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ON REAL HYPERSURFACES OF A COMPLEX SPACE
FORM WITH 7-PARALLEL RICCI TENSOR

By

Young Jin SuH*

Introduction.

Let M,(c) denote an n-dimensional complex space form with constant holo-
morphic sectional curvature ¢. It is well known that a complete and simply
connected complex space form consists of a complex projective space CP", a
complex Euclidean space C" or a complex hyperbolic space CH", according as
¢>0, ¢=0 or ¢<0. In this paper we consider a real hypersurface M of CP"
or CH".

The study of real hypersurfaces of CP" was initiated by Takagi [10], who
proved that all homogeneous hypersurfaces of CP" could be divided into six
types which are said to be of type A,, A4,, B, C, D and E. Moreover, he
showed that if a real hypersurface M of CP" has two or three distinct con-
stant principal curvatures, then M is locally congruent to one of the homo-
geneous ones of type A, A, and B ([11]). Recently, to give another charac
terization of homogeneous hypersurfaces of type A,, 4, and B in CP" Kimura
and Maeda [6] introduced the notion of an 7-parallel second fundamental form,
which was defined by g((FxA)Y, Z)=0 for any vector fields X, Y and Z ortho-
gonal to the structure vector field & where A4 means the second fundamental
form of M in CP", and g and V denote the induced Riemannian metric and
the induced Riemannian connection, respectively.

On the other hand, real hypersurfaces of CH™ have also been investigated
by many authors (Berndt [1], Montiel [8], Montiel and Romero [9]).

Using some results about focal sets, Berndt {17 proved the following.

THEOREM A. Let M be a connected real hypersurface of CH"(n=2). Then
M has constant principal curvatures and § is principal if and only if M is locally
congruent to one of the following.
(Ao) a horosphere in CH™.
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(A) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
CH" ',

(4;) a tube over a totally geodesic submanifold CH* for k=1, -, n—2.

(B) a tube over a totally real hyperbolic space RH™.

It is necessary to remark that real hypersurfaces of type A, or A, appear-
ing in Theorem A, are totally n-umblical hypersurfaces with two distinct con-
stant principal curvatures. In the paper of Montiel [7] the real hypersurface
of type A, in Theorem A is said to be self-tube.

In §3 we also consider the 7-parallel second fundamental form in CH" and
give a further characterization of type A,, A;, A,, and B in CH®. Now we
introduce the notion of an %-parallel Ricci-tensor of M in M,(c), ¢#0, which is
defined by g((FxS)Y, Z)=0 for any X, Y, and Z orthogonal to & where S is
the Ricci-tensor of M in M,(c), ¢#0. It is easily seen that if the second funda-
mental form is #-parallel, then so is the Ricci-tensor, under the condition such
that & is principal. Thus the purpose of this paper is to investigate this con-
verse problem. By using the classification theorem due to Takagi [10] and
Kimura and Maeda [6], we get the following.

THEOREM B. Let M be a real hypersurface of CP". Then the Ricci-tensor
of M is n-parallel and & is principal if and only if M is locally congruent to one
of homogeneous real hypersurfaces of type A,, A, and B.

By applying the Theorem A we can also prove the following.

THEOREM C. Let M be a real hypersurface of CHnz=2). Then the Ricci-
tensor of M is n-parallel and & is principal if and only if M is locally congruent
to one of type A,, A, A; and B.

§1. Preliminaries.

Let M be a real hypersurface of a complex n-dimensional complex space
form M,(¢), and let C be its unit normal vector field. Since M,(¢) admits an
almost complex structure, let us denote by F its almost complex structure. For
any tangent vector field X and normal vector field C on M, the transformations
of X and C under F can be given by

where ¢ defines a skew-symmetric transformation on the tangent bundle TM of



On real hypersurfaces of a complex space form 29

M, while n and & denote a 1-form and a vector field on a neighborhood of x in
M, respectively. In which it is seen that g(¢, X)=%(X), where g denotes the
induced Riemannian metric on M. By the properties of the almost complex
structure F, they satisfy the following

(1L.1) P'=—1+79K¢  ¢6=0, (@X)=0, &=L,

where I denotes the identity transformation. The set of tensors (¢, &, 7, 8) is
called an almost contact structure on M.
Furthermore, the covariant derivatives of the structure tensors are given by

(1.2) TPV =7(VAX—g(AX, Y)E,  Vxe=gAX,

where V is the induced Riemannian connection of g and A denotes the shape
operator with respect to C on M.

