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Mott transition in the two-dimensional flux phase
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Effects of the electron-electron interaction in the two-dimensional flux phase are investigated. We treat the
half-filled Hubbard model with a magnetic flux per plaquette by the quantum Monte Carlo method. When
the interaction is small, an antiferromagnetic long-range order does not exist. It suggests that the Mott transi-
tion occurs at finite strength of the interaction in the flux phase, which is in contrast to the standard Hubbard
model.
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I. INTRODUCTION states is linearly vanishing without interactjaim a gapped
insulator(Mott insulatoy.
There has been a proposal that an order takes place on a
link in several interacting lattice-fermion systems. Especially Il. FLUX PHASE

when the link order has a phase factor, it brings an effective L
magnetic field. Sometimes the order can be topological The flux phase is given by the ground state of the follow-

where the phase factor itself is not a well defined order pa'—ng simple Hamiltonian:

rameter but the flux characterizes the phase. One such system

is the flux phase which was proposed to describe the ground He= 2 (€] tikCiot ClothiCio), (1)
state properties of several interacting lattice-fermion sys- (ke

tems, e.g., the Hubbard model, thel model, and their where(j,k) denotes a nearest-neighbor link. The amplitude
variants'~’ Recently there has been a resurgence of intereif tjx is constant but its phase factig/|t;|=e'’ix satisfies

in the flux phase and evidences are accumulating for its re2 condition¢= = ,quendji - It 1€ads to a uniform magnetic
ality. For example, it was revealed that bond order takedlux per plaguette. The phase fac®y, itself is not fixed but
place in the one-dimensional extended Hubbard model dhe flux ¢ is fixed, which is gauge independent. This Hamil-
half filling® which is the one-dimensional analog of the flux tonian was proposed as an effective model of several corre-
phase. Further, it has been discussed that a hidden topolod®t€d eéle_c{rl?[]lssystems and discussed in many different
cal order exists in cuprates, which shares some aspects wiffPntexts.” - “*One of the focuses was the stability of the
the flux phasé.In general, however, the flux phase competesﬂux state. Following the discussion, the optimum,

with other instabilities, e.g., superconductivity, antiferromag-energy'mm'm'_z'ng' m_agnetlc flux at half fillinghis 'Siéqg
netism, charge order, and localization due to disoidee simplest casgis considered asr per square pl_aquet :
Refs 1’0_13 for the e'ffects of disorder on the flux phake Furthermore, we note that Lieb gave some rigorous results
particl:ular the flux phase often competes with supperconducf-Or the stabilty in a general forri
fivit whi(':h is a direct consequence from the @Vsymme- At half filling, the low-lying excitations of the flux phase

Y, q y is described by massless Dirac fermions. There is a gauge

try at half filling. We also note that the ﬂué: phase can freedom for the phase factey, but let us fix them by choos-
emerge dynamlcaIEF.as We;ll as in a static for I _ing ast;,z;=(—1), t;,; =t and otherwise zero where

In this paper, we investigate effects of the interaction in. (] )ézz = (1,0) A=(0 1). The energy bands in
the two-dimensional flux phase. We choose the twod - Wxoly ' ) Y=L54) 9y

dimensional Hubbard model with a magnetic fliéx= 7 per this gauge are given by

square plaquette and compare its properties with those of the E(k)= =+ 2t\/cofk + coZk, )
standard Hubbard modekp=0). In the standard Hubbard ) Y
model at half filling, an infinitesimally small interaction *iZt\/(kx—k;)zwL(ky—k'y)z (i=1,2), 3)

drives the ground state to the Mott insulator, where charge

gap opens and an antiferromagnetic long-range order existéhere K.ky) e[ —m,m)X[0,7), k*= (k; k) = (7/2,7/2),

This is a consequence from the nesting properties of thand k2=(k2,k§)=(—7r/2,7r/2). Therefore the low-lying ex-
Fermi surface in the language of the SDW mean field theorgitations are described by massless Dirac fermions at these
for the weak coupling region. On the other hand, in the fluxtwo gap-closing points and the density of stai®s) near
phase without the interaction, the density of states disappeatse Fermi energy vanishes linealy( €) «| e|. The density of
linearly at the Fermi energy, which suggests that the structurstatesD (€) is singular and it leads to the strong suppression
of the low energy excitations is singular as compared with af the antiferromagnetic instability as discussed below. Note
simple Fermi liquid and the nesting instability is absent.that the dispersion is gauge dependent but the density of
Therefore one can expect an interaction-driven quanturstates is gauge independent. We focus on only the gauge
phase transition from a singular quantum liguéknsity of  independent quantity in this paper.
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I1l. MODEL AND METHOD
We investigate effects of the interaction in the flux phase
by the following Hamiltonian: 0.2t j
>
5
H= > (¢] tikCho+ ChotRiCi) % ......
(i.K),o 5 | T L eee¥eg
§
0.1} 1
+UY (ny—1/2)(nj, —1/2), (4) ©
|
where(j,k) denotes a nearest-neighbor link ddda on-site
Coulomb repulsion. The geometry is set to be a two- ; oA
dimensional square lattice and a periodic boundary condition Qe ] >
is imposed. The grand-canonical ensemble is employed and Temperature

