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Anisotropy on the Fermi surface of the two-dimensional Hubbard model
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We investigate anisotropic charge fluctuations in the two-dimensional Hubbard model at half-filling. By the
guantum Monte Carlo method, we calculate a momentum-resolved charge compressigity
=d(n(k))/du, which shows the effects of an infinitesimal doping. At the temperafaré?/U, «(k) shows a
peak structure at the+ «/2,*7/2) points along thek,| + |ky| = line. A similar peak structure is reproduced
in the mean-field calculation for théwave pairing state or the staggered flux state.
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The effects of electron-electron interaction have attractegs equal to the charge compressibiliy=[dkk(k). If the
much nterest. One of the most significant phenomena in dystem has a finite charge gap, the charge compressibility
strongly correlated electron system is the Mott transitiondecreases exponentially toward zero as the temperature is
which is a quantum phase transition driven by the interactowered. Thus, at half-filling, we cannot calculaték) with
tion. This Mott insulator has a finite charge gap, and thesufficient numerical accuracy at a very low temperature. At a
anitiferromagnetism often accompanies. Recently, variouginite temperature, an infinitesimal shift gf causes an in-
anomalous properties were found near the Mott transitionfinitesimal doping. This means tha{(k) reflects the distri-
There has been a proposal that the interaction brings aboWition of infinitesimally doped carriers with a momentum
anisotropy in the low-energy excitations. For example, theesolutionsn(k)~ (k) 8. Without the interactionk(k) is
spectral weight of the two-dimensional Hubbard model wasyeaked on the Fermi surface and its value is constant. At
investigated.* In addition, the deformation of the Fermi hajt-filling, this non-interacting Fermi surface is a square in
surface(FS) due to the interaction occurs in thel model®®  the Brillouin zone, |k, + |k,| = 7. We define the Fermi sur-

A singular momentum dependence was also observed expefgce as this square in this paper.

mentally. Angle-resolved photoemission spectroscopy mea- \ve calculatex(k) at half-filling. Here the charge degree
surements suggested anisotropic properties in the low-energf freedom is almost frozen and the system is dominated
excitations’ These anomalous properties were widely ob-only by an insulating fixed pointantiferromagnetic Mott
served in the strongly correlated electron system, and theysylato) at the low temperatureT(<t2/U). On the other
could be an evidence of the non-Fermi-liquid behavior. It isnang, at a sufficiently high temperatur&stU), the Cou-
thus an important and appealing topic to study the low4omp interactionU is irrelevant. We focus on the intermedi-
energy excitations with momentum resolution. _ ate temperature regiorT(-t%/U), expecting an interaction

The anisotropy in low-energy excitations is natural, if we petween charge and spin degree of freedom gives non-trivial
assume al-wave pairing state or a flux stateThey both feature onk(k) even at half-filling.
have a singular energy dispersion that has gap nodes along The Hamiltonian of the two-dimensional Hubbard model
the diagonal directionfk,| = [k,|, while a gap opens around s given by
the (=,0) and(0,= ) points. Thus one expects anisotropic
charge excitations near the Fermi surface. In general, how-

ever, these states compete with other instabilities. Especially H=—t > (c;r(,cj,,+ cJ-T(,ci(,)

at a rational filling, the system often belongs to an antiferro- Li)e

magnetic Mott insulator where the charge degree of freedom

is frozen. In this case, the Mk state well describes the +U2 (nm—1/2)(nil—1/2)—,u2 Nig,
i I,o

ground state. Nevertheless, tbHevave pairing state or the
flux state can give a sound basis for the interpretation of

some singular phenomena near the Mott insulator at a finitd/nere (i,j) denotes the nearest-neighbor links anthe
temperature. nearest-neighbor hopping amplitude. The system is on a

In this paper, we investigate the charge fluctuation in theduare lattice and we impose periodic boundary conditions.

