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ON REAL HYPERSURFACES OF A COMPLEX SPACE
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Introduction.

Let Mn(c) denote an n-dimensional complex space form with constant holo-

morphic sectional curvature c. It is well known that a complete and simply-

connected complex space form consists of a complex projective space CPn, a

complex Euclidean space Cn or a complex hyperbolic space CHn, according as

c>0, c=0 or c<0. In this paper we consider a real hypersurface M of CPn

or CHn.

The study of real hypersurfaces of CPn was initiated by Takagi [10], who

proved that all homogeneous hypersurfaces of CPn could be divided into six

types which are said to be of type Au A2, B, C, D and E. Moreover, he

showed that if a real hypersurface M of CPn has two or three distinctcon-

stant principal curvatures, then M is locally congruent to one of the homo-

geneous ones of type Au A2 and B ([11]). Recently, to give another charac

terization of homogeneous hypersurfaces of type Alt A2 and B in CPn Kimura

and Maeda [6] introduced the notion of an ^-parallel second fundamental form,

which was defined by g((FxA)Y, Z)=0 for any vector fields X, Y and Z ortho-

gonal to the structure vector field£,where A means the second fundamental

form of M in CPn, and g and V denote the induced Riemannian metric and

the induced Riemannian connection, respectively.

On the other hand, real hypersurfaces of CHn have also been investigated

by many authors (Berndt [1], Montiel [8], Montiel and Romero [9]).

Using some results about focal sets, Berndt [1] proved the following.

Theorem A. Let M be a connected real hypersurface of CHn(n^2). Then

M has constant principal curvatures and $ is principal if and only if M is locally

congruent to one of the following.

(Ao) a horosphere in CHn.
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(Ar) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

CHn~＼

(A2) a tube over a totally geodesic submanifold CHk for k ―l, ■･･, n―2.

(B) a tube over a totally real hyperbolic space RHn.

It is necessary to remark that real hypersurfaces of type Ao or Ax appear-

ing in Theorem A, are totallyY]-umblicalhypersurfaces with two distinct con-

stant principal curvatures. In the paper of Montiel [7] the real hypersurface

of type Ao in Theorem A is said to be self-tube.

In §3 we also consider the "q-parallelsecond fundamental form in CHn and

give a further characterization of type A0) Au A2, and B in CHn. Now we

introduce the notion of an rj-parallelRicci-tensor of M in Mn{c), e^O, which is

defined by g({VXS)Y, Z)=0 for any X, Y, and Z orthogonal to £,where S is

the Ricci-tensor of M in Mn{c), c^O. It is easily seen that if the second funda-

mental form is r)-parallel,then so is the Ricci-tensor, under the condition such

that £is principal. Thus the purpose of this paper is to investigate this con-

verse problem. By using the classificationtheorem due to Takagi [10] and

Kimura and Maeda [61, we get the following.

Theorem B. Let M be a real hypersurface of CPn. Then the Ricci-tensor

of M is fj-paralleland $ is principal if and only if M is locally congruent to one

of homogeneous real hypersurfaces of type Au A2 and B.

By applying the Theorem A we can also prove the following.

Theorem C. Let M be a real hypersurface of CHn{n^2). Then the Ricci-

tensor of M is rj-paralleland $ is principal if and only if M is locally congruent

to one of type Ao, A,, A2 and B.

§1. Preliminaries.

Let M be a real hypersurface of a complex n-dimensional complex space

form Mn(c), and let C be its unit normal vector field. Since Mn{c) admits an

almost complex structure, let us denote by F its almost complex structure. For

any tangent vector field X and normal vector field C on M, the transformations

of X and C under F can be given by

FX=<j)X+f){X)C, FC=~$,

where 6 definesa skew-symmetric transformationon the tangent bundle TM of
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M, while r] and £ denote a 1-form and a vector field on a neighborhood of x in

M, respectively. In which it is seen that g(%, X)=rj{X), where g denotes the

induced Riemannian metric on M. By the properties of the almost complex

structure F, they satisfy the following

(1.1) p = -I+VR£, 0£=O, i?(0*)=O, ?(£)=1,

where / denotes the identity transformation. The set of tensors (<j>,£,rj,g) is

called an almost contact structure on M.

Furthermore, the covariant derivatives of the structure tensors are given by

(1.2) {Vx<j>)Y= y]{Y)AX-g{AX, K)£, VXS=$AX,

where V is the induced Riemannian connection of g and A denotes the shape

operator with respect to C on M.

