inherent only in un-
filled TB uniaxial crystals and the LA waves. Further gradual
decrease in FWHM of the LA waves upon heating above Tp
may hint at the existence of additional relaxation process
which can couple to the acoustic waves. It would be very
interesting to investigate whether the high-frequency sinigle-
particle relaxation, observed from SBN, exists in other un-
filled TB ferroelectrics such as KNSBN:Cu and KLN single
crystals. Finally, it should be mentioned that in addition to
the single-particle relaxation other effects such as the in-
crease in oxygen vacancies and ionic conductivity might be
related to the acoustic behaviors above T, which needs ad-
ditional investigation.

V. CONCLUSION

We investigated acoustic properties of four uniaxial
tungsten bronze single crystals, (SrgqBag39)sNb;oOs30,
(Ko.sNag 5)1.0(S10.75B20.25)4.5Nb 10030, K 80Li3.82Nb1.12030,
and K, 74Li5 o7Nb 4405,. Large acoustic anisotropy between
Cs3 and Cy; has been observed from all the investigated TB
crystals, which has been ascribed to the existence of the
Ising-type one-component order parameter of the precursor
polar clusters and its electrostrictive coupling to the strain
field of the acoustic waves. Cs; exhibits a substantial soften-
ing on approaching the diffuse phase transition from high-
temperature side while C;; does not show any significant
anomaly. The softening of Cs; is accompanied by the in-
crease in the hypersonic damping of the corresponding lon-
gitudinal acoustic waves, the appearance and the growth of
the quasielastic central peaks, and the onset of acoustic dis-
persion within the Brillouin frequency window. The inverse
dielectric constant of both SBN61 and KNSBN:Cu displays
two linear regions having two different sets of Curie param-
eters divided by a crossover temperature being close to T in
the case of SBN61, which may indicate the change in the
magnitude of dipole moments and the strength of the dipole
couplings due to the formation of PNRs. Cs; of SBN61
shows continuous hardening upon heating even about T
along with decreasing hypersonic damping, which is distin-
guished from Pb-based perovskite relaxors. This result may
suggest the existence of additional relaxation process other
than that of PNRs persisting at high temperatures above Ty
which couples to the acoustic waves. Recent observation of a
single-particle relaxation at high temperatures and its trans-
formation into a collective relaxation of PNRs by dielectric
spectroscopy49 seems to be closely correlated with the
anomalous acoustic behaviors which we observed in SBN61.
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