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Abstract

A class of discriminant rules which includes the Fisher’s linear discriminant function
and the likelihood ratio criterion are defined. Using asymptotic expansions of the
distributions of the discriminant functions in this class, we derive a formula of cut-off
points which satisfy some conditions on misclassification probabilities, and derive
the optimal rules for some criteria. Some numerical experiments are carried out to
examine the performance of the optimal rules for finite numbers of samples.
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1 Introduction

We consider a problem of classifying an observation vector x into one of two
normal populations Π1 : Np(µ1, Σ) and Π2 : Np(µ2, Σ), where µi is the mean
vector of Πi (i = 1, 2) and Σ is the common covariance matrix. Suppose that
the parameters µ1, µ2, Σ are unknown and the training samples

xi1, · · · , xiNi
(i = 1, 2)

from Πi are available. Let the sample mean vectors x1,x2 and the pooled
sample covariance matrix S be given by

x1 =
1

Ni

Ni∑

j=1

xij (i = 1, 2), S =
1

n

2∑

i=1

Ni∑

j=1

(xij − xi)(xij − xi)
′,

where n = N1 + N2 − 2. Then the W–rule is based on the statistic

[x− 1
2
(x1 + x2)]

′S−1(x1 − x2),
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which is proposed by Wald [9] and Anderson [1,3]. The Z–rule was introduced
by Kudo [6,7] and John [5] as a competitor to the Wald–Anderson’s W-rule.
The Z–rule is based on the statistic

N1

N1 + 1
(x− x1)

′S−1(x− x1)− N2

N2 + 1
(x− x2)

′S−1(x− x2). (1.1)

Das Gupta [4] showed that the Z–rule is minimax in the class of invariant
classification rules for certain type of risk functions. Let ∆ be the Mahalanobis
distance between two populations :

∆2 = (µ1 − µ2)
′Σ−1(µ1 − µ2).

Let Pi(φ) be the probability that a random vector x from Πi (i = 1, 2) is
misclassified by a classification rule φ. Then the risk considered by Das Gupta
is given by

risk(φ) = 1
2

{
l
(

N1

N1 + 1
∆

)
P1(φ) + l

(
N2

N2 + 1
∆

)
P2(φ)

}
,

where l() is a certain function defined on (0,∞). It seems that the factor
Ni

Ni+1
in the loss function l() is required only for the theory. In this paper we

consider natural criteria. Let πi be the prior probability that x comes from
Πi, and let ci be the cost of misclassification of x which comes from Πi. If the
prior probabilities are known the risk of a classification rule φ is defined as
the expected cost of misclassification :

risk1(φ) = c1π1P1(φ) + c2π2P2(φ), (1.2)

which is called the total risk in the following sections. Our interest is in whether
the Z–rule is still optimal for this risk, and how we can find a classification
rule superior to both the W–rule and the Z–rule if these rules are not optimal.

It is difficult to derive the exact values of risk1 for the W–rule and the Z–
rule since the exact distribution functions of their discriminant functions are
very complicated. One way of comparing the performance of these rules is to
approximate the risks by using asymptotic expansions when the sample sizes
tend to infinity. Moreover we can find a classification rule which is superior
to both the W–rule and the Z–rule by deriving the asymptotic expansion
formula of the risk in a certain class of classification rules which includes both
the W–rule and the Z–rule as in the following sections.

If the prior probabilities are unknown, we consider minimax criterion:

risk2(φ) = max{c1π1P1(φ) + c2π2P2(φ) | 0 ≤ π1 ≤ 1, π1 + π2 = 1}
= max{c1P1(φ), c2P2(φ)}. (1.3)
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If the misclassification of x which comes from Π1 is serious, one may require
to control the misclassification probability P1. In such case the problem is to
find the classification rule which minimizes P2(φ) under the condition that

P1(φ) ≤ α

for a given constant α. In section 4, we treat the problem of this type as well as
the problem of finding the optimal rules with respect to the minimax criterion
in the class of classfication rules defined in section 2.

When the sample sizes are large relative to the dimension, the differences
among the classification rules are small since the classification rules considered
in this paper are asymptotically equivalent. Therefore the new method derived
in this paper will be useful when the sample sizes are small and the dimension
is relatively large in practical point of view. We show some results of numerical
experiments in section 5.

2 Class of discriminant functions

First we prepare some notations. For arbitrary two p dimensional vector x =
(xi), y = (yi) and arbitrary symmetric matrix A = (aij) of size p, we denote
the m = 2p+p(p+1)/2 dimensional vector of elements in x, y and A without
redundancy as

< x,y, A >= (x1, · · · , xp, y1, · · · , yp, a11, a22, · · · , app, a12, a13, · · · , ap−1,p)
′.

When A is nonsingular, the inner product of x and y associated with A is
denoted as

q(x, y, A) = (x− y)′A−1(x− y),

which is often simply denoted as q(t) for t =< x,y, A >. Now, we define
a class of discriminant functions by generalizing the W–rule and the Z–rule.
If θ =< µ1, µ2, Σ > is known, Bayes rule is based on difference between
Mahalanobis distances of x from two populations :

q(x,µ1, Σ)− q(x,µ2, Σ).

