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Mott transition in the two-dimensional flux phase
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Effects of the electron-electron interaction in the two-dimensional flux phase are investigated. We treat the
half-filled Hubbard model with a magnetic fluxp per plaquette by the quantum Monte Carlo method. When
the interaction is small, an antiferromagnetic long-range order does not exist. It suggests that the Mott transi-
tion occurs at finite strength of the interaction in the flux phase, which is in contrast to the standard Hubbard
model.
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I. INTRODUCTION

There has been a proposal that an order takes place
link in several interacting lattice-fermion systems. Especia
when the link order has a phase factor, it brings an effec
magnetic field. Sometimes the order can be topolog
where the phase factor itself is not a well defined order
rameter but the flux characterizes the phase. One such sy
is the flux phase which was proposed to describe the gro
state properties of several interacting lattice-fermion s
tems, e.g., the Hubbard model, thet-J model, and their
variants.1–7 Recently there has been a resurgence of inte
in the flux phase and evidences are accumulating for its
ality. For example, it was revealed that bond order ta
place in the one-dimensional extended Hubbard mode
half filling8 which is the one-dimensional analog of the flu
phase. Further, it has been discussed that a hidden topo
cal order exists in cuprates, which shares some aspects
the flux phase.9 In general, however, the flux phase compe
with other instabilities, e.g., superconductivity, antiferroma
netism, charge order, and localization due to disorder~see
Refs. 10–13 for the effects of disorder on the flux phase!. In
particular, the flux phase often competes with supercond
tivity, which is a direct consequence from the SU~2! symme-
try at half filling.2 We also note that the flux phase ca
emerge dynamically5,6 as well as in a static form.9

In this paper, we investigate effects of the interaction
the two-dimensional flux phase. We choose the tw
dimensional Hubbard model with a magnetic fluxf5p per
square plaquette and compare its properties with those o
standard Hubbard model (f50). In the standard Hubbar
model at half filling, an infinitesimally small interactio
drives the ground state to the Mott insulator, where cha
gap opens and an antiferromagnetic long-range order ex
This is a consequence from the nesting properties of
Fermi surface in the language of the SDW mean field the
for the weak coupling region. On the other hand, in the fl
phase without the interaction, the density of states disapp
linearly at the Fermi energy, which suggests that the struc
of the low energy excitations is singular as compared wit
simple Fermi liquid and the nesting instability is abse
Therefore one can expect an interaction-driven quan
phase transition from a singular quantum liquid~density of
0163-1829/2002/65~7!/073101~4!/$20.00 65 0731
n a
y
e

al
-
em
nd
-

st
e-
s
at

gi-
ith
s
-

c-

-

he

e
ts.
e
y

x
rs

re
a
.
m

states is linearly vanishing without interaction! to a gapped
insulator~Mott insulator!.

II. FLUX PHASE

The flux phase is given by the ground state of the follo
ing simple Hamiltonian:

HF5 (
^ j ,k&,s

~cj s
† t jkcks1cks

† tk j* cj s!, ~1!

where^ j ,k& denotes a nearest-neighbor link. The amplitu
of t jk is constant but its phase factort jk /ut jku5eiu jk satisfies
a conditionf5(plaquetteu jk . It leads to a uniform magnetic
flux per plaquette. The phase factoru jk itself is not fixed but
the fluxf is fixed, which is gauge independent. This Ham
tonian was proposed as an effective model of several co
lated electron systems and discussed in many diffe
contexts.1–7,11–16One of the focuses was the stability of th
flux state.14–16 Following the discussion, the optimum
energy-minimizing, magnetic flux at half filling~this is the
simplest case! is considered asp per square plaquette.14,15

Furthermore, we note that Lieb gave some rigorous res
for the stability in a general form.16

At half filling, the low-lying excitations of the flux phase
is described by massless Dirac fermions. There is a ga
freedom for the phase factoru jk but let us fix them by choos
ing as t j 1 x̂, j5(21) j yt, t j 1 ŷ, j5t and otherwise zero wher
j 5( j x , j y)PZ2, x̂5(1,0), ŷ5(0,1). The energy bands in
this gauge are given by

E~k!562tAcos2kx1cos2ky ~2!

