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Numerical replica limit for the density correlation of the random Dirac fermion
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The zero-mode wave function of a massless Dirac fermion in the presence of a random gauge field is
studied. The density correlation function is calculated numerically, and found to exhibit a power law in the
weak randomness with a disorder-dependent exponent. It deviates from the power law, and the disorder
dependence becomes frozen in the strong randomness. A classical statistical system is employed through the
replica trick to interpret the results, and the direct evaluation of the replica limit is demonstrated numerically.
Analytical expressions of the correlation function and the free energy are also discussed with the replica
symmetry breaking and the Liouville field theory.
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Although the scaling theory of localization for two- =1/2g/d?x[V®(x)]?> and g is the disorder strength or, in
dimensional(2D) disordered systems generally predicts thefield-theoretic language, the coupling constant, whichiis
absence of extended states, we have some examples of NGAensionlesi two dimensions.
localized states in two dimensions which are marginally al- From now on, we concentrate our attention onlyyn.
lowed to appear. Among these, systems weitital symme-  For physical interest, it is necessary to consider normalized
try such as Gade’s mod&lthe random flux modél,or the  \ave functions in arl XL box as y(x)=e~*®/Z with
m-flux model with link disorderhave attracted much atten- Z=[(d?x/a?)e 2*™ wherea is a lattice constant. Here we
tion. Compared to the conventional models, where randomregularized the problem on aNxN periodic lattice, al-

ness enters as a on-site potential, randomness residek®n  thoygh the original problem is formulated in a continuum
(i.e., as a gauge fieJdn these models. This type of random- space(where L=Na). Correspondingly, we use the prob-
ness induces a special symmetry which affects the localizagp;jity weight S[ @] 1/29% j;,(®; — @) or, in momentum
tion properties drastically. Due to this symmetry, the densi- 5 ~ ~ 2
ties of states of the models have singularities at zero energyPac®: S[q)]“"\l 192 @ m® _m[2—2), -, cos@ky)], where
and the corresponding wave functions exhibit a muItifractaId)mzzN_ZEje""mXJCDj and the sum extends over the first
behavior. Brillouin zone m*=—N/2+1---N/2 with ki,=2m7m#/aN
Now let us concentrate our attention on cases where thﬁ\l is even for convenience.We put ®,,_,=0. Typical

low-lying physics is described by the Dirac fermions. Ex- yronapility densities|#(x)|? calculated numerically are
amples of these include the-flux model mentioned above, ghown in Fig. 1, which reminds us of multifractal states

the Chalker-Coddington network modednd the gap closing  fong at a localization-delocalization transition for several
(quantum Hall transition? 2D d-wave superconductivity is systems?

another important example. The question of how disorder™ |, tact the multifractal property of this wave function has

affec'ts the low-energy excitations, .and whether all states arf§een revealed quantitatively by a close analogy to a general-
localized, have been under extensive study recérfigcus-

; ’ Y ized random energy mod&t2 As the disorder strength is
ing on one node, let us consider a Hamiltonian of the form,jeq, the multifractal spectrum exhibits a sharp transition
H=o-p+o A whereoi_,, are the usual 22 Pauli ma-  \yhich is similar to the freezing phenomenon in spin glasses.
trices andA is a random gauge field. This Hamiltonian has ageyeral other approaches such as the supersymngiisy)
continuum version of the chiral symmetfil, y}=0, where  (echnique'® the connection to the Liouville field theol,

y=0,. Remarkably, in this situation, an explicit construc- {he renormalization grouf5,or conformal field theorlf have
tion of zero energy wave functions is possible in a 2D con-450 heen taken to support the transition.

tinuum spacé:® The Schrdinger (Dirac) equations for the Since the calculated probability densitiéSig. 1) are so
zero modes are spiky, the discretization procedure above may not be justi-
— — . fied. In spite of this subtlety, we concentrate on this well-
(20+iA)¢p-=0, (20+iA)¢.=0, (1) defined discretized wave function to investigate universal

T - , _ : properties.