Since the ambient space M,(c¢) is of constant holomorphic sectional curva-
ture ¢, the equation of Gauss and Codazzi are respectively given as follows:

(1.3) R(X, Y)Z
=cl{gY, 2)X—g(X, 2)Y +g(¢Y, Z)pX—g(9 X, Z)¢Y —2g(¢ X, Y )pZ} /4
+g(AY, Z)AX—g(AX, Z)AY,
(1.4) FxAY —FrA)X=c{n(X)pY —n(Y)pX—2g( X, Y )&} /4,
where R denotes the Riemannian curvature tensor of M and FyA denotes the
covariant derivative of the shape operator A with respect to X.

The Ricci-tensor S’ of M is the tensor of type (0, 2) given by S/(X, Y)=
tr{Z—R(Z, X)Y'}. Also it may be regarded as the tensor of type (1, 1) and
denoted by S:TM—TM; it satisfies S'(X, Y)=g(SX,Y). From (1.3) we see
that the Ricci tensor S of M is given by
(1.5) S=c{@n+1)I—-39RE} /4+hA— A2,

where we have put h=Tr A. The covariant derivative of (1.5) are given as
follows

(L6)  (TxS)Y =L{ =30 x)(V)E=35(Y )V x&} -+ (XD)AY +h(F x A)Y —(7 x A%)Y

The Ricci-tensor on the real hypersurface of M,(c), ¢#0, is said to be 7-
parallel if it satisfies g((FxS)Y, Z)=0 for any tangent vector fields X, Y, and
Z in &*. In the sequel, assume that the hypersurface M is with »-parallel
Ricci-tensor. Thus for any X, Y, and Z in £+, (1.6) gives

(L7 gV xSY, Z)=(Xh)g(AY, Z)+hg(Vx A)Y , Z)—g(VxA®)Y, Z)=0.
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It follows from (1.7) that if & is principal and if the second fundamental form
is y-parallel, then the Ricci-tensor is #-parallel.

§2. Certain lemmas.

Let M be a real hypersurface of a complex space form M,(c), ¢#0. The
shape operator A of M can be considered as a symmetric (2n—1, 2n—1)-matrix.
Now we suppose that the structure vector & is a principal curvature vector of
A, that is, A8=a&, where « is the principal curvature corresponding to &.

Then the covariant derivative gives

Fx Ae=(Xa)¢+apAX—APAX,
where we have used the second formular of (1.2). Thus it follows that
2.1 g(FxAY, =Xa)y(Y)+agy, pAX)—gY, AQAX),

for any tangent vector fields X, and Y on M. By using the equation of Codazzi
to (2.1) and using the fact Xa=(fa)n(X), we have

(2.2) 24 AX—cd X/2=a($pA+A)X.

We now introduce the following fact without proof.

LEMMA 2.1. ([3]) Let M be a real hypersurface of Muy(c), ¢+0. If Eisa

principal curvature vector of A, then its principal curvature a is locally constant.

REMARK. Maeda [7] proved that a is constant for the real hypersurface
of CP".

Since CP™ has constant holomorphic sectional curvature c¢=4, (2.2) gives
the following.

LEMMA 2.2. ([7]) Let M be a real hypersurface of CP". Assume that £ is
a principal curvature vector and lhe corresponding principal curvature is a. If
AX=2X for any X in &*, then AgX=((al+2)/(22—a)$X.

§3. Real hypersurfaces of C H" with 7-parallel second fundamental form.

It is well known that the complex hyperbolic space CH" admits the Berg-
mann metric normalized so that the constant holomorphic sectional curvature ¢
is —4.

Thus (2.2) gives the following equation for the real hypersurface of CH"
whose structure vector field & is principal.
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3.1) 2AAX+2p X=a(pA+A)X

for any tangent vector field X in M. It follows that if AX=21X for any X in
&4, then

(3.2 (2A—a)Ap X=(al—2)p X .

Now we need the following lemmas which will be used in the later.

LEmMA 3.1. (Montiel and Romero [9]) Let M be a real hypersurface of CH™.
Then

(3.3) Ap=¢A holds on M if and only if M is of type A,, A, or A,.

LEMMA 3.2. Let M be a real hypersurface of CH". Then

(3.4) AP-+dA=k¢ (k+0: constant) holds on M if and only if M is of type A,, A,
or B.

Proor. From (3.4) we have that Aé=aé&, that is, £ is the principal curva-
ture vector. If AX=2X for any X in &', then A¢X=(k—A)¢X.

