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LJUNGGREN’S TRINOMIALS AND MATRIX EQUATION
A A = A

By

Aleksander GryTczuk and Jarostaw GRYTCZUK

Abstract. We give some necessary and sufficient conditions for
solvability of the matrix equation (*) A*+ 47 = 4*, with certain
restrictions on integers x, y,z and a matrix 4 € My (Z), by applying
Ljunggen’s result on trinomials. Moreover, we obtain full solution
of (*) for the case kK =2 by another technique.

1. Introduction

We consider the general problem of finding necessary and sufficient con-
ditions for the matrix 4 € My(Z) to satisty the equation

(x) AY+ A = A°

for some positive integers x, y and z. Le and Li [7] proved that if 4 € M,(Z),
then, for x =mr, y =ms, z=mt, where m > 2 and r,s,t are positive integers,
(*) has a solution if and only if the matrix A4 is nilpotent or det 4 = Tr4 = 1.
Another proof of this result has been given in [5]. The restriction to multiplies
of m is motivated by another matrix equation of the famous form, namely by the
equation of Fermat

(**) Xﬂl + Ym — Zm.

In fact (*) is equivalent to Fermat’s equation (**) for X = A", Y = 4* and
Z = A'. We note, that if m = 4 the Domiaty [2] remarked that the equation (**)
has infinitely many solutions in M;(Z) generated by Pythagorean triples. This
fact is in opposition to the well-known case of ordinary integers, as proved by
Wiles [13].
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In this connection it is a very important problem to find a sufficient and
necessary condition for solvability of Fermat’s equation (**) in the set of matrices
(cf. [10], [12]). Khazanov [6] found such conditions for the matrices X,Y,Z €
SLy(Z) and X, Y,Z € GL3(Z). Further investigations connected with Khazanov’s
results have been given in the papers [1], [5], [7] and [9]. Some necessary condition
for solvability of (**) in the set M,(Z) is contained in the paper [3]. In general
case, it was proved in [4] that if the matrix 4 € M(C), k > 2 has at least one
real eigenvalue o > /2 and (*) is satisfied in positive integers x, y and z, then
max{x —z,y —z} = —L.

In the present paper we give an application of Ljunggren’s [8] result on
trinomials to find a sufficient and necessary condition for solvability of (*) in
positive integers x, y and z under some restrictions for 4 € My(Z), k > 2 con-
cerning the set of exponents x, y and z. Moreover, we present full solution of (*)
for the case k =2 without using Ljunggren’s result on trinomials. In the first
part of this paper we prove the following theorem.

THEOREM 1. Let A € My(Z), k > 2 be a given non-zero and non-singular ma-
trix with the characteristic polynomial f(t) = det(t] — A) = t* + a1t* ' + ... + a.
Then the matrix equation (*) has a solution in positive integers x, y and z such that
x=yor x=z or y=z if and only if

(i)

A m — 217

where m=kj/o, 1 <oa<k is a divisor of k, detA==+2% and o(z—x) =
k >2. Moreover, if the positive integers x,y,z satisfy the conditions:
x>y>z and x—z=22(y—z)=2k>=2, with (x—z,y—z)=(nm)=d and
3¥(x—z)/d+ (y—z)/d, then (*) has a solution, if and only if

(i) a; =0, for i # m,k, and a,, = & and ay = det A = &, where ¢ = +1 and
e==x1orif3|(x—z)/d+ (y—z)/d then

(iii)

A 4+ e e A+ T =0 or h(A) =0,
where h(t) is irreducible factor of the polynomial ¢(t) given by the equality
g(t) = 7 b e fa = (P + &) Tey T+ D),

where (x —z)/d,(y — z)/d are both odd and ¢, = 1 or (x — z)/d is even and &; = 1
or (y—1z)/d is even and & = ¢,.
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2. Basic Lemmas

In the proof of the Theorem 1 we use of the following Lemmas.

LemMma 1 ([11], p. 210). Let A be a k x k, k > 2 matrix with entries in the
field K. Then each polynomial g € K[x] with property g(A) = O is divisible by the
minimal polynomial m € K[x] of the matrix A. In particular, the minimal poly-
nomial m divides the characteristic polynomial f € K[x] of the matrix A and the
polynomial f has the same roots, but possibly with different multiplicities.

REMARK 1. The minimal polynomial of the matrix A is the unique polynomial
m € K[x] of minimal degree with leading coefficient equal to one and such that
m(A4) = 0.