The W–rule is given by only replacing q(x, µi, Σ) with q(x,xi, S). While the
Z–rule multiplies the weighting term Ni/(Ni + 1) to q(x,xi, S) before taking
the difference. It seems natural to attach the weighting terms because the per-
formance of the estimated Mahalanobis distance depends on the sample sizes.
Our problem is not to estimate the Mahalanobis distance, but to obtain good
classification rules with respect to the risks given in §1. The best weighting
terms may depend on the risk function. Therefore we consider the rule based
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on the inequality :

da(x; T ) :=
1

2

{
(1 + a)q(x, x1, S)− (1− a)q(x,x2, S)

}
≤ b, (2.1)

where T =< x1, x2, S >. Note that the form of the pair of weights 1 + a and
1− a is not restrictive because the inequality a1q(x,x1, S)− a2q(x,x2, S) ≤ c
is equivalent with the above inequality with a = (a1 − a2)/(a1 + a2) and
b = c/(a1 + a2) if a1 and a2 are positive.

Let φa,b(T ) be the rule to classify x into Π1 if (2.1) holds, and to classify x
into Π2 otherwise.

Consider to minimize the risk1 given by (1.2). Let

c0 =
c2π2

c1π1

. (2.2)

Then minimizing risk1(φa,b(T )) is equivalent with minimizing

P (a, b) := P1(φa,b(T )) + c0P2(φa,b(T )). (2.3)

Note that the above probabilities P1 and P2 are with respect to the joint
distribution of x and T . Since the exact distribution function of da(x; T ) is
too complicated to handle, we consider to approximate the misclassification
probabilities by using asymptotic expansions up to the order n−2, where n =
N1 + N2 − 2. We assume that N1/N2 tends to some positive constant when
n →∞.

First we consider a and b as constants. Then P (a, b) defined by (2.3) can be
expanded as

P (a, b) = R0 +
1

n
R1 +

1

n2
R2 + O(n−3),

where R0, R1 and R2 are the functions of a, b, c0, ∆,
√

r1,
√

r2, with ri = n/Ni

(i = 1, 2). Neglecting the terms of the order O(n−3), the optimal values of a
and b are obtained as the solution of the system of equations :

s1

(
a, b,

1

n

)
:=

∂R0

∂a
+

1

n

∂R1

∂a
+

1

n2

∂R2

∂a
= 0,

s2

(
a, b,

1

n

)
:=

∂R0

∂b
+

1

n

∂R1

∂b
+

1

n2

∂R2

∂b
= 0.

Since the limiting value R0 corresponds to the risk of the Bayes rule d0(x; θ)
which includes unknown parameters, R0 is minimized at (a, b) = (0, b0), where
b0 = − log c0. Hence s1(0, b0, 0) = s2(0, b0, 0) = 0. Therefore, the theorem of
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implicit function will show that the optimal values of a and b can be expanded
as

aopt = 0 +
a1

n
+

a2

n2
+ · · · , bopt = b0 +

b1

n
+

b2

n2
+ · · · , (2.4)

where a1, a2, b1 and b2 are the functions of c0, r1, r2 and ∆. Since ∆ is unknown
and should be estimated, we consider a class of classification rules

C = {φα,β : α ∈ A, β ∈ B} (2.5)

where A is the set of all functions given by

α(D2) = 1
n
α1(D

2) + 1
n2 α2(D

2)

with arbitrary C1-class function α1( ) and continuous function α2( ), and B is
the set of all functions given by

β(D2) = β0(D
2) + 1

n
β1(D

2) + 1
n2 β2(D

2)

with arbitrary C2-class function β0( ), C1-class function β1( ) and continuous
function β2( ). Here, φα,β is the classification rule that classify x into Π1 if

1

2

{
(1 + α(D2))q(x,x1, S)− (1− α(D2))q(x,x2, S)

}
≤ β(D2) (2.6)

and classify x into Π2 otherwise, where D2 = q(x1, x2, S).

3 Minimizing the total risk

In this section we consider to minimize risk1 in the class C of classification
rules given by (2.5). It is equivalent with minimizing

P (α, β) = P1(φα,β) + c0P2(φα,β)

where c0 is given by (2.2). As n →∞, P (α, β) converges to P (0, β0(∆2)) which
has the minimum at

β0(∆
2) ≡ b0 = − log c0. (3.1)

In order to make the problem simple, we assume without any loss of generality
that Σ = Ip and µ1 = −µ2 = (1

2
∆, 0, · · · , 0)′ because the joint distribution of

q(x,x1, S), q(x,x2, S) and D2 is invariant under the group of Affine transfor-
mations:

x 7→ Ax + b, xij 7→ Axij + b (i = 1, 2; j = 1, · · · , Ni)
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with arbitrary nonsingular matrix A and vector b.

Let the conditional distribution function of da(x; T ) given T = t for x which
comes from Πi be denoted as

Fi(y; a, t, ∆) = Pr{da(x; T ) ≤ y|T = t,x ∼ Πi} (i = 1, 2). (3.2)

Let

Qc(t, a, b; ∆) = 1− F1(b; a, t, ∆) + cF2(b; a, t, ∆). (3.3)

Then the risk is represented as P (α, β) = RE[Qc0(T , α(D2), β(D2); ∆)]. In
the following, we simply denote Qc0 as Q0.

The difference between the risks of φα,β and the plug-in rule φ0,b0 can be
expanded as in the following lemma.

Lemma 1.