By Lemma 2.1 a is constant. Thus we can consider the following two
cases: a*—4+0 and a?—4=0.

For a®*—4+0 we then have 24—a+0 by (3.2). Thus also from (3.2) it fol-
lows that k—A=(al—2)/(2A—«). Hence it follows that 23*—2kA+ak—2=0.
Since 4 satisfies the above quadratic equation with constant coefficients, all
principal curvatures are constant on M. Thus due to Theorem A, M is of type
A,, A, or B. Suppose that M is of type A,. By Lemma 3.1 A¢=¢A holds on
M. This fact and (3.4) imply 2A¢=+k¢. Thus from the almost contact struc-
ture it follows that A=al+4-bnQ4E, that is, M is totally n-umblical. Then it is
seen by Montiel and Romero [9] that M is of type A, or A,, a contradicts.
Thus the type of A, can not occur.

Now we consider for the case a®*—4=0. Let M,={x&M|(2i—a),#0}.
Then A also satisfies 22°—2kA+ak—2=0. Thus A is constant on M,. On the
other hand, we have 24—a=0 on M—M,. Then (3.2) gives ad=2. Thus A=
+1 on M—M,.

The continuity of principal curvatures implies that if the set M—M, is not
empty, then i=+1 on M. Hence M is of type A,.

For the case where M, coincides with the whole M, it is of type A,, A, or
B and therefore it must be of type A, or B by the same argument as that of
the above half, a contradiction.

Conversely, suppose that M is of type A,, A, or B. It is seen by Montiel
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and Romero [9] that the type of A, and A, are the only totally n-umblical real
hypersurfaces of CH™ Thus it naturally satisfies A¢-+gA=Fkd.

For the type of B we can take an orthonormal basis {X,, -+, X1, 6X,, -,
¢ Xn-1, & of T(M) such that AX;=coth 0X;, A¢pX,=tanh 04X, i=1, ---, n—1,
and Aé=2tanh26& Then we have A¢X+¢AX=(tanh §+coth §)¢X for any X
in T.(M). Thus we complete the above lemma.

LEMMA 3.3. Let M be a real hypersurface of My(c), ¢c#0. If the structure
vector field & is principal and if the second fundamental form A satisfies the fol-

lowing quadratic formula:
(3.5) A*+aA+cl=0 (a®*—4b+#0, a, b: constant) on §*,

then the second fundamental form A is n-parallel.

ProOOF. By taking covariant derivative of (3.5), we get
(3.6) gV xAAY , Z)+g(AlV x A)Y , Z)+ag(V xA)Y, Z2)=0

for any X, Y, and Z in &*.
Taking the skew-symmetric part of (3.6) and using the equation of Codazzi,

we have
gV xADAY, Z2)=g(VyA)AX, Z),

from which together with g(AX, T AY)=g((V,A)AX, Y)=g(F xA)AZ,Y), we
get
(3.7 gV xAAY, Z)=g(AW x A)Y, Z)

for any X, Y, and Z in &', where we have used the fact that & is invariant
under the transformation of A because & is the principal curvature vector.
Combining (3.6) and (3.7), we obtain for any X, Y, and 7 in &*

3.8 28(AV x A)Y, Z)+ag((V xA)Y, Z)=0.
Transforming (3.8) with A and using (3.5) again, we get
3.9 2bg(FPx A)Y , Z)=—ag(AV £ A)Y, Z).
From which, substituting into (3.8), we have

(3.10) g(AV xA)Y, Z2)=0,

where we have used the fact a®—4b+0. Thus (3.9) gives g(FxA)Y, Z)=0 for

b+0.
For the case where b=0, a®—4b+#0 implies a+0. From which together
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with (3.8) and (3.10) it follows that g((F xA)Y, Z)=0for any X, Y and Z in &*.
Hence we get the above lemma.

These Lemmas 3.1, 3.2 and 3.3 and Theorem A enable us to prove the fol-
lowing.

THEOREM 3.4. Let M be a real hypersurface of CH™. Then the second
fundamental form of M is y-parallel and the structure vector field & is principal
if and only if M is locally congruent to one of type A,, Ai, A, or B.

ProoOF. First we shall show that the second fundamental form of type A,,
Ay, A, or B is n-parallel.