Lemma 2 (Ljunggren [8], Thm. 3, p. 69). If'n = dn;, m = dmy, n = 2m where
(ny,my) =1, then the polynomial g(x) = x" + &1x" + &, where ¢,&; = +1 is irre-
ducible, apart from the following three cases, when ny +m; =0 (mod 3): 1° ny,m;
both odd and & =1, 2° n; even and & =1, 3° my even and & = ¢, and then
g(x) = (x* + eleix? + 1)h(x), where h(x) is an irreducible polynomial.

3. Proof of the Theorem 1

Suppose that (*) has a solution in positive integers x, y and z and let the
matrix A € My(Z) be a non-zero and non-singular matrix. First, we note that if
x =z or y =z then (*) is impossible, since (*) reduces in these cases to the form
AY = O or A* = O. Both these equations imply det A = 0, which contradicts the
assumptions. If x =y then (*) has the form

(3.1 24% = A°.
By (3.1) it follows that x # z and z > x and consequently we have
(3.2) A7 =21

From (3.2) we obtain det 4 = (det 4)" " =2k so det A = +2% where
1 <o < k. Hence, (+2)* = 2% and a(z — x) = k > 2, where « or z — x is even
if det A =—-2% and z — x = k/a = m. Then by (3.2) it follows that 4™ = 2[ and
the proof of (i) is finished. Now, we can consider the case when x # y # z. In this
case, by the equation (*) and the assumptions about x, y and z it follows to
consider the following equation:

(3.3) A A =T
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Let d = (x —z,y —z) = (n,m) be the greatest common divisor of n and m
and let x —z > 2(y —z) > k > 2 and denote by g(¢) the polynomial of the form

(3.4) gty =174+ 7 - 1.

Then by (3.3) it follows that g(4)= 0. If 3 (x—2z)/d+ (y—z)/d then
from Lemma 2 it follows that the polynomial g() is irreducible and therefore the
characteristic polynomial f(f) of the matrix A is equal to g(z) in (3.4). Com-
paring the coefficients and degrees of these polynomials we obtain the condition
(i1). Let 3| (x—z)/d+ (y —z)/d, then by Ljunggren’s result given in Lemma 2
we obtain that

(3.5) g(t) = (22 + eleltd + 1)h(2).
From (3.5) in virtue of g(4) = O we obtain that
A ey +1=0 or h(4)=0

with some restrictions concerning m,n,d and the polynomial A(f) given by
the assumptions of the Ljunggren’s Lemma 2. The proof of the Theorem 1 is
complete.

4. Full Solution of the Equation (*) for the Case 4 € M,(Z)

In this part of our paper we present full solution of the equation (*) in
positive integers x, y and z in the case when the matrix 4 belongs to M>(Z). In
this purpose we replace Ljunggren’s result on trinomials by the following Lemma.

Lemma 3 ([4]). Let A be in My(C), where k >2 and C denotes the field
of complex numbers. Suppose that A has at least one real eigenvalue o> /2.
If the equation (*) has a solution in positive integers x,y and z then
max{x —z,y—z} = —1.

Now we prove the following theorem.

THEOREM 2. Let A€ M>(Z) be a given non-zero matrix with det A = s and
Tr A = r. Then the matrix equation (*) has a solution in positive integers x, y and z
if and only if one of the following conditions holds:
(i)
A=2I

)

(V, S) = {(070)7 (072)7 (07 _2)7 (17 1)7 (17 _1)7 (_l’ _1)}
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PrOOF. Denote by f(¢) = det(t] — A) = t> — (Tr A)t+ det A the character-
istic polynomial of the matrix A€ M(Z) and let r=Tr A and s= det 4.
Suppose that the matrix 4 is non-singular, so s=det 4 # 0 and let positive
integers x, y and z satisfy the equation (*). If x =z or y =z then (*) reduces to
AY = O or A* = O, which is impossible, because s = det 4 # 0. If x = y then (*)
has the form: 24* = A*. We observe that if x > z then we have 24 = I, which
implies 4 det 4 =4(det A)* " =1 and we get a contradiction. Hence, x < z
and we obtain the following equation:

(4.1) AT =21,

From (4.1) it follows that det 4>¥ = (det A)°" " =4 and consequently
detA =42 and z—x=2 or det 4 =4 and z— x=1. The case of z—x=1
implies by (4.1) the condition (i) of the Theorem 2. In the case of z —x=2
and s =det 4 = +2 by (4.1) it follows that