P (α, β)− P (0, b0)

=
1

n2

{
α′1(∆

2)q(t)(∆)′J(∆)Q
(a,t)
0 (∆) + β′1(∆

2)q(t)(∆)′J(∆)Q
(b,t)
0 (∆)

+
1

2
tr

[(
α1(∆

2)Q
(a,t,t′)
0 (∆) + β1(∆

2)Q
(b,t,t′)
0 (∆)

)
J(∆)

]

+
1

2

(
α1(∆

2)2Q
(a,a)
0 (∆) + 2α1(∆

2)β1(∆
2)Q

(a,b)
0 (∆)

+ β1(∆
2)2Q

(b,b)
0 (∆)

)}
+ O(n−3),

(3.4)

where

J(∆) = RCov[
√

n(T − θ)],

α′1 and β′1 are the derivatives of α1 and β1, respectively, Q
(a,a)
0 (∆), Q

(a,b)
0 (∆),

and Q
(b,b)
0 (∆) are scalars, q(t)(∆), Q

(a,t)
0 (∆) and Q

(b,t)
0 (∆) are (q × 1)-vectors,

Q
(a,t,t′)
0 (∆) and Q

(b,t,t′)
0 (∆) are (q × q)-matrices given by

q(t)(∆) =
∂

∂t
q(t)|0, Q

(a,a)
0 (∆) =

∂2

(∂a)2
Q0(t, a, b; ∆)|0,

Q
(a,b)
0 (∆) =

∂2

∂a∂b
Q0(t, a, b; ∆)|0, Q

(b,b)
0 (∆) =

∂2

(∂b)2
Q0(t, a, b; ∆)|0,

Q
(a,t)
0 (∆) =

∂2

∂a∂t
Q0(t, a, b; ∆)|0, Q

(b,t)
0 (∆) =

∂2

∂b∂t
Q0(t, a, b; ∆)|0,

Q
(a,t,t′)
0 (∆) =

∂3

∂a∂t∂t′
Q0(t, a, b; ∆)|0, Q

(b,t,t′)
0 (∆) =

∂3

∂b∂t∂t′
Q0(t, a, b; ∆)|0.

Here |0 denotes that the derivatives are evaluated at t = θ or (t, a, b) =
(θ, 0, b0).
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Proof. It holds that

∂

∂h
Qc(t, a, b; ∆)|c = 0 (h = t, a, b), (3.5)

where |c denotes that the derivative is evaluated at (t, a, b) = (θ, 0,− log c),
because Qc(t, a, b; ∆) has the minimum at that point. (3.4) is given by the
Taylor expansion of Q0(T , α(D2), β(D2); ∆) at T = θ using (3.5) followed by
taking expectations term by term.

It is difficult to find the best choice of α1 and β1 such that (3.4) is minimized
for all ∆ since (3.4) includes α′1(∆

2). However, we can find α1 and β1 which
improve the plug-in rule as in the following lemma.

Lemma 2. Let γ be defined by

γ(∆2) = −q(t)(∆)′J(∆)Q
(a,t)
0 (∆)

q(t)(∆)′J(∆)Q
(b,t)
0 (∆)

, (3.6)

let

B1(∆
2; α1, β̃1, γ) = γ(∆2)α1(∆

2) + β̃1(∆
2)

for arbitrarily chosen function β̃1, and set

βα1(∆
2) = b0 +

1

n
B(t; α1, β̃1, γ). (3.7)

Then neglecting the terms of order O(n−3), P (α1, βα1) is minimized at

α1(∆
2) = −1

2
{Q(a,a)

0 (∆) + 2Q
(a,b)
0 (∆)γ(∆2) + Q

(b,b)
0 (∆)γ(∆2)2}−1

{
2β̃1(∆

2)(Q
(a,b)
0 (∆) + Q

(b,b)
0 (∆)γ(∆2))

+ tr[J(∆)(Q
(a,t,t′)
0 (∆) + Q

(b,t,t′)
0 (∆)γ(∆2) + 2γ′(∆2)Q

(b,t)
0 (∆)q(t)(∆)′)]

}
.

(3.8)
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Proof. Substituting β1(∆2) = B1(∆2; α1, β̃1, γ) to (3.4), we obtain

RET [Q(T , α(D2), β(D2); ∆)]−RET [Q(T , 0, β0; ∆)]

= 1
2
{β̃1(∆

2)2Q
(b,b)
0 (∆) + β̃1(∆

2)tr[J(∆)Q
(b,t,t′)
0 (∆)]}

+ (β̃1
′
(∆2))q(t)(∆)′J(∆)Q

(b,t)
0 (∆)

+ 1
2
{α1(∆

2)2(Q
(a,a)
0 (∆) + 2Q

(a,b)
0 (∆)γ(∆2) + Q

(b,b)
0 (∆)γ(∆2)2)}

+ 1
2
α1(∆

2)
{
2β̃1(∆

2)(Q
(a,b)
0 (∆) + Q

(b,b)
0 (∆)γ(∆2))

+ tr[J(∆)(Q
(a,t,t′)
0 (∆) + Q

(b,t,t′)
0 (∆)γ(∆2) + 2γ′(∆2)Q

(b,t)
0 (∆)q(t)(∆)′)]

}

+ O(n−3),
(3.9)

where γ′ and β̃1
′
are the derivatives of γ and β̃1, respectively. (3.9) does not

include the derivative α′1 and is the quadratic polynomial of α1(∆2), which
has the minimum at α1(∆2) given by (3.8).

Actual calculations of the derivatives using lemma 5 in appendix A, show that

γ(∆2) = p− 1 +
b2
0

∆2 +
1

4
∆2 (3.10)

and
Q

(a,b)
0 (∆) + Q

(b,b)
0 (∆)γ(∆2) = 0, (3.11)

which shows that (3.8) does not depend on the choice of β̃1, and the optimal
function is given by

α1(D
2) =

r2 − r1 − 2b0

2
. (3.12)

The following theorem gives a way to improve an arbitrarily chosen classifica-
tion rule in the class C.

Theorem 3. Let φα∗,β∗ be a classification rule in the class C given by (2.5)
where

α∗(D2) =
1

n
α∗1(D

2) +
1

n2
α∗2(D

2),

β∗(D2) = b0 +
1

n
β∗1(D

2) +
1

n2
β∗2(D

2).