Now let M be a of type A,, A, or A,. Then by Lemma 3.1 A¢g=¢A holds
on M. Thus ¢AE=0 implies that & is principal, that is, Aé=a&. From which
and (3.1) it follows that

A—aA+I=0 on &+,

Thus Lemma 3.3 gives that the second fundamental form is 7-parallel for the
case a?—4+0. For the case where a*=4 all the principal curvatures A are 1.
Thus M is of type A, and totally p-umblical. Hence the second fundamental
form is also y-parallel in this case.

Now we consider that M is of type B. Then by Lemma 3.2 A¢+gA=~¢
(k#0: constant) holds on M. From which we also get Aé=a&. Thus from
(3.1) it follows that

A*—kA—1—ak/2)I[=0  on &'.

On the other hand, due to Berndt’s classification [1] all the principal cur-
vatures of type B are given as follows: A=coth 6, g=tanh §, a=2 tanh 26.
Since A+p=2coth20=4/a, A¢+¢pA=k¢ implies k=4/a. Hence we conclude
that 22+4(1—ak/2)#0. Hence by Lemma 3.3 we also get our result.

Conversely, it suffices to show that all the principal curvatures are constant
on M. If AX=1X for any X in &, then g((FyA)X, X)=(Y Ag(X, X). Thus
from the assumption we have that YA=0 for any Y in &*.

On the other hand, using equation of Codazzi and making use of (2.1) and
Lemma 2.1, we get the following.

=gV A)X, X)=g((FxA)¥, X)=0.

From these facts and Theorem A, we conclude that M is of type A,, A;, A,,
and B. This completes the above Theorem.
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REMARK. Kimura and Maeda [6] showed that a real hypersurface of CP"
with n-parallel second fundamental form and principal structure vector field &
is locally congruent to one of homogeneous real hypersurfaces of type A,, 4,
and B.

§4. Real hypersurfaces of M,(c), ¢c#0, with y-parallel Ricei-tensor.

Let M be a real hypersurface of M,(c) with y-parallel Ricci-tensor, that is,
g(FxS)Y, Z)=0 for any X,Y and Z in &' It is easily seen that if £ is prin-
cipal, then the second fundamental form A of M in My(c) is #-parallel implies
that the Ricci-tensor S is #-parallel. In this section we are investigated to
study this converse problem by using Kimura and Maeda’s (6] result and Theo-
rem 3.4. Then we can state another characterization as the following.

THEOREM 4.1. Let M be a real hypersurface of CP*. Then the Ricci-tensor
is n-parallel and the structure vector field & is principal if and only if M s of
type A,, As and B.

Proor. For any X, Y in &%, the fact that the Ricci-tensor is #-parallel
implies
FxS)Y ==3F x )YV )E+(XR)AY +h(V x A)Y —(V x A)Y

belongs to [£], where [£] means l-dimensional vector space spanned by &. Thus
g((F xS)Y, Y)=0 for any Y in &*. Hence if we put AY =21Y, then

4.1 AXh)+h(XA)—(X2H)=0 for any X in &

Also for any Y in & such that AY=1Y we have (F:A)Y =AY +QAI—ANV.Y.
Thus E3=g((V:A)Y, Y)=g((FyA)¢, Y)=0. Hence the mean curvature h is also
constant on &-direction. Together with this fact and (4.1), we conclude that
Ah—2% is constant on M. Thus we can put as the following.

4.2) Ah—2=a, 4.3) ph—p*=b.

By Lemma 2.2, (4.2) and (4.3) can be rewritten as follows

4.4) L—hi+a=0,

(4.5) Qha—a®—4b)2*— {(a*—4)h+4a—4dba} A—2ah+ba*+4)=0.
Substituting 2A=4*+a into (4.5), we then have

4.6) 202 —Qa’+4b—HA+2(aa+2ba—3a)*—(aa’*—4a+ba*+4)A—2aa=0.

From which we see that A satisfies an algebraic equation with constant coeffici-
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ents. Thus M has at most five constant principal curvatures. According to
Kimura’s theorem [4], M is homogeneous.

On the other hand, due to Takagi’s classification of homogeneous real hyper-
surface of CP", we conclude that M is of type Ay, A,, B, C, D and E.

In order to prove this theorem we shall show that the shape operator is %-
parallel.

Let A(2) be an eigenspace of A with eigenvalue 4. Then the subspace &%
of the tangent space T (M) at x can be decomposed as &y =A(A)PALL)PD -
PDA(4;). Now in what follows we consider the following eigenvector such that
X AQ), YeA(p) and Z=A(g), where 4, ¢ and ¢ are corresponding constant
principal curvatures. Then we have that

@7 gV xAY, 2)=(p—a)gWxY, Z).
On the other hand, from the %-parallel Ricci-tensor it follows that

4.8) (h—p—a)g((V xA)Y, Z)=0.