(4.2) A2 =2I.

b
Let 4 = <a d) be a given matrix with entries a,b,c,d € Z. Then by (4.1)
c

it follows that

5 a b\’ a’>+be bla+d) 2.0
(4.3) 4 (c d> (c(a+d) d2+bc>21<0 2>'
Analyzing the equation (4.3) we obtain that b #0 and ¢ # 0, so implies
a+d =r=0. From this fact in virtue of s = det 4 = +2 we obtain (r,s) = (0, 2);
(0,-2).
Now, we can consider the case when x # y #z and s=det 4 #0,+2 and
A # 2I. In these cases the equation (*) implies:

(4.4) AP+ A477 =1, if min{x, y,z} =z
(4.5) AV + T =477, if min{x, y,z} =y
(4.6) I+ 47 =477 if min{x,y,z} = x.

For the corresponding equations (4.4)—(4.6) let g(¢) be associated polynomial
of the form:

(P1) g(t) = 7+ 75 — 1, if (4.4) holds
(P2) gity=r"7 -7 +1, if (4.5) holds
(P3) gty =1 — > +1, if (4.6) holds.
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From (P1)-(P3) and (4.4)-(4.6) we obtain g(4) = O. Hence, by Lemma 1 it
follows that if m(¢) is the minimal polynomial then we have m(z)|g(f). In this
connection we consider two cases: 1° f(¢) =t> — tr+ s is an irreducible char-
acteristic polynomial of the matrix 4, 2° f(¢) is reducible polynomial. In the
case 1° we have f(f) = m(¢) and therefore f(¢)|g(), which by (P1)—(P3) implies

@47 fler—=+7 =1, or f()| "7 =7V +1, or f(O)| -+ 1.

From (4.7) in the case of t =0 we get f(0)|+1. Since f(0) =s, then s = +1.
On the other hand putting in (4.7) t+=1 we obtain f(1)|+1. Since f(1)=
l—r+s and s=+1 we get the following possibilities to consider:

(48) (V,S):{(1,1),(3,1),(71,71),(1,71)}.

Consider the case when (r,s) =(3,1). In this case the characteristic poly-
nomial has the form: f(f) = t> — 3¢+ 1 and we have A = 5 and the characteristic
roots o,/ of this polynomial are equal to « = (3++/5)/2 and = (3 —V/5)/2.
Since o > /2 then by Lemma 3 it follows that max{x —z, y —z} = —1. Sup-
pose that max{x — z, y — z} = x — z. Then we have x —z=—1,s0 z=x+1 and
(*) implies

(4.9) A A—T) = A"

d
then the condition det(4 —I) =1 implies (¢ —1)(d —1) —bc=1 and conse-
quently ad —bc — (a+d) =0. Since ad —bc=s=1 and a+d = Tr A =r, thus
we obtain r = 1, which is contrary to the fact that r = 3. Therefore, in the case

b
Since s=det 4 =1 from (4.9) we obtain det(4 —1)=1. If 4= (a >
¢

of (r,s) = (3,1) the equation (*) has no solution. In a similar way we obtain a
contradiction for the case if max{x —z,y—z} =y—z.

It remains to consider the case 2° when the characteristic polynomial £ (¢) is
reducible. In this case we have f(¢) = (t — «)(t — f), where o, € Z. From (*) and
the assumption that A4 is non-singular matrix, it follows that det 4 = +1 and
in virtue of det4 = off we get of = +1. Hence, x=f=1or a=1 and = —1
or « =—1 and f = 1. For these cases we obtain that 4 =1 or 4 = —I and
the equation (*) has no solutions in positive integers x # y # z. Now, we can
consider the final part of the proof. If the non-zero matrix 4 € M>(Z) is singular,
then det 4 = 0. In this case, by simple inductive way, we get A" = (Tr A)’”*lA
for all positive integers m. Using this formula and the assumption that 4 # O
we obtain that (*) reduces to the form:

(4.10) il g et 2t
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where r = Tr A € Z. 1t is easy to see that the equation (4.10) has a solution with

positive integers x # y # z and an integer r if and only if r=0 or r=2.

Summarizing, we get that the condition (ii) is satisfied and the proof of the
Theorem 2 is complete. u
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