Set

β(D2) = b0 +
1

n

{
β∗1(D

2) + γ(D2)[α1(D
2)− α∗1(D)2]

}
. (3.13)

Then
risk1(φα,β) < risk1(φα∗,β∗)
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up to terms of O(n−3), where α(D2) = 1
n
α1(D

2).

Proof. Choose
β̃1(D

2) = β∗1(D
2)− γ(D2)α∗1(D

2)

for (3.7). Then

βα∗1(D
2) = β∗(D2) and βα1(D

2) = β(D2).

Hence Lemma 2 leads the desired results.

In the case of c1π1 = c2π2, the Z–rule classify x in to Π1 if (1.1) is less than
or equal to b0 = 0. The inequality is equivalent with

1

2
(1 + aZ)q(x, x1, S)− 1

2
(1− aZ)q(x,x2, S) ≤ 0

where

aZ =
N1 −N2

2N1N2 + N
=

r2 − r1

2n
+ O(n−2),

which shows the optimality of the Z–rule in our framework.

In the case of c1π1 6= c2π2, one may use the Z–rule with cut off point b0 instead
of 0 in the above inequality, since it is asymptotically optimal. However, this
rule can be improved by using (3.12) and (3.13) with β∗1(D

2) = 0.

Figure 1 illustrates the relationship of classification rules in our class. The
horizontal and the vertical axes in the figure represent the sets of C1–class
functions for α1 and β1, respectively. Since α2 and β2 do not appear in (3.4), we
identify a rule φα,β with a point (α1, β1) in the plane. Then W–rule and Z–rule
with cut off point b0 can be represented by points W(0, 0) and Z(1

2
(r2−r1), 0),

respectively. The line with ordinate intercept B(β̃1, 0) and slope γ represents
the subclass of classification rules

{
φα,β; α(D2) =

1

n
α1(D

2) + O
( 1

n2

)
, β(D2) = b0 +

1

n
B1(t; α1, β̃1, γ) + O

( 1

n2

)}
.

We have seen that the optimal rule in this subclass lies on the vertical line
h through the point A(1

2
(r2 − r1 − 2b0), 0). Therefore the rule corresponding

to the point C is superior to the W–rule, and the rule corresponding to the
point D is superior to the Z–rule. We cannot find the best point on h. The
superiority on h depends on the unknown parameter ∆.

Remark 1. When the training sample is coming from the same distribution
as the data to classify, then the prior probabilities can also be estimated from
the data. Similar approach can be applied to this problem, which is remained
for future.
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Fig. 1. Relationship of classification rules

Remark 2. Lemma 1 and 2 do not depend on the assumption of normality,
but on the fact that the discriminant function converges to the optimal Bayes
discriminant functions when (a, b, t) converges to (0, b0, θ). Suppose that the
populations Π1 and Π2 are not normal and have the density functions f1(x; θ)
and f2(x; θ), respectively, with known functions f1 and f2. The Bayes rule is
based on

d0(x; θ) = log f1(x; θ)− log f2(x; θ),

which is simply estimated by d0(x; θ̂), the plug–in version, where θ̂ is some
consistent estimator of θ based on the training samples. The Z–rule was de-
rived as the likelihood ratio, treating the classfication problem as the testing
problem for normal populations (see Kudo [6,7], John [5] or Anderson [1,3]).
Let dz(x; T ) be logarithm of the likelihood ratio, where T is the training
samples. Then we can define a class of discriminant functions :

da(x; T ) :=
{
1− 1

n
a(θ̂)

}
d0(x; θ̂) +

1

n
a(θ̂)dz(x; T )− b(θ̂). (3.14)

Lemma 2 will be applied to find a rule superior to both plug–in rule and the
rule based on the likelihood ratio test.

4 Unknown prior probabilities

When the prior probabilities are unknown, one criterion of choosing classifica-
tion rule is the minimax criterion. Let φα,β be a classification rule in the class
C defined by (2.5). If c1P1(φα,β) 6= c2P2(φα,β) we can reduce risk2(φα,β) by de-
creasing or increasing β so as to decrease |c1P1(φα,β)− c2P2(φα,β)|. Therefore

10



our problem of finding the optimal rule with respect to the minimax criterion
is to minimize P2(φα,β) under the condition

c1P1(φα,β)− c2P2(φα,β) = 0. (4.1)

If the misclassification of x which comes from Π1 is serious, one may require
to control the misclassification probability P1. In such case the problem is to
minimize P2(φα,β) under the condition that P1(φα,β) ≤ u for specified constant
u. If P1(φα,β) < u, we can reduce P2(φα,β) by decreasing β so as to make

P1(φα,β) = u (4.2)

hold.

The above two problems can be treated in the same manner. Consider the
condition:

P1(φα,β)− kP2(φα,β) = u. (4.3)

If we set k = c2/c1, u = 0 we obtain (4.1), and if k = 0 (4.3) corresponds
to (4.2). Therefore our problem is to minimize P2(φα,β) under the condition
(4.3).