we put the system half filled by the particle-hole symmetry.
The|t;,| is set to be constant(t) and, based on the Lieb

6 PO i
theorem.” the phase factoe'"i is chosen so that the mag- (circles, 6 (diamondg, and 8(triangles. Solid symbols are fogp

netic flux ¢ is m per plaquette, i.e.a-flux phase ¢ = and open symbols fotp=0. When the interaction is small

=Z paquetdjk= ). We always tries to compare the results of (j/1<4), the difference betweeh=0 and ¢= is large over
the flux phase ¢= ) with those of the standard Hubbard jige range of temperatures.

model (¢=0). It is to be noted that time-reversal symmetry
is not broken in ther-flux phase of our gauge. If the system has an antiferromagnetic long-range order at
In order to study the system based on a nonperturbativgero temperatur&(s, ) shows diverging behavior as the
approximation free method, the quantum Monte Carlotemperature decreases.
(QMC) technique is applied’*®We use the grand-canonical
scheme at finite temperatures. Due to the particle-hole sym-
metry, the negative-sign problem does not occur. The simu-
lations were performed on a square lattice with a size up to First let us discuss effects of the interaction on the charge
N=12x12 at a temperature down ©=0.05. The Trotter = compressibility. We compare the result with those of the
decomposition is performed in the imaginary-time directionstandard Hubbard model to clarify the effects of the flux.
and the time slice i\ 7=0.10t. We have checked that the Figure 1 shows results of the charge compressibiitypue
systematic errors due to the Trotter decomposition are almo$o the strong size dependence, data e at a very low
independent of temperatures and does not change the esséemperature is omitted. When the interaction is smallt(
tial features after the extrapolation. We have typically per-=4), the difference ink between¢=0 and ¢= is large
formed 500 Monte Carlo sweeps in order to reach a thermabver wide range of temperatures. In particular, at the lowest
equilibrium followed by 5000 measurement sweeps. TheempreratureT/t=0.4), thevalue of thex is much closer to
measurements are divided into 10 blocks and the statisticahat of the noninteracting flux stateb& 7r,U/t=0) than that
error is defined by the variance among the blocks. of the Mott insulator ¢p=0,U/t=4). It suggests that the
The Mott insulator is characterized by the following two effects of the flux is still relevant on the charge fluctuations
features. One is a strong suppression of the charge fluctuaven with the interaction. In addition, the for ¢== and
tion and the other is a presence of the strong antiferromagd/t=4 seems to vanish &=0. Then this phase can be
netic spin correlation. In order to detect signals of the Mottneither a standard Mott insulator nor a simple Fermi liquid.
transition, we have calculated the charge compressibility an®f course we can not exclude all possibilities by the limited
the magnetic structure factor. The charge compressibility islumerical results; our data suggests that the singular spec-
defined by trum of the excitations which is characteristic in the flux
state survives for weak interactions. On the other hand, when
1Ne B, , ) the int_eraption is strongy/t>8), theff sh(_)ws the similar
“=N 7 =N ((Ne) = (Ne)*), (5 behavior independent of the flux. It implies that the local
interactionU dominates and the system is the Mott insulator
for sufficiently strong couplingy>t). To determine théJ,
which divides the possible singular phase and the Mott insu-
lator, one needs to see the temperature dependence &f the
At very low temperature. If the system belongs to the flux
phase, one expects theto obey the power lawg/simT,
which reflects that the density of state$(e) near the Fermi
1 energy is sinular. On the other hand, thehows a thermally
__ 9 (=) /(. —n. o activated behavior for the Mott insulator. Within our present
S@=g .2;‘ € A=) (g =m)). (6 data, we estimate the/t is between 4 and 8.