Since the ambient space Mn(c) is of constant holomorphic sectional curva-

ture c, the equation of Gauss and Codazzi are respectively given as follows:

(1.3) R(X, Y)Z

=c{g(Y, Z)X-g{X, Z)Y+g{<j>Y, Z)$X-g(<f>X, Z)<f>Y-2g{<f>X,Y)$Z}/4

+g(AY, Z)AX-g(AX, Z)AY,

(1.4) (FxA)Y~(FYA)X=c{V(X)<f,Y-r](Y)^X-2g^X>Y)$}/4,

where R denotes the Riemannian curvature tensor of M and VXA denotes the

covariant derivative of the shape operator A with respect to X.

The Ricci-tensor S' of M is the tensor of type (0, 2) given by S'(X, Y)=

tr{Z-^R(Z, X)Y). Also it may be regarded as the tensor of type (1, 1) and

denoted by S:TM-+TM; it satisfies S'(X,Y)=g(SX,Y). From (1.3) we see

that the Ricci tensor S of M is given by

(1.5) S=c{(2n+l)I-37]R%}/4+hA-A＼

where we have put h=Tr A. The covariant derivative of (1.5) are given as

follows

(1.6) (FxS)Y = j {-WxyXY)e-3r)(Y)Fx$＼+(Xh)AY + h(FxA)Y-(FxA*)Y

The Ricci-tensor on the real hypersurface of Mn(c), c=£0,is said to be f}-

parallelif it satisfiesg((FxS)Y, Z)=0 for any tangent vector fields X, Y, and

Z in £＼ In the sequel, assume that the hypersurface M is with rj-parallel

Ricci-tensor. Thus for any X, Y, and Z in £x,(1.6) gives

(1.7) g({VxS)Y, Z)=(Xh)g{AY, Z)+hg({VxA)Y, Z)-g((FxA*)Y, Z)=0.



30 Young Jin Suh

It follows from (1.7) that if £is principal and if the second fundamental form

is in-parallel,then the Ricci-tensor is ^-parallel.

§2. Certain lemmas.

Let M be a real hypersurface of a complex space form Mn{c), c=£0. The

shape operator A of M can be considered as a symmetric (2n―1, 2n ―l)-matrix.

Now we suppose that the structure vector £is a principal curvature vector of

A, that is, A£=a£, where a is the principal curvature corresponding to £.

Then the covariant derivative gives

(PxA)e=(Xa)£+a$AX-A$AX,

where we have used the second formular of (1.2). Thus it follows that

(2.1) g{(VxA)Y, £)={Xa)T)<y)+ag(Y, 0AX)-g(Y, A<f>AX),

for any tangent vector fieldsX, and Y on M. By using the equation of Codazzi

to (2.1) and using the fact Xa=(l~a.)r)(X),we have

(2.2) 2A<f>AX-~c$X/2=a(<f>A+A0)X.

We now introduce the following fact without proof.

Lemma 2.1.([3]) Let M be a real hyper surface of Mn(c), c^O. If I-is a

principal curvature vector of A, then its principalcurvature a is locally constant.

Remark. Maeda [7] proved that a is constant for the real hypersurface

of CPn.

Since CPn has constant holomorphic sectional curvature c=4, (2.2) gives

the following.

Lemma 2.2.([7]) Let M be a real hypersurface of CPn. Assume that £is

a principal curvature vector and the corresponding principal curvature is a. If

AX=kX for any X in $＼ then A0X=((aX+2)/(2X-a))$X.

§3. Real hypersurfaces of CHn with 77-parallelsecond fundamental form.

It is well known that the complex hyperbolic space CHn admits the Berg-

mann metric normalized so that the constant holomorphic sectional curvature c

is ―4.

Thus (2.2) gives the following equation for the real hypersurface of CHn

whose structure vector field£is principal.
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(3.1) 2A0AX+2fiX=a(0A+A<p)X

for any tangent vector fieldX in M. It follows that if AX―XX for any X in

£＼then

(3.2) (2)L-a)A<l>X=(aX-2)<l>X.

Now we need the followinglemmas which willbe used in the later

Lemma 3.1.(Montiel and Romero [9]) Let M be a real hyper surface of CHn.

Then

(3.3) A6―&A holds on M if and only if M is of type Ao, Ax or Az.

Lemma 3.2. Let M be a real hyper surf ace of CHn. Then

(3.4) A<j)-＼-<[)A= k<j)(k^Q : constant) holds on M if and only if M is of type Ao, Ax

or B.

Proof. From (3.4) we have that At-=al;, that is, £is the principal curva-

ture vector. If AX=XX for any X in £＼ then A<f>X=(k-X)<jtX.