4.1 Derivation of the cut–off point

First we derive β. Since the limiting value of the left side of (4.3) is

1− Φ
(β0

∆
+

∆

2

)
− kΦ

(β0

∆
− ∆

2

)
(4.4)

we define β0(D
2) be the solution of

β0 : 1− Φ
( 1

D
β0 +

D

2

)
− k Φ

( 1

D
β0 − D

2

)
= u. (4.5)

Let

G(t, a, b; ∆) = 1− F1(b; a, t, ∆)− kF2(b; a, t, ∆). (4.6)

Then the left side of (4.3) with using (4.5) can be expanded as

RE[G(T , n−1α1(D
2), β0(D

2) + n−1β1(∆); ∆)]

= u + n−1
{
G01(∆) + α1(∆)G(a)(∆) + β1(∆)G(b)(∆)

}
+ O(n−2),
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where G01(∆) is a function of k, r1, r2 and ∆. Therefore, for each α1,

β1(D
2; α1) = −{G(b)(D)}−1{G(a)(D)α1(D

2) + G01(D)} (4.7)

make (4.3) hold up to the order O(n−1). Similarly, the left hand of (4.3) with
(4.5) and (4.7) can be expanded as

RE[G(T , α(D2), β(D2); ∆)]

= u + n−2
{
G02(∆) + α2(∆)G(a)(∆) + β2(∆)G(b)(∆)

}
+ O(n−3),

where G02(∆) is a function of k, r1, r2, ∆ and α1(∆), which gives the third term
of β so as to make (4.3) hold up to the order O(n−2):

β2(D
2; α1, α2) = −{G(b)(D)}−1{G(a)(D)α2(D

2) + G02(D)}. (4.8)

Actual forms of β1 and β2 are given in Appendix B.

4.2 The optimal rule

Let c(∆) = exp{−β0(∆)} with β0 given by (4.5). Then under the condition
(4.3), minimizing P2(φα,β) is equivalent with minimizing
RE[Qc(∆)(T , α(D2), β(D2); ∆)] since

RE[Qc(∆)(T , α(D2), β(D2); ∆)]

= RE
[
G(T , α(D2), β(D2); ∆) + {c(∆) + k}F2(β(D2); α(D2),T , ∆)

]

= u + {c(∆) + k}P2(φα,β).

Theorem 4. P2(φα,β) has the minimum in C at β derived in the previous
subsection, and α(∆2) = 1

n
α1(∆2) under the condition (4.3), neglecting the

terms of the order O(n−3), where

α1(∆
2) =

1

2
(r2 − r1 − 2β0(∆

2)). (4.9)

Proof. Expanding Qc(∆)(T , 0, β(D2); ∆) at T = θ and then taking the
expectations we obtain

RET [Qc(∆)(T , α(D2), β(D2); ∆)]−RET [Qc(∆)(T , 0, β(D2); ∆)]

=
1

2n2

[
2

∆
(p− 1)φ(y1)

{
α1(∆

2)2 + α1(∆
2)

(
r1 − r2 + 2β0(∆

2)
)}

+ G03(∆)
]

+ O(n−3),

(4.10)
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which does not include α′1(∆
2), and has the minimum at α1(∆2) given by

(4.9).

It is interesting that (4.9) has the same form as (3.12).

Remark 3. The result of Theorem 4 depends on the assumption of nor-
mality. In the case considered in Remark 2, the terms of the order O(n−2) in
the asymptotic expansion of P2 for the classification rule given by (3.14) gen-
erally includes a′(θ). However, the method to derive the cut–off point given
in subsection 4.1 can be applied.

5 Numerical studies

This section gives some results of Monte Carlo experiments to compare the
new classification rules obtained in section 3 and section 4 with the W–rule
and the Z–rule.

The values of N1, N2, p and ∆ were chosen as follows:

(N1, N2); (10, 10), (10, 15), (10, 20), (15, 15), (15, 20), (20, 20),

p; 6, 8, 10, 12,

∆; Φ(−∆/2) = 0.1, 0.2, 0.3,

The expected misclassification probabilities P1(φa,b(T )), P2(φa,b(T )) are esti-
mated based on 1000,000 times of iteration. So the standard deviation is at
most 0.5%. Here we used a pseudo–random number generator named Mersenne
Twister which provides a period of 219937 − 1 and 623–dimensional equidistri-
bution, and is sufficient for our purpose (see Matsumoto and Nishimura [8]).

5.1 The total risk

First we examine the total risk . We can assume that the costs c1 and c2 are
equal to one. We compare the values of π1P1(φa,b(T )) + π2P2(φa,b(T )) for the
W–rule, the Z–rules and the optimal rules which corresponding to the points
A, C and D in figure 1 in section 3 when π1 = 1/3 and 1/2.

Let b0 = − log(π2/π1). Then the coefficients (a, b) for the classification rules

13



are

W–rule : (a, b) = (0, b0),

Z–rule : (a, b) = (az, b0),

Oo–rule : (a, b) = ( 1
n
ao, b0),

Ow–rule: (a, b) =
(

1
n
ao, b0 + 1

n

(
γ(D2)ao

))
,

Oz–rule: (a, b) =
(

1
n
ao, b0 − 1

n

(
γ(D2)b0

))
,

where

az =
N1 −N2

N1 + N2 + 2N1N2

, ao =
r2 − r1

2
− b0,

and γ(D2) is given by (3.10).

Figure 5.1 gives the values (×100%) of (P1 + 2P2)/3 for the five rules when
p = 10, 12. In the figure, q is the value of (P1 +2P2)/3 for the Bayes rule, that
is,

q =
1

3

{
1− Φ

(
b0

∆
+

∆
2

)}
+

2

3
Φ

(
b0

∆
− ∆

2

)
.

We can see that the Ow–rule performs better than the W–rule and the Oz–
rule performs better than the Z–rule in all cases, and the Oo–rule has the best
performance. We consider that the one of the reason of the superiority of the
Oo–rule is that the coefficient ao and the cut–off point b0 do not depend on
the samples.

When π1 = π2, the performance of the five rules were almost same. When
p = 6, 8, we could see similar results, but the differences between the rules got
smaller a little. When the sample sizes are small relative to the dimension or
the Mahalanobis distance is small, the differences between the classification
rules become clear. In that cases we recommend to use the Oo–rule.

