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Numerical replica limit for the density correlation of the random Dirac fermion
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The zero-mode wave function of a massless Dirac fermion in the presence of a random gauge field is
studied. The density correlation function is calculated numerically, and found to exhibit a power law in the
weak randomness with a disorder-dependent exponent. It deviates from the power law, and the disorder
dependence becomes frozen in the strong randomness. A classical statistical system is employed through the
replica trick to interpret the results, and the direct evaluation of the replica limit is demonstrated numerically.
Analytical expressions of the correlation function and the free energy are also discussed with the replica
symmetry breaking and the Liouville field theory.
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Although the scaling theory of localization for two
dimensional~2D! disordered systems generally predicts t
absence of extended states, we have some examples of
localized states in two dimensions which are marginally
lowed to appear. Among these, systems withchiral symme-
try such as Gade’s model,1 the random flux model,2 or the
p-flux model with link disorders3 have attracted much atten
tion. Compared to the conventional models, where rand
ness enters as a on-site potential, randomness resides onlinks
~i.e., as a gauge field! in these models. This type of random
ness induces a special symmetry which affects the loca
tion properties drastically. Due to this symmetry, the den
ties of states of the models have singularities at zero ene
and the corresponding wave functions exhibit a multifrac
behavior.

Now let us concentrate our attention on cases where
low-lying physics is described by the Dirac fermions. E
amples of these include thep-flux model mentioned above
the Chalker-Coddington network model,4 and the gap closing
~quantum Hall! transition.5 2D d-wave superconductivity is
another important example. The question of how disor
affects the low-energy excitations, and whether all states
localized, have been under extensive study recently.6 Focus-
ing on one node, let us consider a Hamiltonian of the fo
H5s•p1s•A wheres i 5x,y are the usual 232 Pauli ma-
trices andA is a random gauge field. This Hamiltonian has
continuum version of the chiral symmetry$H,g%50, where
g5sz . Remarkably, in this situation, an explicit constru
tion of zero energy wave functions is possible in a 2D co
tinuum space.7,8 The Schro¨dinger ~Dirac! equations for the
zero modes are

~2]1 iĀ !c250, ~2]̄1 iA !c150, ~1!

where ]ª(]x2 i ]y)/2, ]̄ª(]x1 i ]y)/2, AªAx1 iAy , and
ĀªAx2 iAy .9 If we adopt a Coulomb gauge to express t
vector potentialA in terms of a scalar potentialF as Ax
5]yF andAy52]xF, and assume that the mean total fl
piercing the system is zero, we can obtain an exact solu
for any realization of disorders asc6(x)5C6e7F(x). Fur-
ther, let us assume that the probability weight for each re
ization of F(x) has the formP@F#}e2S where S@F#
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51/2g*d2x@¹F(x)#2 and g is the disorder strength or, in
field-theoretic language, the coupling constant, which isdi-
mensionlessin two dimensions.

From now on, we concentrate our attention only onc1 .
For physical interest, it is necessary to consider normali
wave functions in anL3L box asc(x)5e2F(x)/AZ with
Z5*(d2x/a2)e22F(x), wherea is a lattice constant. Here w
regularized the problem on anN3N periodic lattice, al-
though the original problem is formulated in a continuu
space~where L5Na). Correspondingly, we use the prob
ability weight S@F#}1/2g(^ i j &(F i2F j )

2 or, in momentum

space, S@F#}N2/g(mF̃mF̃2m@22(m51
2 cos(akm

m)#, where

F̃mªN22( je
2 ikmxjF j and the sum extends over the fir

Brillouin zone mm52N/211•••N/2 with km
m52pmm/aN

(N is even for convenience.!. We put F̃m5050. Typical
probability densities uc(x)u2 calculated numerically are
shown in Fig. 1, which reminds us of multifractal stat
found at a localization-delocalization transition for seve
systems.10

In fact, the multifractal property of this wave function ha
been revealed quantitatively by a close analogy to a gene
ized random energy model.11,12 As the disorder strengthg is
varied, the multifractal spectrum exhibits a sharp transit
which is similar to the freezing phenomenon in spin glass
Several other approaches such as the supersymmetry~SUSY!
technique,13 the connection to the Liouville field theory,14

the renormalization group,15 or conformal field theory16 have
also been taken to support the transition.

Since the calculated probability densities~Fig. 1! are so
spiky, the discretization procedure above may not be ju
fied. In spite of this subtlety, we concentrate on this we
defined discretized wave function to investigate univer
properties.