By Lemma 2.1 a is constant. Thus we can consider the following two

cases: a2―4=£0 and a2―4=0.

For a2-4^0 we then have 2X-a^0 by (3.2). Thus also from (3.2) it fol-

lows that k-X=(aX-2)/(2X-a). Hence it follows that 2X2-2kX+ak-2=0.

Since X satisfies the above quadratic equation with constant coefficients, all

principal curvatures are constant on M. Thus due to Theorem A, M is of type

Alr A2 or B. Suppose that M is of type A2. By Lemma 3.1 A^t―^A holds on

M. This fact and (3.4) imply 2A$ = k<f>. Thus from the almost contact struc-

ture it follows that A=aI-＼-br]<g)%> that is, M is totally rj-umblical. Then it is

seen by Montiel and Romero [9] that M is of type Ao or Au a contradicts.

Thus the type of A2 can not occur.

Now we consider for the case a2―4=0. Let M0={x<bM＼(2X―a)x=£0}.

Then X also satisfies 2X2―2kX+ak―2―0. Thus X is constant on Mo. On the

other hand, we have 2X―a=0 on M―Mo, Then (3.2) gives aX=2. Thus X=

±1 on M―Mo.

The continuity of principal curvatures implies that if the set M―Mo is not

empty, then ^=±1 on M. Hence M is of type Ao.

For the case where Mo coincides with the whole M, it is of type Au A2 or

B and therefore it must be of type AL or B by the same argument as that of

the above half, a contradiction.

Conversely, suppose that M is of type Ao> Ax or B, It is seen by Montiel
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and Romero [9] that the type of Aa and Ax are the only totally 07-umblicalreal

hypersurfaces of CHn. Thus it naturally satisfiesA<j)-＼r(f>A―k<j).

For the type of B we can take an orthonormal basis {Xu ■･･, Xn-U <f>Xu･･･,

<j>Xn-u f} of TX{M) such that >l^=coth BXU i4^Z≪=tanh B^XU i=l, ■■■, w-1,

and A£=2 tanh 2^f Then we have A0X+0AX=(tanh ^+coth d)(f)Xfor any X

in TX(M). Thus we complete the above lemma.

Lemma 3.3. Let M be a real hypersurface of Mn{c), c^O. // the structure

vector field£is principal and if the second fundamental form A satisfiesthe fol-

lowing quadratic formula:

(3.5) A2+aA+cI=Q (a2-ib^0, a, b: constant) on $＼

then the second fundamental form A is v-parallel.

Proof. By taking covariant derivative of (3.5), we get

(3.6) g{(FxA)AY, Z)+g(A(FxA)Y, Z)+ag((FxA)Y, Z)=0

for any X, Y, and Z in £＼

Taking the skew-symmetric part of (3.6) and using the equation of Codazzi,

we have

g((FxA)AY, Z)=g((FYA)AX, Z),

from which together with g(AX, (FzA)Y)=g((FzA)AX, Y)=g{{F XA)AZ, Y), we

get

(3.7) g{{FxA)AY, Z)=g(A(FxA)Y, Z)

for any X, Y, and Z in f1, where we have used the fact that £x is invariant

under the transformation of A because £is the principal curvature vector.

Combining (3.6) and (3.7), we obtain for any X, Y, and Z in f1

(3.8) 2g(A(FxA)Y, Z)+ag{{FXA)Y, Z)=0 .

Transforming (3.8) with A and using (3.5) again, we get

(3.9) 2bg((FxA)Y, Z)=-ag(A{FxA)Y, Z).

From which, substituting into (3.8), we have

(3.10) g{A{FxA)Y, Z)=0,

where we have used the fact a2-4bi=0. Thus (3.9) gives g{(FxA)Y, Z)―0 for

b^O.

For the case where b~Q. a2―4/?^0 imnlies a^O. From which toerether
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with (3.8) and (3.10) it follows that g{{VXA)Y, Z)=0 for any X, Y and Z in £x.

Hence we get the above lemma.

These Lemmas 3.1,3.2 and 3.3 and Theorem A enable us to prove the fol-

lowing.

Theorem 3.4. Let M be a real hypersurface of CHn. Then the second

fundamental form of M is rj-paralleland the structure vector field £is principal

if and only if M is locally congruent to one of type Ao, Alf A2 or B.

Proof. First we shall show that the second fundamental form of type Ao,

Ai, Az or B is r]-parallel.