5.2 The minimax criterion

We compare the values of max{c1P1(φa,b(T )), c2P2(φa,b(T ))} for five rules
when (c1, c2) = (1, 1) and (1/2, 1).

Let β0, β1 and β2 be defined by (4.5), (4.7) and (4.8), respectively. The coeffi-
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Figure 5.1 : Comparison of (P1 + 2P2)/3 among 5 rules.

cients (a, b) for the five rules are

W–rule : (a, b) = (0, β0(D
2)),

Z–rule : (a, b) = (az, β0(D
2)),

Oo–rule : (a, b) = ( 1
n
ao, β0(D

2) + 1
n
β1(D

2; ao) + 1
n2 β2(D

2; αo, 0)),

Ow–rule: (a, b) = (0, β0(D
2) + 1

n
β1(D

2; 0) + 1
n2 β2(D

2; 0, 0)),

Oz–rule: (a, b) = (az, β0(D
2) + 1

n
β1(D

2; r2−r1

2
) + 1

n2 β2(D
2; r2−r1

2
,

r2
1−r2

2

4
)),
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Figure 5.2 : Comparison of max{(1
2
P1, P2} among 5 rules.

16



where

az =
N1 −N2

N1 + N2 + 2N1N2

, ao =
r2 − r1

2
− β0(D

2).

Figure 5.2 gives the values (×100%) of max{(P1/2, P2)} for the five rules when
p = 10, 12. In the figure, q is the value of max{(P1/2, P2)} for the Bayes rule,
that is,

q =
1

2

{
1− Φ

(
β0

∆
+

∆
2

)}
= Φ

(
β0

∆
− ∆

2

)
,

where β0 is the solution of this equation.

We can see that the modification with using β1 and β2 improve the perfor-
mance of the W–rule and the Z–rule. The Oo–rule performs best when the
sample sizes are small (n1 = n2 = 10). In other cases of sample sizes, the three
rules Oo, Ow, and Oz performs almost same.

When p = 6, 8, we could see similar results, but the differences between the
rules got smaller a little. When the sample sizes are small relative to the
dimension or the Mahalanobis distance is small, the differences between the
classification rules become clear. In that cases we recommend to use the Oo–
rule.

A The conditional distribution function

In this section, we give a lemma which can be used to derive the differential
coefficients of the conditional distribution function Fi(b; a, t, ∆) defined by
(3.2) in section 3.

Lemma 5. Let t =< η1,η2, Γ > be a constant 2p+p(p+1)/2 vector. Suppose
that Γ is positive definite. Let x be a random vector distributed as Np(µ, Ip).
When a → 0 the distribution function of da(x; t) can be expanded as

Pr{da(x; t) ≤ b} = Φ
(
y(b; µ, t)

)
− φ

(
y(b; µ, t)

)

·
{
ag1

(
y(b; µ, t); µ, t

)
+

1

2
a2g2

(
y(b; µ, t); µ, t

)}
+ O(a3),

(A.1)

where Φ, φ are the distribution function and the density function of N(0, 1),
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respectively,

y(b; µ, t) =
b− (µ− η̄)′Γ−1(η2 − η1)

σ(t)
,

η̄ =
1

2
(η1 + η2), σ(t)2 = (η2 − η1)

′Γ−2(η2 − η1),

g1(y; µ, t) =
1

σ(t)

{
d0(t; µ) +

d1(t; µ)

σ(t)
h1(y) +

d2(t; µ)

σ(t)2
h2(y)

}
,

g2(y; µ, t) =
1

σ(t)2

{
e0(t; µ)h1(y) +

e1(t; µ)

σ(t)
h2(y),

+
e2(t; µ)

σ(t)2
h3(y) +

e3(t; µ)

σ(t)3
h4(y) +

e4(t; µ)

σ(t)4
h5(y)

}
.

Here, hk(y) (k = 1, 2, · · · ) is the Hermite polynomial of degree k defined by

( d

dy

)k
φ(y) = (−1)khk(y)φ(y)

and

d0(t; µ) = tr[Γ−1] + (µ− η̄)′Γ−1(µ− η̄) + 1
4
(η2 − η1)

′Γ−1(η2 − η1),

d1(t; µ) = 2(µ− η̄)′Γ−2(η2 − η1), d2(t; µ) = (η2 − η1)
′Γ−3(η2 − η1),

e0(t; µ) =
(
d0(t; µ)

)2
+ 2tr[Γ−2] + 4(µ− η̄)′Γ−2(µ− η̄),

e1(t; µ) = 2d0(t; µ)d1(t; µ) + 8(µ− η̄)′Γ−3(η2 − η1),

e2(t; µ) =
(
d1(t; µ)

)2
+ 2d0(t; µ)d2(t; µ) + 4(η2 − η1)

′Γ−4(η2 − η1),

e3(t; µ) = 2d1(t; µ)d2(t; µ),

e4(t; µ) =
(
d2(t; µ)

)2
.