half-filled Hubbard model on a two-dimensional square lat- " order to obtain approximation-free results, we employ

tice. Using the quantum Monte Carlo method, we calculatdhe finite temperature auxiliary field quantum Monte Carlo
’ 9-11 ; :
the momentum-resolved charge compressibility (QMC) method?™*" In this method, physical observables are
evaluated in the grand canonical ensemble. This makes it

d(n(k)) possible to obtairnk(k) by a direct sampling in the QMC

k(k)= , simulations as
du
where (n(k))=(clc,) denotes the momentum distribution K) = K K ) — (n(k K
function andu the chemical potential. The integral efk) () =A| | n( )Ek (k) ) =(n(k)) Ek ntk) ) ).
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o.} ﬁl‘&s ' =d(n(k))/du obtained by the quantum Monte Carlo simulations
%

on a 16<16 lattice forU/t=4 at various temperatures. The peak
structure at the € 7/2,= 7/2) points vanishes at>U.

FIG. 1. The momentum-resolved compressibility(k) +/2) points. Here we note that the interaction does not
=d(n(k))/du obtained by the quantum Monte Carlo simulations atchange the line defined b§n(k))=0.5, which is identical
T/t=0.2 on a 1616 lattice: (a) for U/t=0 and(b) for U/t=4.  with the FS in the noninteracting case. In this sense, the
The areas with large values e{k) are highlighted for the contour shape of the Fermi surface itself is not deformed at
plots. Without the interaction{/t=0), «(k) is constant on the ha|f-fi||ing_13
Fermi surface. On the other ha_nd, fort=4, «(k) shows a peak Next we discuss the temperature dependencgkf. The
structure at the £ w/2,% «r/2) points. results ofx(k) for U/t=4 at several temperatures are pro-

vided in Fig. 2. The peak structure at the: €/2,% 7/2)
where 8 denotes an inverse temperature. If we calculatgyoints is clearly observed at~t%/U. It becomes ambiguous
«(k) by numerically differentiating the QMC dat@(k)),  as the temperature increases, and vanishes dbewé. Here
we need to perform simulations for the doped system. Thigye note that the antiferromagnetic correlation length is
brings about a notorious sign problem, which prevents Ugmajier than the linear system size at these temperatures
from obtaining reliable data. On the other hand, a direclr/¢~g 2) There are two known characteristic energy scales
evaluation ofk(k) only needs a simulation at half-filling, in the Hubbard model. One is the Coulomb interactiband
where the sign problem does not occur due to the particle;

. . . . 2
hole symmetry. The number of electrons is not fixed at half-the other is the effective superexchange interaclion™/U.

filling in the QMC ensembles, even if we set the chemicalOur results show that the pe_ak structurexifk) emerges at
potential x=0. Thus, the information on infinitesimally the temperaturé’~.] and vanishes aT>_U. .
doped systems is statistically taken into accounk(k). In the half-filled Hubbard model, .armferromagnetlc long-
The simulations were performed on ax66 square lat- '@nge order appears dt=0. At a finite temperature, the
tice. The finite size effects om(k) are not observed with this SyStém does not have any long-range order. Then there is no
lattice size at the temperatures we studied. The Trotter tim@ Priori reason to expect such an anisotropy in the charge
slice size is set to b& 7=0.1t. We have checked that the compressibility. Thus, we compare the QMC results with
systematic error due to the Trotter decomposition does ndtarious mean-field solutions at the temperatlireJ. We
change qualitative features. For the interacting case, thécus on three possible mean-field solutions; thelNgate,
strength of the interaction is set to té/t=4, where the thed-wave pairing state, and the staggered flux state. As an
Charge gap iEgzo_a_lZWe typ|ca||y performed 500 Monte effective model of the Hubbard mOd@l,We use thet-J
Carlo sweeps in order to reach a thermal equilibrium fol-model to compare with our QMC results,
lowed by~ 10* measurement sweeps. The measurements are
divided into ten blocks, and the statistical error is estimated
by the variance among the blocks. _ + +
At first, let us discuss results at the temperafGiret?/U. = _t<j%‘g (€joChor CkoCio)
The results ofc(k) for U/t=0 andU/t=4 are shown in Fig. L
1. For the noninteracting case, the value«gk) on the FS is
constant. On the other hand, fat/t=4, a peak structure +'J<%> (Sj'sk annk) ’U“.E; i
emerges irnk(k) at the (= w/2,% 7/2) points. This indicates
that the ¢ #/2,+ 7/2) points are more sensitive to the shift
of the chemical potential thant(#,0) or (0 7). In other where$=%EU,U,cLa¢w,cig, and the double occupancy at
words, the system is moreompressibleat the (+#/2, the same site is prohibited. We take order parameters as
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J ..
Aj=5((cj1C —Cj Cky))  (d-wave pairing,

J
Xjk:§<(CnCL+ cjcl)) (staggered flug

m=3(S) (Neel.