ﬂhere ‘9‘__(‘%; 10y)12, 9:=(0x+19y)I2, A=A+iAy, and In this paper, we evaluate the density correlation function
A:=A,—iA,.” If we adopt a Coulomb gauge to express the

vector potentialA in terms of a scalar potentiab as A, 1
;aycp andA, = —axd?, and assume that the mean total qu.x (PA(1)g2(2)) = | —e 200g=2200) )

piercing the system is zero, we can obtain an exact solution Z?

for any realization of disorders ag. (x)=C.e"®®. Fur-

ther, let us assume that the probability weight for each realwhere(- - -) denotes the averaging with respect to the weight
ization of ®(x) has the formP[®]xe S where J®] P[®]. Here the difficulties reside in the normalization factor
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FIG. 1. Typical probability densitielgy(x)|? for g=0.4 on(a) a AT oo o L
64X 64 lattice and(b) a 1024x 1024 lattice. Insetsty(x)|? for g N e
=6.4 for each system. 1em08 10 100

|X12 | /a
Z in the denominator, sincgitself is a random variable. One

of the simplest attempts to cope with this is the replica trick.We;'(Ga'mzkb)T Qﬁoﬂzﬂ?srfﬂg f:éci;':tsegnd;'115&2’4822‘?;?322 (:();r
We multiply the numerator by", an nsider - . =
e multiply the numerator byr", and conside g=<1.6, the statistical error is smaller than the data point. gor

=3.2, the error bars are shown for every 100 points. Insets: the

2 2

<¢2(1)¢2(2)> ::f d°&y o d°é,-» “exponent” Ay vs 1N for (a) g=0.4 and(b) g=6.4. It is evalu-
n a2 a2 ated for I=<|x,,/a=<10 for each finite system.

X (@ AL TP+ O(E) F -+ D]y, der exhibits a power-law behavidr/?(1)$?(2))~|x1] 2

for 1=<|x,,/a<N/2, with its exponenA dependent linearly
(2 ong, A=2g/= (Fig. 3. This is consistent with several ana-

L . lytical approache$’ As g increases, however, tredepen-

2 2
Wh'(.:h IS e_xpected to regiuce o .(1)9/’. (2)) by takln_g the dence of the correlation function becomes weaker, and it
replica limitn— 0 (analytical continuation We use this rep-

. ; : ; : deviates from the power law. To be more precise, there is a
lica trick to interpret the direct numerical results, and also trysystematic deviation from the simple power law; that is, if

to take the replica limit by evaluatingy”(1)y*(2))s NU-  we determine the “exponentA on a finite N system, it
merically for severah and extrapolating them to=0. In . seems to diverge al increasessee the insets of Fig.)2
addition, we utilize the evaluation afy®(1)¢*(2))s, to-  This is clearly different from the behavior df, in the weak
gether with the Liouville field theory, to obtain an analytical randomness wher&, seems to converge. In fact, as shown
expression of the correlation function for the weak disordeiin Fig. 1, the wave function becomes peaked on a few sites
regime. asg increases. However, it is different from the usual local-
First let us present a direct numerical calculation ofized wave function which decays exponentially with its typi-
(¢*(1)¢?(2)). In this problem, the probability weight itself cal length scale characterized by the localization length. The
is diagonal in momentum spa¢see above which allows us  above change of behavior in the correlation function is con-
to carry out numerical simulations with a very large lattice sistent with the transition from weak to strong disorder found
up to 2048<2048. Figure 2 shows calculatég®(1)44(2))  in the multifractal spectrum in the previous studies.
for variousg on a 1024< 1024 lattice. The quenched averag-  Next let us try to interpret the above numerical results by
ing is performed over-10° different realization of disor- the replica trick. After replicatingZ, we can perform the
ders. As shown, the correlation function for the weak disor-averaging- - - ) in Eq. (2), and obtain
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n! a? a’ FIG. 4. The numerically calculated density correlatios) (and

. their replica estimates with=2, 3, 4, and 5 fofa) g=0.4 and(b)

- Hn’=42E<IQ(§}<’§|)’ G(Xi %)) =(P(x)P(x))) is the g=6.4 F())n a 64 64 periodic lattice. The replica estimates are ob-
Green's function, and G(x;,x)=G(x;,x)) =G(0)~  tained by evaluating the multiple integral in E¢3) directly.
_g/27T |n(|X”|/a) Here we multlp|y some trivial factors <l//’2(X1) 11/2()(2)>n:0 is obtained by extrapo|ating from
which reduce to unity in the limit— 0. As suggested in EQ. (y2(x,) $?(X2))n=2345 Insets: (2(x) $2(X2))n VS N at |x17/a

(3), (¥(1)4?(2)), can be interpreted as the two-body den- =20 (semilog ploy.