Proof. The characteristic function of da(x, t) can be represented as

ψ(s) ≡ RE[exp{is da(x, t)}]
= RE

[
exp

{
is(x− η̄)′Γ−1(η2 − η1) + isa

{
q(x, η̄, Γ) +

1

4
q(t)

}}]

=
1

(2π)p/2
exp

{
− s2

2
q[η1, η2, Γ

2] + is(µ− η̄)′Γ−1(η2 − η1)
}

·
∫

exp
{
− 1

2

(
z − µ− isΓ−1(η2 − η1)

)′(
z − µ− isΓ−1(η2 − η1)

)}

· exp
[
isa

{
q(z, η̄, Γ) +

1

4
q(t)

}]
dz

= exp
{
− s2

2
q[η1,η2, Γ

2] + is(µ− η̄)′Γ−1(η2 − η1)
}

exp
(isa

4
q(t)

)

·RE
[
exp

{
isa q

(
Z + µ + isΓ−1(η2 − η1), η̄, Γ

)}]
,

(A.2)

18



where Z is a random vector distributed as Np(0, Ip). Taking the expectation
term by term after expanding the exponential in (A.2) in terms of a, we obtain
the expansion of the characteristic function as

ψ(s) = exp
(
− s2

2
(η2 − η1)

′Γ−2(η2 − η1) + is (µ− η̄)′Γ−1(η2 − η1)
)

·
{
1 + isa

(
d0(t; µ) + isd1(t; µ) + (is)2d2(t; µ)

)

+
1

2
(is)2a2

(
e0(t; µ) + ise1(t; µ) + (is)2e2(t; µ)

+ (is)3e3(t; µ) + (is)4e4(t; µ)
)}

+ O(a3).

(A.3)

Inverting (A.3), we obtain (A.1).

Using lemma 5, we can calculate the derivatives used in section 3 and 4. For
example, Q

(a,t)
0 (∆) in (3.4) can be calculated as

Q
(a,t)
0 (∆) =

∂2

∂a∂t

{
−F1(b; a, t, ∆) + cF2(b; a, t, ∆)

}
|0

=
∂

∂t

{
φ

(
y(b; µ1, t)

)
g1

(
y(b; µ1, t); µ1, t

)

− c0φ
(
y(b; µ2, t)

)
g1

(
y(b; µ2, t); µ2, t

)}∣∣∣∣
0
.

B Cut–off Point

In this section we show the actual forms of β1 and β2 given by (4.7) and (4.8),
respectively. Since the method of calculation is similar as the one of Anderson
[2], we state only the results.

b1(∆
2) =

2∑

j=0

b1jK(∆2)j−2, b2(∆
2) =

5∑

j=0

b2jK(∆2)j−5 (B.1)

where

K(∆2) = 1 + k exp{β0(∆
2)},

b10 =
1

2
(∆2(r1 − r2) + 2(∆2 + r1 + r2)b0(∆

2)),

19



b11 =
1

16

(
∆4 + 16(−1 + p)(r1 + r2) + 4∆2(−3 + 4p− r1 + 3r2),

+4b0(∆2){−2(2∆2 + r1 + 3r2) + 3b0(∆2)}
)
,

b12 = − 1

32∆2

(
∆2{∆2(−12 + ∆2 + 16p) + 8(−4 + ∆2 + 4p)r2}

+2b0(∆2){−∆2(3∆2 + 4(−3 + 4p + 2r2)) + 6∆2b0(∆2)− 4b0(∆2)2}
−8a1(∆2){∆2(−4 + ∆2 + 4p) + 4b0(∆2)2}

)
,

b20 =
5

8
{∆2(r1 − r2) + 2(∆2 + r1 + r2)b0(∆

2)}2,

b21 =
1

16∆2

{
∆4(r1− r2){∆4 + 8(1 + 2p)(r1 + r2) + ∆2(4 + 16p− 21r1 + 29r2)}

+2∆2

(
∆6 + 16p(r1 + r2)

2 + ∆4(4 + 16p− 45r1 + 55r2)

+∆2{−47r2
1 + 2r1(2 + 16p + 5r2) + r2(4 + 32p + 53r2)}

)
b0(∆2)

−4∆2{25∆4 + (r1 + r2)(31r1 + 19r2) + ∆2(53r1 + 47r2)}b0(∆2)2

−8(∆2 + r1 + r2){2∆2 + 5(r1 + r2)}b0(∆2)3

}
,

b22 =
1

512∆2

[
∆2

{
∆8 + 256(−1 + p2)(r1 + r2)

2 + 8∆6(1 + 4p− 7r1 + 9r2)

+16∆4{−15 + 8p + 16p2 − 14r1 − 54pr1 + 29r2
1

+2(9 + 37p− 43r1)r2 + 61r2
2}

−128∆2(r1 + r2){4(1 + r1 − r2)− p(1 + 4p− 7r1 + 9r2)}
}

+8b0(∆2)
{
− 2∆2

(
8∆6 + 16p(r1 + r2)(9r1 + 7r2)

+∆4(32 + 128p− 135r1 + 215r2)

+4∆2{−37r2
1 + r1(1 + 68p + 20r2) + r2(15 + 60p + 49r2)}

)

+b0(∆2)
(
347∆6

−4∆4(−27 + 20p− 193r1 − 145r2)− 128(−1 + p)(r1 + r2)
2

+8∆2{61r2
1 + r2(28− 26p + 13r2) + r1(28− 26p + 86r2)}

+8{16∆4 + 16(r1 + r2)(2r1 + 3r2) + ∆2(45r1 + 67r2)}b0(∆2)

−6{13∆2 + 16(r1 + r2)}b0(∆2)2

)}]
,
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b23 = − 1

1024∆2

[
∆2

{
3∆8 + 8∆6(3 + 12p− 7r1 + 13r2)

+256(−1 + p)(r1 + r2){r1 + 3pr1 + (5 + 3p)r2}
+128∆2

(
− r1(9 + p− 12p2 + 4r1 + 7pr1)

+{−15 + p(7 + 12p + 6r1)}r2 + (4 + 13p)r2
2

)

+16∆4

(
− 45 + 48p2 + r1(−16 + 15r1) + 28r2

−58r1r2 + 55r2
2 + p(24− 50r1 + 110r2)