We setAj, to have thed-wave symmetry and its amplitude is
constantA. The link ordery; is chosen so that the effective
magnetic flux for each plaquette takeésor — ¢ alternately.
The parameters satisty/t<1 or ¢ < where the low-lying
excitations are described by anisotropic Dirac fermibns.
The staggered magnetization is (—1)’x"/ym. In order to
apply the mean-field ansatz, we introduce auxiliary fields to
decouple the superexchange term and incorporate the con
straints of no double occupancy. Next we apply the saddle-
point approximation and neglect the fluctuation around it by
taking order parameters as an input paraméwgthout a
self-consistency conditionIn low dimensions, the fluctua-
tions generally play a role of destructing the long-range or-
der, and it is natural to expect it in our case. Our focus is,
however, not on such a long-distance behavior. FIG. 3. The mean-field calculations of the momentum-resolved

We showk (k) at half-filling for these mean-field states in compressibilityx(k) =d(n(k))/du at T/t=0.2: (a) for the d-wave
Fig. 3. The peak structure at the- ¢r/2,+ 7/2) points is  pairing state §/t=0.2), (b) for the staggered flux state= /6),
observed in thed-wave pairing or the staggered flux state, and(c) for the Neel state (/t=0.6). The areas with large values of
which is similar to the QMC results. This implies that the «(k) are highlighted. Thex(k) shows a peak structure at the
d-wave pairing state or the Staggered flux state Compet@ ’7T/2,i ’7T/2) pOintS on the Fermi surface for tldewave or Stag-
with the Neel order at a finite temperature and they giveg_ered f!ux state, which is consistent W[th the quantum Monte Carlo
good descriptions of the short-distance behavior. Howeveis’lmulatlons. .On the other hand, for the dlistate,«(k) is constant
we do not claim that these mean-field states become long" the Fermi surface.

range ordered at half-fi_lling. Our i_nterest i_s in which type of ponte Carlo method. The momentum-resolved charge com-
order parameter can give the anisotropy in the charge comyressibility «(k) is focused on at a finite temperature. It
pressibility atT~J. Even if these mean-field states are un-gives information on the infinitesimal doping in the Mott
stable, they can still play an important role at a finite tem-jnsylator. The peak structure at the: ¢/2,% /2) points is
perature. On the other hand(k) .of the Neel state gives a observed inc(k) at the temperaturd~t2/U. It is qualita-
constant value on the FS, which does not reproduce thgyely consistent with the calculation for thwave pairing
QMC results. The ground state of the half-filled system issiate or the staggered flux state, while the low temperature
well described by the N state, while the system behaves (T<t?/U) behavior is dominated by the antiferromagnetic
essentially as a noninteracting case at a sufficiently high temy st insulator. This peak structure disappears at the high
perature T>U). Both the Nel state and the noninteracting (emperatureT>U where the Coulomb interaction is irrel-
metallic state give a constar{k) on the FS. Therefore, one gyant. The crossover observed in our results reflects the ex-

of the natural scenarios for the anisotropy (k) is that  jstence of several fixed pointéncluding unstable ongsn
different kinds of fixed points exist and bring about someipe strongly correlated electron systems.

singular phenomena at an intermediate temperature. Finally,

we note that a possible admixture of different orders may We thank M. Imada, Y. Kato, S. Ryu, J. Kishine, K. Yone-

happen at a low temperature. mitsu, and P. A. Lee for fruitful discussions. The computa-
In summary, we have investigated the charge fluctuatiorion in this work was done in part using the facilities of the

in the two-dimensional Hubbard model by the quantumSupercomputer Center, ISSP, University of Tokyo.
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