Now let M be a of type Ao, A1 or A2. Then by Lemma 3.1 A$=<f>A holds

on M. Thus 0^4£=O implies that £is principal, that is, A$=a$. From which

and (3.1) it follows that

A2-aA+I=0 on £＼

Thus Lemma 3.3 gives that the second fundamental form is rj-parallelfor the

case a2―4=£0. For the case where ≪2=4 all the principalcurvatures 1 are ±1.

Thus M is of type /l0 and totally 37-umblical. Hence the second fundamental

form is also rj-parallelin this case.

Now we consider that M is of type B. Then by Lemma 3.2 A$+$A = k<f>

(k^O: constant) holds on M. From which we also get t4£=≪£.Thus from

(3.1)it follows that

Ai-kA-(l-ak/2)I=0 on £x.

On the other hand, due to Berndt's classification[1] all the principal cur-

vatures of type B are given as follows: ^=coth 6, ^ = tanh 6, a=2tanh2#.

Since X+fi―2zoth2d=A/a, A0Jr<ftA = k(f>implies k=A/a. Hence we conclude

that £2+4(l―ak/2)^0. Hence by Lemma 3.3 we also get our result.

Conversely, it sufficesto show that allthe principal curvatures are constant

on M. If AX=XX for any X in £＼then g{(VYA)X, X)=(YZ)g(X, X). Thus

from the assumption we have that YA=Q for any Y in £x.

On the other hand, using equation of Codazzi and making use of (2.1) and

Lemma 2.1, we get the following.

$X=g((FeA)X, X)=g((FxA)$,-X)=0.

From these facts and Theorem A, we conclude that M is of type A0) Aly A2,

and B. This completes the above Theorem.
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Remark. Kimura and Maeda [6] showed that a real hypersurface of CPn

with f]-parallelsecond fundamental form and principal structure vector field£

is locally congruent to one of homogeneous real hypersurfaces of type Alt A%

and B.

§4. Real hypersurfaces of Mn{c), c^O, with ^-parallel Ricci-tensor.

Let M be a real hypersurface of Mn{c) with rj-parallelRicci-tensor, that is,

g((7xS)Y, Z)―0 for any X, Y and Z in £L. It is easily seen that if £ is prin-

cipal, then the second fundamental form A of M in Mn(c) is rj-parallelimplies

that the Ricci-tensor S is rj-parallel. In this section we are investigated to

study this converse problem by using Kimura and Maeda's [6] result and Theo-

rem 3.4. Then we can state another characterization as the following.

Theorem 4.1. Let M be a real hypersurface of CPn. Then the Rica-tensor

is fj-paralleland the structure vector field£is principalif and only if M is of

type Alf A, and B.

Proof. For any X, Y in £x, the fact that the Ricci-tensor is fj-paralld

implies

(FxS)Y = -3(FxV)(Y)$+(Xh)AY + h(FxA)Y-(FxA2)Y

belongs to [£],where [£] means l-dimensional vector space spanned by £. Thus

£((FxS)F, K)=0 for any 7 in £＼ Hence if we put AY=XY, then

(4.1) ^(A"/i)+/i(^)-(^*)=0 for any X in fx.

Also for any Y in £x such that AY=XY we have {F^Y-^Y+iXI-A)!^.

Thus ^=^((F^)F, r)=^((FF/l)|, y)=0. Hence the mean curvature h is also

constant on ^-direction. Together with this fact and (4.1), we conclude that

lh―l% is constant on M. Thus we can put as the following.

(4.2) Xh-X2=a, (4.3) fih-fi%=b.

By Lemma 2.2,(4.2) and (4.3) can be rewritten as follows

(4.4) X2-hX+a=0,

(4.5) (2fca-as-4W- {{a2-A)h+Aa-iba＼ X--(2ah + ba2+4)=0.

Substituting hX=k2jra into (4.5), we then have

(4.6) 2aX4-(2a2+4b-A)X3 + 2(aa+2ba-3aW---(aa2--4a + ba2+4:)X-2aa==0.

From which we see that X satisfiesan algebraic equation with constant coeffici-
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ents. Thus M has at most five constant principal curvatures. According to

Kimura's theorem [4], M is homogeneous.

On the other hand, due to Takagi's classificationof homogeneous real hyper-

surface of CPn, we conclude that M is of type Au A2, B, C, D and E.

In order to prove this theorem we shall show that the shape operator is tj-

parallel.

Let A(X) be an eigenspace of A with eigenvalue X. Then the subspace $x

of the tangent space TX(M) at x can be decomposed as ^x=A(Xi)^A(X2)@ ･･･

(&A(XS). Now in what follows we consider the following eigenvector such that

X^A(X), Y<=A(p) and Z^A(a), where X, p and a are corresponding constant

principal curvatures. Then we have that

(4.7) g({VxA)Y, Z)={fi~a)g{VxY, Z).