)}

−2
{
79∆8 − 256(−3 + p)(−1 + p)(r1 + r2)

2

+8∆6(45 + 156p− 76r1 + 174r2)

−16∆4

(
37− 72p + 16p2 + 12r1 − 174pr1 + 43r2

1

−2(36 + 63p + 23r1)r2 − 73r2
2

)

+128∆2

(
r1{−12− r1 + p(17− 4p + 12r1)}

+{2(−6 + r1) + p(17− 4p + 18r1)}r2 + (−1 + 6p)r2
2

)

+512∆2(r1 − r2)a1(∆2)
}
b0(∆2)

+8
{
241∆6 − 64(−1 + p)(r1 + r2)(5r1 + 7r2)

+∆4(324− 240p + 536r1 + 320r2)

+8∆2

(
r1(76− 70p + 41r1) + 2(46− 43p + 29r1)r2 − 19r2

2

)

−256(∆2 + r1 + r2)a1(∆2)
}
b0(∆2)2

+16
{
75∆4 − 64(r1 + r2) + 12∆2(−5 + 4p + 12r1 + 34r2)

+8
(
13r2

1 + 46r1r2 + 37r2
2 + 6p(r1 + r2)

)}
b0(∆2)3

−48(39∆2 + 40r1 + 56r2)b0(∆2)4 + 288b0(∆2)5

]
,

b24 =
1

32∆4a1(∆
2)2

[
∆4{∆4 + 8∆2(−1 + p) + 16(−1 + p)(3 + p)}

+8∆2(−4 + ∆2 + 4p)b0(∆2)2 + 16b0(∆2)4

]

+
1

8∆2a1(∆
2)

[
8∆2(−1 + p)(r1 − r2)

+b0(∆2)
(

∆4 + 16(−1 + p)(r1 + r2) + 4∆2(−7 + 8p− r1 + 3r2)
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+4b0(∆2){−2(2∆2 + r1 + 3r2) + 3b0(∆2)}
)]

+
1

3072∆2

[
∆2

{
3∆8 + 2∆6(17 + 48p− 12r1 + 36r2)

+16∆4

(
−73+60p+48p2−9r1−18pr1+3r2

1+3(9+26p−6r1)r2+27r2
2

)

+768(−1+p)
(
r1{−4+p(4+r1)}+2{−2+r1+p(2+r1)}r2+(4+p)r2

2

)

+96∆2

(
25− 56p + 32p2 − 18r1 + 4pr1 + 16p2r1 − 2r2

1 − 4pr2
1

+2{−21 + 2p(9 + 4p + 2r1)}r2 + 2(−1 + 6p)r2
2

)}

+2b0(∆2)
{
3
(
− 15∆8 − 8∆6(13 + 28p− 6r1 + 24r2)

+256(−1 + p)(r1 + r2){(−2 + p)r1 + (−4 + p)r2}
+16∆4{37−72p+16p2+3r1−30pr1+3r2

1−(31+14p+6r1)r2−9r2
2}

+64∆2[−r1{−13− r1 + 2p(11− 4p + 2r1)}
+(35− 46p + 8p2 − 4(1 + p)r1)r2 + 3r2

2]
)

+4b0(∆2)
(
81∆6 − 192(−1 + p)(r1 + r2)(−2 + r1 + 3r2)

+∆4(374− 240p + 144r1 + 72r2)

−24∆2{28− 36p− 23r1 +18pr1− 3r2
1 +(−39+34p− 6r1)r2 +9r2

2}
+2b0(∆2)

[
3
{
11∆4 + 4∆2(−15 + 12p + 2r1 + 24r2)

+8[r1(−7 + 6p + r1)− 9r2 + 6(p + r1)r2 + 9r2
2]

}

+b0(∆2){50− 117∆2 − 72r1 − 216r2 + 54b0(∆2)}
])}]

,

b25 =
1

3072∆6

[
∆6

{
768a2(−4 + ∆2 + 4p)

−∆2{1200− 224∆2 + 5∆4 + 96(−28 + 3∆2)p + 1536p2}
−48{∆4 + 64(−1 + p)2 + 4∆2(−7 + 8p)}r2 + 192(4 + ∆2 − 4p)r2

2

+48a1(∆2)
(
16(−1 + p){∆2 + 4(−1 + p + r2)}

−{∆4 + 8∆2(−1 + p) + 16(−1 + p)(3 + p)}a1(∆2)
)}

+2∆4

{
25∆6 + 768(−1 + p)r2

2 + 48∆4(−14 + 18p + 3r2)

+48∆2{25 + 8p(−7 + 4p)− 44r2 + 48pr2 − 4r2
2}

+48a1(∆2)
(
− 2∆2(−28 + ∆2 + 32p)− 16(−4 + ∆2 + 4p)r2

+{∆4 + 8∆2(−3 + p) + 16(−1 + p)2}a1(∆2)
)}

b0(∆2)
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+8∆4

{
384a2 −∆2(−336 + 25∆2 + 432p)− 24(3∆2 + 16(−1 + p))r2

+48a1(∆2)
(
3∆2 +4(−5+6p+2r2)−(−4+∆2 +4p)a1(∆2)

)}
b0(∆2)2

+16∆2

{
∆2(−112 + 25∆2 + 144p + 24r2)

+48a1(∆2)
(
− 3∆2 + (∆2 + 4(−3 + p))a1(∆2)

)}
b0(∆2)3

−16∆2

{
25∆2 + 48(−2 + a1(∆2))a1(∆2)

}
b0(∆2)4

+32{5∆2 + 48a1(∆2)2}b0(∆2)5

]
.
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