In this paper, we evaluate the density correlation funct

^c2~1!c2~2!&5K 1

Z2
e22F(x1)e22F~x2)L ,

where^•••& denotes the averaging with respect to the wei
P@F#. Here the difficulties reside in the normalization fact
©2001 The American Physical Society07-1
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Z in the denominator, sinceZ itself is a random variable. On
of the simplest attempts to cope with this is the replica tri
We multiply the numerator byZn, and consider

^c2~1!c2~2!&nªE d2j1

a2
•••

d2jn22

a2

3^e22[F(x1)1F(x2)1F(j1)1•••1F(jn22)]&,

~2!

which is expected to reduce to^c2(1)c2(2)& by taking the
replica limit n→0 ~analytical continuation!. We use this rep-
lica trick to interpret the direct numerical results, and also
to take the replica limit by evaluatinĝc2(1)c2(2)&n nu-
merically for severaln and extrapolating them ton50. In
addition, we utilize the evaluation of̂c2(1)c2(2)&n , to-
gether with the Liouville field theory, to obtain an analytic
expression of the correlation function for the weak disor
regime.

First let us present a direct numerical calculation
^c2(1)c2(2)&. In this problem, the probability weight itse
is diagonal in momentum space~see above!, which allows us
to carry out numerical simulations with a very large latti
up to 204832048. Figure 2 shows calculated^c2(1)c2(2)&
for variousg on a 102431024 lattice. The quenched avera
ing is performed over;105 different realization of disor-
ders. As shown, the correlation function for the weak dis

FIG. 1. Typical probability densitiesuc(x)u2 for g50.4 on~a! a
64364 lattice and~b! a 102431024 lattice. Insets:uc(x)u2 for g
56.4 for each system.
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der exhibits a power-law behavior^c2(1)c2(2)&;ux12u2D

for 1&ux12u/a!N/2, with its exponentD dependent linearly
on g, D52g/p ~Fig. 3!. This is consistent with several ana
lytical approaches.13 As g increases, however, theg depen-
dence of the correlation function becomes weaker, an
deviates from the power law. To be more precise, there
systematic deviation from the simple power law; that is,
we determine the ‘‘exponent’’DN on a finiteN system, it
seems to diverge asN increases~see the insets of Fig. 2!.
This is clearly different from the behavior ofDN in the weak
randomness whereDN seems to converge. In fact, as show
in Fig. 1, the wave function becomes peaked on a few s
asg increases. However, it is different from the usual loc
ized wave function which decays exponentially with its typ
cal length scale characterized by the localization length. T
above change of behavior in the correlation function is c
sistent with the transition from weak to strong disorder fou
in the multifractal spectrum in the previous studies.

Next let us try to interpret the above numerical results
the replica trick. After replicatingZ, we can perform the
averaginĝ •••& in Eq. ~2!, and obtain

FIG. 2. The numerically calculated density correlation for~a!
weak and~b! strong disorder regimes on a 102431024 lattice. For
g<1.6, the statistical error is smaller than the data point. Fog
>3.2, the error bars are shown for every 100 points. Insets:
‘‘exponent’’ DN vs 1/N for ~a! g50.4 and~b! g56.4. It is evalu-
ated for 1<ux12u/a<10 for each finite system.
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^c2~1!c2~2!&n5^d~jk2x1!d~j l2x2!&n
cl5:Gk,l

n ~1,2!,
~3!

with

^O&n
cl
ªTr@Oe2Hn#/Tr@e2Hn#,

where

Trª
1

n! E d2j1

a2
•••

d2jn

a2
,

2Hnª4(k, l
n G(jk ,j l), G(xi ,xj )ª^F(xi)F(xj )& is the

Green’s function, and G(xi ,xj )ªG(xi ,xj )2G(0);
2g/2p ln(uxij u/a). Here we multiply some trivial factors
which reduce to unity in the limitn→0. As suggested in Eq
~3!, ^c2(1)c2(2)&n can be interpreted as the two-body de
sity of a classical statistical systemconsisting of a set of
particles~replicas! interacting with each other via the pote
tial G(xi ,xj ). These replica estimations are shown and
rectly compared to the numerical results~Fig. 4!. In Fig. 4,
^c2(1)c2(2)&n for variousn ~the number of replicas! with
fixed g are obtained by calculating Eq.~3! numerically on a
64364 lattice. This rather small lattice size is due to t
multiple integral in Eq. ~3!. Note that we do not have
^c2(1)c2(2)&n51, as inferred from Eq.~2!. For g50.4, the
replica estimation seems to converge to the one calculate
the direct numerical simulations. Forg56.4, in contrast, it
hardly seems to coincide with the exact one in the limitn
→0. Moreover, it gives an unphysical result, i.e., anegative
exponent, after taking the replica limit.