'62tA~kx2kx
i !21~ky2ky

i !2 ~ i 51,2!, ~3!

where (kx ,ky)P@2p,p)3@0,p), k15(kx
1 ,ky

1)5(p/2,p/2),
andk25(kx

2 ,ky
2)5(2p/2,p/2). Therefore the low-lying ex-

citations are described by massless Dirac fermions at th
two gap-closing points and the density of statesD(e) near
the Fermi energy vanishes linearly,D(e)}ueu. The density of
statesD(e) is singular and it leads to the strong suppress
of the antiferromagnetic instability as discussed below. N
that the dispersion is gauge dependent but the densit
states is gauge independent. We focus on only the ga
independent quantity in this paper.
©2002 The American Physical Society01-1
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III. MODEL AND METHOD

We investigate effects of the interaction in the flux pha
by the following Hamiltonian:

H5 (
^ j ,k&,s

~cj s
† t jkcks1cks

† tk j* cj s!

1U(
i

~ni↑21/2!~ni↓21/2!, ~4!

where^ j ,k& denotes a nearest-neighbor link andU a on-site
Coulomb repulsion. The geometry is set to be a tw
dimensional square lattice and a periodic boundary condi
is imposed. The grand-canonical ensemble is employed
we put the system half filled by the particle-hole symmet
The ut jku is set to be constant (5t) and, based on the Lieb
theorem,16 the phase factoreiu jk is chosen so that the mag
netic flux f is p per plaquette, i.e.,p-flux phase (f
[(plaquetteu jk5p). We always tries to compare the results
the flux phase (f5p) with those of the standard Hubbar
model (f50). It is to be noted that time-reversal symmet
is not broken in thep-flux phase of our gauge.

In order to study the system based on a nonperturba
approximation free method, the quantum Monte Ca
~QMC! technique is applied.17,18We use the grand-canonica
scheme at finite temperatures. Due to the particle-hole s
metry, the negative-sign problem does not occur. The si
lations were performed on a square lattice with a size up
N512312 at a temperature down toT50.05t. The Trotter
decomposition is performed in the imaginary-time directi
and the time slice isDt.0.10/t. We have checked that th
systematic errors due to the Trotter decomposition are alm
independent of temperatures and does not change the e
tial features after the extrapolation. We have typically p
formed 500 Monte Carlo sweeps in order to reach a ther
equilibrium followed by 5000 measurement sweeps. T
measurements are divided into 10 blocks and the statis
error is defined by the variance among the blocks.

The Mott insulator is characterized by the following tw
features. One is a strong suppression of the charge fluc
tion and the other is a presence of the strong antiferrom
netic spin correlation. In order to detect signals of the M
transition, we have calculated the charge compressibility
the magnetic structure factor. The charge compressibilit
defined by

k5
1

N

]Ne

]m
5

b

N
~^Ne

2&2^Ne&
2!, ~5!

whereNe is the number of electrons andb an inverse tem-
perature. The charge compressibilityk measures the charg
fluctuation directly. If the system has a finite charge gapk
shows a thermally activated behavior and vanishes at
temperature. The magnetic structure factor is given by

S~q!5
1

N (
i , j

eiq•(ri2r j )^~ni↑2ni↓!~nj↑2nj↓!&. ~6!
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If the system has an antiferromagnetic long-range orde
zero temperatureS(p,p) shows diverging behavior as th
temperature decreases.

IV. RESULTS

First let us discuss effects of the interaction on the cha
compressibility. We compare the result with those of t
standard Hubbard model to clarify the effects of the flu
Figure 1 shows results of the charge compressibilityk. Due
to the strong size dependence, data forf5p at a very low
temperature is omitted. When the interaction is small (U/t
54), the difference ink betweenf50 andf5p is large
over wide range of temperatures. In particular, at the low
temprerature (T/t50.4), thevalue of thek is much closer to
that of the noninteracting flux state (f5p,U/t50) than that
of the Mott insulator (f50,U/t54). It suggests that the
effects of the flux is still relevant on the charge fluctuatio
even with the interaction. In addition, thek for f5p and
U/t54 seems to vanish atT50. Then this phase can b
neither a standard Mott insulator nor a simple Fermi liqu
Of course we can not exclude all possibilities by the limit
numerical results; our data suggests that the singular s
trum of the excitations which is characteristic in the flu
state survives for weak interactions. On the other hand, w
the interaction is strong (U/t.8), thek shows the similar
behavior independent of the flux. It implies that the loc
interactionU dominates and the system is the Mott insula
for sufficiently strong coupling (U@t). To determine theUc
which divides the possible singular phase and the Mott in
lator, one needs to see the temperature dependence ofk
at very low temperature. If the system belongs to the fl
phase, one expects thek to obey the power law,k/simT,
which reflects that the density of statesD/(e) near the Fermi
energy is sinular. On the other hand, thek shows a thermally
activated behavior for the Mott insulator. Within our prese
data, we estimate theUc/t is between 4 and 8.