sity of a classical statistical systeronsisting of a set of

particles(replicag interacting with each other via the poten- smeared out in the ensemble average, and irrelevant for
tial G(x;,x;). These replica estimations are shown and di—<¢2(1)¢2(2))n_ For largeg, on the other hand, the main
rectly compared to the numerical resuliSg. 4). In Fig. 4,  contributions in the ensemble average are from the configu-
(4%(1)¥*(2)), for variousn (the number of replicaswith  rations where all replicas except (or &) are atx, (or X,

fixed g are obtained by calculating EB) numerically on a  respectively. Then(?(1)#%(2)), is expected to behave as
64x 64 lattice. This rather small lattice size is due to the

multiple integral in Eq.(3). Note that we do not have (PP(1)PA(2))n~ 1|1,
($2(1)¢?(2))n=1, as inferred from Eq(2). For g=0.4, the
replica estimation seems to converge to the one calculated twith A,,~ 29/ for smallg and~2g(n— 1)/ for largeg. A
the direct numerical simulations. Fgr=6.4, in contrast, it numerically calculated , is shown in Fig. 3, which confirms
hardly seems to coincide with the exact one in the limit that the above estimation for smallis reasonable. Taking
—0. Moreover, it gives an unphysical result, i.enegative  the replica limitn—0, we obtainA,_,=2g/7 for small g,
exponent, after taking the replica limit. which is consistent with the results obtained by the SUSY
This breakdown is closely related to the transitiorthe  technique'® For the strong disorder regime, however,the ex-
replica space There are two distinct phases for this system.ponent reduces te-2g/w, which is unphysical. Does this
For smallg, all configurations are equally favorable. 4 mean that the replica trick is a mere trick? However, the
increases, however, the configurations where all replicas areplica symmetry-breakinRSB) solution, which was pro-
close to each other come to have a large weight. Thus, fososed for the free enerdy,may also be applicable for the
sufficiently smallg, it is enough to concentrate on ondy  correlation function, and give the correct answer both for
and¢ in Eq. (3). The configuration of the other particles is weak and strong disorder.
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We also investigated other types of correlation functions This method is also applicable for the free energy. We
such as{#(1)y(2)) or (P (1)y*(1)D(2)y*(2)), the latter  expand IiZ=[(du/u)(e *—e +?) as
of which is of interest because it is related to the second
derivative of the free energiin Z)/In(L/a), which shows the
nonanalyticity atg=2. Their behaviors are qualitatively
similar to that of(?(1)#?(2)) in that, for smallg, these
correlation functions become steeper and steepeg as
creases; theig dependences are calculable by the replic
trick. For largeg, however, theirg dependencies are rather
weak, and the naive replica trick fails.
Another interesting approach is to utilize
the formula 1ZN=[1/(N—-1)!]f5due **uN"t, and ex-

e—e“—l—g1 (—1)"e" Fo(p) |

(In z>:f:d,]

At is difficult to perform the summation for strong disorder,
though we can obtain the correct answer for weak disorder.
However, if wesimplyemploy the RSB estimate of Carpen-

tier and Doussal® e~ F,=n!~L(L/a)(PY7+2pmn  \where

press the correlation function as(y3(1)y3(2)) p=1 for the weak disorder ang2 /g for the strong disor-
— [Zdpuf DDe 220 ~2000) g~ Srrl®] where S et der, the summation reproduces the exact result both for the

i A2en2 2 2B(H7 14 Thi , _ weak and strong disorder regimés.
J(d g/a)[1/29(VP)"+ pe | This action re In conclusion, we have numerically investigated the den-

sembles that of the Liouville field theory in 2D quantum i lati f th dom Dirac fermi T
gravity. However, since it was pointed out that there are>'y correiation of the random Lirac fermion at zero energy,

some subtleties about the field theoretic treatmienge  WHich edXh'b'tS a d}f'aSt'C chatnhge of bcl-:_‘hawotr with fr?ﬁpect:t to
evaluate it directly by using the replica estimates. We expang?e rzn orﬂness'. ?Y;/even, € pzc]y '?{1 hature ?. t? S rc;)ng
e #Z to express ¢2(1)y2(2)) as a superposition of the rep- isorder phase is still unclear and further investigations by

lica estimates with a different number of replicas, i.e., thefsneveézl Zp-psroaﬁgférs?ﬁ:tfr)a?]ftgieg?fg;;énﬁf)hnere'geéiset{
grand canonical ensemble INg 1SSUe 1S w ” z 9y

states’®
o o ~ n
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