On the other hand, from the y-parallel Ricci-tensorit follows that

(4.8) (h-pt-(T)g((FxA)Y, Z)=0.

For the case where fi=a, (4.7) implies that g((FxA)Y, Z)=0. Thus it suffices

to show that the shape operator is ^-parallel for the case where fi^a.

In the case where h―pt―a^, (4.8) gives our result. Thus it remains to

consider for the case where h―fjt―a=O. Thus the rj-parallelRicci-tensor gives

(4.9) g((FYS)X, Z)=(h-X~a)g((FYA)X, Z)=0.

If A=t[t,then h―fi―a=0 implies h―X―a^O. From which together with (4.9)

it follows g(iVxA)Y, Z)=g((FYA)X, Z)=0. If X-fi, (4.7) gives g({FxA)Y, Z)=

g((FzA)X, Y)―Q. Summing up, we conclude that the shape operator is 7]-

parallel. Thus, due to Kimura and Maeda's Theorem [6], M is of type Au A2

and B.

Conversely, if M is of type Alf A2 or B, then by Kimura and Maeda's

Theorem [6] the second fundamental form is rj-paralleland its structure

vector fieldf is principal. Since rj-parallelsecond fundamental form with the

principal structure vector £ implies rj-parallelRicci-tensor, we get the above

Theorem.

Remark. Kimura [5] showed that a real hypersurface of CPn with the

condition {VxS)Y=c{g(<j>AX, Y)+i)(Y)<f>AX), where c is constant, is locally

congruent to homogeneous hypersurfaces with 2 or 3 distinct principal curva-

tures. Thus this condition implies that the Ricci-tensor S is fj-paralleland

structure vector field£is principal.
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On the other hand, for a real hypersurface of CHn we get the following.

Theorem 4.2. Let M be a real hypersurface of CHn, n^2. Then the

Rcci-tensor is -q-paralleland the structure vector field £is. principal if and only

if M is of type Ao> Au A% or B.

Proof. The converse is trivialby Theorem 3.4.

Let M be a real hypersurface of CHn with -q-paralld Ricci-tensor and

principal structure vector field£. Then similarly as in Theorem 4.1 we can

put

(4.13) Ih-I2~a ,

(4.14) fih-fi2=h.

By Lemma 2.1 we can consider the following two cases.

Case I. a2 -4^0.

Then 2X~a^0. In fact, suppose that 2k―a=0. Then (3.2) gives aX=2.

Together with this fact we have a2―4=0, a contradiction. Thus from (3.2) it

follows A^X―n^X, p=;(aA―2)/(2A―a). From which, substituting (4.14), then

we get .

(4.15) (2ah-a2-4:b)F+ {4a+4ha-(a2+4)h}X+(2ah--4-ba2)=0.

Substituting (4.13) into (4.15), then X satisfiesthe following equation with con-

stant coefficients

2aX4-2(a2+2b+2)X3-＼-2a(a+2b+3)X2-(aa2+ba2+4a+4:)X+2aa=0.

In the case where a=0, a = ―1 and b= ―l, coefficientsof the above equation

are all vanishing. Thus it sufficesto prove that principal curvatures are also

constant on M in this case.

For the case where a = ―l, and b― ―l it follows from (4.13) and (4.14) that

X=/i or h=X+fi. Since fi= ―l/X for ≪=0, 1―p. implies ^2-fl=0. This con-

tradicts. Thus we have h=A+ft. From which together with h=m1X+m2(―l/X)

for a=Q, it follows that(wi ―l)A2―(m2 ―l)=0. Since mi =^1,principal curvatures

are constant on M in this case. Hence all principal curvatures are constant on

M. Thus due to Theorem A we conclude that M is of type Au Az or B.

Case II. ≪2=4.

Now we consider for the case a―2. Then (3.2) gives
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(X-l)A0X=U-l)4>X.

Let us take an open set M0―{x(=M＼Xi^l}. Then A<j)X=<j>X. Thus ft= l. From

which and (4.14) it follows h=b+l on Ma. Since ^=1 on M―Mo, also from

(4.13) it follows h ―a + l. Hence h is constant and a=b on M. Thus /isatisfies

a quadratic equation with constant coefficients: X2―hX+a=0. Hence allprincipal

curvatures are constant on M.

Similarly, for the case a = ―2 we also get the same conclusion. By virtue

of Theorem A, M is of type Ao, Ax, A2 or B. Since a=±2, then M is of

type Ao.
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