This breakdown is closely related to the transitionin the
replica space. There are two distinct phases for this syste
For small g, all configurations are equally favorable. Asg
increases, however, the configurations where all replicas
close to each other come to have a large weight. Thus,
sufficiently smallg, it is enough to concentrate on onlyjk
andj l in Eq. ~3!. The configuration of the other particles

FIG. 3. The ‘‘exponent’’DN with respect tog and its naive
replica estimatesDn52,3,4,5. DN is evaluated for 1<ux12u/a<10 for
64364 (s), 2563256 (L), and 102431024 (d) systems. The
statistical error is smaller than the symbol size. The analytical e
mation forDn is represented by lines.
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smeared out in the ensemble average, and irrelevant
^c2(1)c2(2)&n . For largeg, on the other hand, the mai
contributions in the ensemble average are from the confi
rations where all replicas exceptj l ~or jk) are atx1 ~or x2,
respectively!. Then^c2(1)c2(2)&n is expected to behave a

^c2~1!c2~2!&n;1/ux12uDn,

with Dn;2g/p for smallg and;2g(n21)/p for largeg. A
numerically calculatedDn is shown in Fig. 3, which confirms
that the above estimation for smalln is reasonable. Taking
the replica limitn→0, we obtainDn5052g/p for small g,
which is consistent with the results obtained by the SU
technique.13 For the strong disorder regime, however,the e
ponent reduces to22g/p, which is unphysical. Does this
mean that the replica trick is a mere trick? However, t
replica symmetry-breaking~RSB! solution, which was pro-
posed for the free energy,15 may also be applicable for th
correlation function, and give the correct answer both
weak and strong disorder.

ti-

FIG. 4. The numerically calculated density correlations (d) and
their replica estimates withn52, 3, 4, and 5 for~a! g50.4 and~b!
g56.4 on a 64364 periodic lattice. The replica estimates are o
tained by evaluating the multiple integral in Eq.~3! directly.
^c2(x1)c2(x2)&n50 is obtained by extrapolating from
^c2(x1)c2(x2)&n52,3,4,5. Insets: ^c2(x1)c2(x2)&n vs n at ux12u/a
520 ~semilog plot!.
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We also investigated other types of correlation functio
such aŝ c(1)c(2)& or ^F(1)c2(1)F(2)c2(2)&, the latter
of which is of interest because it is related to the seco
derivative of the free energŷln Z&/ln(L/a), which shows the
nonanalyticity atg52p. Their behaviors are qualitativel
similar to that of^c2(1)c2(2)& in that, for smallg, these
correlation functions become steeper and steeper asg in-
creases; theirg dependences are calculable by the repl
trick. For largeg, however, theirg dependencies are rathe
weak, and the naive replica trick fails.

Another interesting approach is to utiliz
the formula 1/ZN5@1/(N21)!#*0

`dme2mZmN21, and ex-
press the correlation function as ^c2(1)c2(2)&
5*0

`dmm*DFe22F(x1)22F(x2)e2SLFT[F] where SLFT

5*(d2j/a2)@1/2g(¹F)21me22F(j)#.14 This action re-
sembles that of the Liouville field theory in 2D quantu
gravity. However, since it was pointed out that there
some subtleties about the field theoretic treatment,15 we
evaluate it directly by using the replica estimates. We exp
e2mZ to expresŝc2(1)c2(2)& as a superposition of the rep
lica estimates with a different number of replicas, i.e.,
grand canonical ensemble

^c2~1!c2~2!&52E
2`

`

dm̃ (
n52

`

~21!ne2Fn~m̃ !(
kÞ l

n

Gk,l
n ~1,2!,

where Fn(m̃)52 ln Tr e2(Hn2m̃n)12n2G(0) and m5em̃.
Since, for weak disorder, the summand depends only tr
ally on n, we can easily sum up this suggestive express
and obtain the same result as the replica trick.
in,

n
-
a
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This method is also applicable for the free energy. W
expand lnZ5*0

`(dm/m)(e2m2e2mZ) as

^ ln Z&5E
2`

`

dm̃S e2em̃
212 (

n51

`

~21!ne2Fn~m̃ !D .

It is difficult to perform the summation for strong disorde
though we can obtain the correct answer for weak disord
However, if wesimplyemploy the RSB estimate of Carpen
tier and Doussal,15 e2Fn5n! 21(L/a)(pg/p12/p1m̃)n, where
p51 for the weak disorder andA2p/g for the strong disor-
der, the summation reproduces the exact result both for
weak and strong disorder regimes.17

In conclusion, we have numerically investigated the de
sity correlation of the random Dirac fermion at zero energ
which exhibits a drastic change of behavior with respect
the randomness. However, the peculiar nature of the str
disorder phase is still unclear and further investigations
several approaches~RSB, etc.! are needed. Another interes
ing issue is whether the transition affects nonzero ene
states.18
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