FIG. 1. Temperature dependence of the compressibility for a
N=10x10 lattice with interaction strengthd/t=0 (squares 4

IV. RESULTS

whereN, is the number of electrons angl an inverse tem-
perature. The charge compressibiliiymeasures the charge
fluctuation directly. If the system has a finite charge gap,
shows a thermally activated behavior and vanishes at ze
temperature. The magnetic structure factor is given by
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FIG. 2. The antiferromagnetic structure facts¢r,=) as a FIG. 3. The size dependence of the antiferromagnetic structure

function of temperature fo/t=4 on aN=10x 10 lattice. In the factor. The dashed line is a least-squares fit to the data fe0.

case ofp=0, S(r, ) diverges at low temperatures due to the For ¢=0, the data extrapolate to a finite value, indicating that the

formation of the antiferromagnetic order. On the other hand, fordround state has an antiferromagnetic long-range order. On the

&=, S(m,7) does not show a diverging behavior. other hand, fokp= 7, S(7r,7) versus 1 suggests the absent of the
T antiferromagnetic long-range order.

Figure 2 shows the antiferromagnetic structure factor
S(m,) versus temperatures. For the standard half-fillechecome irrelevant in the strong coupling/$t). Figure 4
Hubbard model, since the ground state has an antiferromaghows the extrapolating plotS(ar,)/N versusL~* for
netic long-range orde(, ) shows diverging behavior as /t=4 and U/t=8 in the presence of the flux. For the
the temperature decreas@s saturates when the antiferro- strong coupling U/t=8), the extrapolation value is finite

magnetic correlation length is longer then the lattice )size \yithin statistical errors. It suggests that the antiferromagnetic
On the other hand, for the flux phase, the formation of th& e |ation enhances &'t increases and the long-range or-

B?tirzng\e ar;lt'lferrto mtagnet[c orderth|s not obse;vtehd forder appears at the finite value of the interaction strength
<4. According to the spin-wave theor§(m, ) atthe ;g 4jthough there is no long-range order tt=4.

zero temperature increases with laftice size as Then our data demonstrate the existence of the Mott transi-

) tion at finite value olJ =U_.<8t. This estimate is consistent
S(m,m) _m” +O(N"12) (7)  With that from the charge compressibility. This is clearly dif-
N 3 ’ ferent from the standard Hubbard model, where the Mott

transition occurs at an infinitesimally small interaction
with mthe staggered magnetization which is an order paramstrength.

eter of an antiferromagnetic long-range order. Using this re-
lation, we try to obtainm? by plotting S(7,7)/N versus
N~Y2=L"1, Figure 3 shows the plots &/ )/N for vari-

ous sizes atJ/t=4. The data are averaged over the tempera- o=
tures where the system effectively reaches the zero tempera- i
ture limit. For the standard Hubbard model, the data follow a Un=8
the relation(7) and the extrapolation value is finite indicating 0.2F o Utt=4
the existence of the antiferromagnetic long-range order. The
value ofm? is consistent with the results of Refs. 17 and 18.
On the other hand, for the flux phase, the relati@nhwith
m>0 does not hold. It suggests absence of the antiferromag- 0.1k
netic long-range order ai=0, which is in contrast to the -
standard Hubbard model. When one discuss within the SDW rd
mean-field theory, in the flux phase, the nesting instability is f
strongly suppressed due to the absence of the low energy
excitations. The numerical results are consistent with this % 01 02
discussion at least in weak coupling. /L

If the interaction is sufficently strongu>t), the flux FIG. 4. The size dependence of the antiferromagnetic structure
phase(4) is effectively described by the antiferromagnetic factor forU/t=4 (circles andU/t=8 (triangles in the presence of
Heisenberg model, which isthe same as the standard Hulhe flux. ForU/t=8, the data extrapolates to a finite value indicat-
bard model. Therefore one can expect that the antiferromagnag that the grounjd state has the antiferromagnetic long-range or-
netic long-range order appears when the effects of the fluder.

S(m,w) /N
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V. DISCUSSION AND SUMMARY model. Effects of the doping is also an interesting future

We have studied effects of the interaction in the ﬂuxgjgt(iev;g/ connection with the competition with the supercon-

phase. The Mott transition is focused using the quantum
Monte Carlo method. Our results on the charge compressibil-
ity .shc_)ws that effepts of the flux is rglevan_t _for smallt, ACKNOWLEDGMENTS

while it becomes irrelevant wheb/t is sufficiently large.

The antiferromagnetism, which is characteristic of the Mott We are grateful to Y. Morita, M. Yamanaka, and Y. Kato
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