For the case where p=ga, (4.7) implies that g(FPxA)Y, Z)=0. Thus it suffices
to show that the shape operator is »-parallel for the case where p+ao.

In the case where h—p—a+0, (4.8) gives our result. Thus it remains to
consider for the case where h—pu—og=0. Thus the »-parallel Ricci-tensor gives

4.9) g(VyS)X, Z)y=(h—2—a)g(VvA)X, Z)=0.

If 2# 4, then h—p—o=0 implies h—2—o+#0. From which together with (4.9)
it follows g(FxA)Y, Z)=g(FyA)X, Z)=0. If A=p, 4.7) gives g(PxA)Y, Z)=
g(V,A)X, Y)=0. Summing up, we conclude that the shape operator is %-
parallel. Thus, due to Kimura and Maeda’s Theorem [6], M is of type A, 4.
and B.

Conversely, if M is of type A,, A, or B, then by Kimura and Maeda’s
Theorem [6] the second fundamental form is 7-parallel and its structure
vector field & is principal. Since %-parallel second fundamental form with the
principal structure vector & implies %-parallel Ricci-tensor, we get the above

Theorem.

REMARK. Kimura [5] showed that a real hypersurface of CP™ with the
condition (FxS)Y=c{g(pAX, Y)+n(Y)pAX}, where ¢ is constant, is locally
congruent to homogeneous hypersurfaces with 2 or 3 distinct principal curva-
tures. Thus this condition implies that the Ricci-tensor S is 7-parallel and
structure vector field & is principal.
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On the other hand, for a real hypersurface of CH" we get the following.

THEOREM 4.2. Let M be a real hypersurface of CH", n=2. Then the
Rcci-tensor is n-parallel and the structure vector field & is principal if and only
if M is of type Ao, Ay, A, or B.

PrRoOOF. The converse is trivial by Theorem 3.4.
Let M be a real hypersurface of CH™ with w-parallel Ricci-tensor and
principal structure vector field & Then similarly as in Theorem 4.1 we can

put
(4.13) Ah—2r=a,
(4.14) ph—p*=b.

By Lemma 2.1 we can consider the following two cases.
CAsE L. a*—4=0.

Then 24—a+0. In fact, suppose that 21—a=0. Then (3.2) gives ad=2.
Together with this fact we have a*—4=0, a contradiction. Thus from (3.2) it
follows ApX=ppX, p=(ai—2)/(24—ea). From which, substituting (4.14), then
we get S ~

(4.15) (2ah—a®*—4b)22+ {4a+4ba—(a*+4)h} A4-2ah—4—ba?)=0.

Substituting (4.13) into (4.15), then 2 satisfies the following equation with con-
stant coefficients

202 —2(a*+2b+2) 2+ 2a(a+2b+3)A*—(aa®+ba’+4a+4)A+2aa=0.

In the case where a=0, a=—1 and b=-—1, coefficients of the above equation
are all vanishing. Thus it suffices to prove that principal curvatures are also
constant on M in this case.

For the case where a=—1, and b=-—1 it follows from (4.13) and (4.14) that
A=p or h=2+p. Since py=—1/2 for a=0, A=p implies £4-1=0. This con-
tradicts. Thus we have h=2+p. From which together with A=m,A+my(—1/2)
for a=0, it follows that (m,—1)2*—(m,—1)=0. Since m,#1, principal curvatures
are constant on M in this case. Hence all principal curvatures are constant on
M. Thus due to Theorem A we conclude that M is of type A,, A, or B.

Case II. a®=4.

Now we consider for the case a=2. Then (3.2) gives
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(A—1ApX=(A—1)p X .

Let us take an open set My,={x=M|1+#1}. Then AgX=¢X. Thus g=1. From
which and (4.14) it follows hA=b+1 on M,. Since A=1 on M-M,, also from
(4.13) it follows h=a+1. Hence h is constant and e=b on M. Thus 2 satisfies
a quadratic equation with constant coefficients : 22—hi+a=0. Hence all principal
curvatures are constant on M.

Similarly, for the case a=—2 we also get the same conclusion. By virtue
of Theorem A, M is of type A, A, A, or B. Since a==+2, then M is of
type A,.
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