FIG. 1. Temperature dependence of the compressibility fo
N510310 lattice with interaction strengthsU/t50 ~squares!, 4
~circles!, 6 ~diamonds!, and 8~triangles!. Solid symbols are forf
5p and open symbols forf50. When the interaction is smal
(U/t<4), the difference betweenf50 and f5p is large over
wide range of temperatures.
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BRIEF REPORTS PHYSICAL REVIEW B 65 073101
Figure 2 shows the antiferromagnetic structure fac
S(p,p) versus temperatures. For the standard half-fil
Hubbard model, since the ground state has an antiferrom
netic long-range order,S(p,p) shows diverging behavior a
the temperature decreases~it saturates when the antiferro
magnetic correlation length is longer then the lattice siz!.
On the other hand, for the flux phase, the formation of
long-range antiferromagnetic order is not observed
U/t<4. According to the spin-wave theory,S(p,p) at the
zero temperature increases with lattice size as

S~p,p!

N
5

m2

3
1O~N21/2!, ~7!

with m the staggered magnetization which is an order par
eter of an antiferromagnetic long-range order. Using this
lation, we try to obtainm2 by plotting S(p,p)/N versus
N21/25L21. Figure 3 shows the plots ofS(p/p)/N for vari-
ous sizes atU/t54. The data are averaged over the tempe
tures where the system effectively reaches the zero temp
ture limit. For the standard Hubbard model, the data foll
the relation~7! and the extrapolation value is finite indicatin
the existence of the antiferromagnetic long-range order.
value ofm2 is consistent with the results of Refs. 17 and 1
On the other hand, for the flux phase, the relation~7! with
m.0 does not hold. It suggests absence of the antiferrom
netic long-range order atT50, which is in contrast to the
standard Hubbard model. When one discuss within the S
mean-field theory, in the flux phase, the nesting instability
strongly suppressed due to the absence of the low en
excitations. The numerical results are consistent with
discussion at least in weak coupling.

If the interaction is sufficently strong (U@t), the flux
phase~4! is effectively described by the antiferromagne
Heisenberg model, which isthe same as the standard H
bard model. Therefore one can expect that the antiferrom
netic long-range order appears when the effects of the

FIG. 2. The antiferromagnetic structure factorS(p,p) as a
function of temperature forU/t54 on aN510310 lattice. In the
case off50, S(p,p) diverges at low temperatures due to t
formation of the antiferromagnetic order. On the other hand,
f5p, S(p,p) does not show a diverging behavior.
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become irrelevant in the strong coupling (U@t). Figure 4
shows the extrapolating plotsS(p,p)/N versus L21 for
U/t54 and U/t58 in the presence of the flux. For th
strong coupling (U/t58), the extrapolation value is finite
within statistical errors. It suggests that the antiferromagn
correlation enhances asU/t increases and the long-range o
der appears at the finite value of the interaction stren
U/t.8 although there is no long-range order atU/t54.
Then our data demonstrate the existence of the Mott tra
tion at finite value ofU5Uc,8t. This estimate is consisten
with that from the charge compressibility. This is clearly d
ferent from the standard Hubbard model, where the M
transition occurs at an infinitesimally small interactio
strength.

r

FIG. 3. The size dependence of the antiferromagnetic struc
factor. The dashed line is a least-squares fit to the data forf50.
For f50, the data extrapolate to a finite value, indicating that
ground state has an antiferromagnetic long-range order. On
other hand, forf5p, S(p,p) versus 1/L suggests the absent of th
antiferromagnetic long-range order.

FIG. 4. The size dependence of the antiferromagnetic struc
factor forU/t54 ~circles! andU/t58 ~triangles! in the presence of
the flux. ForU/t58, the data extrapolates to a finite value indica
ing that the grounjd state has the antiferromagnetic long-range
der.
1-3
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V. DISCUSSION AND SUMMARY

We have studied effects of the interaction in the fl
phase. The Mott transition is focused using the quant
Monte Carlo method. Our results on the charge compress
ity shows that effects of the flux is relevant for smallU/t,
while it becomes irrelevant whenU/t is sufficiently large.
The antiferromagnetism, which is characteristic of the M
insulator, is also strongly suppressed in the weak coup
region. This is due to the structure of the low energy exc
tions in the flux phase. It implies that the flux state w
interaction leads to a new singular phase forU,Uc/0 . This
phase is absent in the standard two-dimensional Hubb
e

k,
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model. Effects of the doping is also an interesting futu
issue in connection with the competition with the superco
ductivity.
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